Hybrid Nuclear Energy Systems

This project develops new capabilities of design and dispatch optimization of nuclear hybrid energy systems (NHES) in the "Risk Analysis Virtual Environment (RAVEN)" modelling software. Blended (physics-based and data-driven) machine learning will be applied to forecast demand and production of thermal and electrical loads.

Two experimental case studies are proposed to test the software developments with a lab-scale thermal energy storage and with a large district energy system. As a final step, the software developments will be generalized to other NHES.

Support for this research comes from the DOE NEUP Project 19-16879: Proactive Hybrid Nuclear with Load Forecasting. This project is a collaboration between BYU Process Research and Intelligent Systems Modeling (PRISM) Group, the Energy Systems Research Group at the University of Utah, and Idaho National Labs (INL).


Coming soon...