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Abstract

With increasing grid-penetration of renewable energy resources and a rising need for carbon-
free dispatchable power generation, nuclear-hybrid energy systems (NHES), consisting of
small modular reactors, are an increasingly attractive option for maintaining grid stability.
NHES can accomplish this with a minimal carbon footprint but there are significant uncer-
tainties that are not fully understood. This work describes and demonstrates methods for
analyzing the uncertainties of potential NHES designs, including uncertain design parame-
ters and time series as well as variations in dispatch horizon length. The proposed methods
are demonstrated on a sample system with 16 design parameters, 3 uncertain time series,
and a range of dispatch horizon lengths where the unit capacities and unit dispatch are
co-optimized to minimize system LCOE. For the example system, 11 of 16 parameters are
uncorrelated with model outputs, allowing for model reduction without decreased accuracy.
It is determined that the impact of variation in multiple time series cannot be easily isolated
and that the examined sources of uncertainty are of similar importance in terms of overall
impact.

Keywords: hybrid energy system, design optimization, sensitivity analysis, uncertainty
quantification

Nomenclature

NHES nuclear-hybrid energy system

LCOE levelized cost of electricity

SMR small modular reactor

TES thermal energy storage

NPP nuclear power plant

ηturb steam turbine efficiency
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Ccap,i capital cost of component i

Cfoc,i fixed operating costs of component i

Cvoc,i variable operating costs of component i

Dcost,i cost of fluctuating unit output of component i over time

Ei electricity generated or consumed by component i

Li anticipated lifetime of component i

Lsys anticipated lifetime of the system

Ni nameplate capacity of component i

nhrs length of dispatch horizon in hours

rdown maximum ramp down rate of the NPP

rup maximum ramp up rate of the NPP

S thermal energy stored in the TES

xd design variables

xop operational/dispatch variables

1. Introduction

Availability of electrical power is a key performance index of a society [10]. Reliable
electrical power is critical for sustainable and safe industrial settings and is a growing ne-
cessity for domestic and commercial settings [33]. The use of solar, wind, and renewable
energy resources is increasing rapidly and expected to continue to do so [16, 33]. Huber et
al. and Bertsch et al. highlight multiple cases in which increasing variable energy resource
penetration requires increased flexibility in the electrical grid [25, 9]. Increasing numbers of
electric vehicles also place unique demands on the grid [2] that may motivate more flexible
generation. To address this need, notable works have proposed hybrid energy systems (HES)
in which a reliable base load power source and energy storage meet any demands that ex-
ceed the stochastic supply produced by renewable energy sources [48, 21, 20]. Nuclear energy
is a reliable and low emission base load, making nuclear-hybrid energy systems (NHES) a
favorable option for maintaining grid stability in the future. New forms of thermal energy
storage also have potential for reduced environmental impact while facilitating hybrid energy
systems that provide greater flexibility [13].

Recent publications demonstrate various NHES designs that are unique combinations
of energy generation technologies. Zhao et al. considers an NHES design combining small
modular reactors (SMRs), concentrated solar power, and thermal energy storage (TES) [49].
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Ho et al. combines SMRs with large-scale hydrogen storage as a means of increasing grid
flexibility [24]. Other designs include industrial applications, such as Baker et al. with a
desalination plant, Kim et al. with a high temperature steam electrolysis plant (HTSE),
and Ozcan et al. with hydrogen production using the Mg-Cl cycle [7, 30, 38]. Abdusammi
et al. and Wang et al. implement unique subsystems to increase cost efficiencies in concep-
tual NHES [1, 46]. These designs, among others, represent significant groundwork in the
development of NHES.

Knowledge gaps surrounding system variability and dynamics prevent the advancement
of economic and optimal NHES solutions. Unrealized designs come with an innate short-
age of related data, complicating any manipulation of the system for specific conditions or
demands. Successful large-scale application of NHES will require thorough groundwork to
enable flexibility for regional needs. This groundwork includes determining the sensitivity
of the design and dispatch parameters addressed in this paper. The impact of variation
in system parameters is often non-intuitive and several publications focus on dealing with
uncertainties inherent to NHES. Garcia et al. and Chen et al. eliminate many case specific
uncertainties in their regional examples, but leave a more generalized approach for future
research [20]. Abdusammi et al. study the sensitivity of several design parameters, but high-
lights the need for more complete work including uncertain parameters related to renewable
energy resources and demand [1].

Renewable resource components present naturally challenging factors in the simulation of
complex systems, with both unique patterns and uncertainties. Idaho National Laboratory
(INL) provides several tools to handle the stochastic nature of NHES [11, 40, 18]. INL’s
Risk Analysis Virtual ENvironment (RAVEN) produces synthetic uncertain time series at a
large scale, enabling a more thorough analysis of untested designs [39]. Optimization of the
dispatch and design are handled separately, providing useful information about stochastic
component behavior. Additional system uncertainties that are not addressed include system
parameters, costs, and dynamics.

Each of the works modeling NHES makes use of the idea of a dispatch horizon, or the
time horizon over which the system is dispatched, in one form or another. For many works,
this is one full year [24, 23], but others time lengths are used in literature as well [14] and
there is no clear consensus on the best length to be used for the dispatch horizon.

Uncertainty and sensitivity analyses are thoroughly tested methods for developing a
knowledge base of complex systems [32]. Sensitivity analysis in HES is well developed and
is frequently used for case-specific research and optimization [6, 29, 4]. Levelized cost of
electricity (LCOE) is commonly used as an economic performance metric for parameter
analysis [42, 4]. Case-specific studies have great value, but a broader approach is needed to
establish guidelines for new designs. Tian et al. and Stelt et al. examine fixed combinations
of components in more generalized sensitivity analyses to identify which parameters carry
the most weight [43, 41]. The economic feasibility of each system is determined and key
parameters are highlighted.

There is no detailed sensitivity analysis for a general NHES. Lacking further insight,
many system parameters are exhaustively accounted for without evidence of their relative
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influence or variation in these parameters is ignored entirely. Using principles from well-
established disciplines, this paper presents sensitivity analysis methods tailored to typical
NHES models and provides useful insight into how to best account for uncertainties in NHES.
A unique combined dispatch and design nonlinear optimization model in GEKKO Python
is supported by INL developed time series tools to fully account for system uncertainties.
Interactions between design and dispatch parameters are quantified along with relative im-
pact on economic feasibility. The results provide important insight for how to account for
uncertainties for future NHES implementation.

The rest of this article is organized as follows: The sample NHES design is described
and then formulated in Section 2. Implementation of the simulated model and sensitivity
analysis methods are discussed in Section 3. Section 4 covers an analysis of the data and
resulting conclusions are presented in Section 5.

2. Material and Methods

The NHES design analyzed in this work consists of a nuclear power plant (NPP) made
up of small modular reactors (SMR), a photovoltaic solar field, a wind farm, and a thermal
energy storage (TES) unit meeting a set electrical load. Each of the system components are
considered fully-integrated with each other and transmission losses of electricity and steam
resources are considered negligible. No other generators or energy storage devices are used to
meet the load. The units are operated in a coordinated manner allowing them to minimize
the overall levelized cost of electricity (LCOE). This means that the dispatch of each of the
dispatchable components is manipulated by a single optimizer. A figure demonstrating the
interconnections between the components is shown in Figure 1, where the thermal energy
connections are represented in red and the electrical connections are represented in blue.

The NPP is modeled as a generic, large-scale steam producer with economic and dy-
namic operational parameters. The steam produced by the NPP is directed to the steam
turbine, the TES unit, or both, depending on the system dispatch. The output of the plant
is considered to be flexible over time but with imposed economic costs that encourage min-
imal power output manipulation. While the economic costs associated with load-following
SMR NPPs are expected to be minimal or negligible [34], various other costs (legal, safety,
control difficulties, etc.) could be included here as economic costs to appropriately drive the
optimization. More complex aspects of nuclear power plants, such as fuel reloading and core
neutronics, are not considered in this work.

The electricity generated from the wind farm and photovoltaic solar field combines with
the electricity generated in the steam turbine to provide the generation capacity necessary
to meet the system load. The contribution from renewable sources must be utilized by the
system dispatcher, but cannot be manipulated or curtailed in this study.

The system is required to provide the electrical load while utilizing both the dispatchable
and non-dispatchable resources, but overproduction is allowed. Any overproduction in the
system is penalized in the optimization but this penalty is not included in the LCOE. NHES
systems are expected to be able to handle overproduction through renewable generation cur-
tailment or by allowing excess steam to bypass the steam turbines although over-generation
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Figure 1: Diagram of the system components and the flow of steam and electricity

is not optimal [19].
The TES unit is a two-tank design consisting of insulated cold and hot storage tanks

filled with a molten salt. Steam charging the TES heats salt from the cold tank after which
it is stored in the hot tank. When discharging, the salt from the hot tank is used to heat
process water or steam before sending it to the steam turbine. A roundtrip efficiency is used
to approximate the efficiency of the TES.

The sizes of the NPP, TES unit, and steam turbine as well as the operation of these units
are not fixed, but are manipulated during model optimization. The system load, wind farm
capacity, and solar farm capacity are fixed in this case study scenario.

2.1. Mathematical Description

The model can be described mathematically as shown in Equation 1.
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minimize
xd,xop

LCOE +
0.1

nhrs

(Eturb,inηturb + Esolar + Ewind − Eload) (1a)

subject to LCOE =

∑n
i (Ccap,iNi

Lsys

Li
+ Cfoc,iLsys + Cvoc,i

∫ nhrs

0
Ei,tdt) +Dcost∫ nhrs

0
Eload,tdt

(1b)

Esmr − Etes,in + Etes,outηtes = Eturb,in (1c)

Eturb,inηturb + Esol + Ewind = Eload (1d)

Nmin,smrNsmr ≤ Esmr ≤ Nsmr (1e)

0 ≤ Eturb,inηturb ≤ Nturb (1f)

rdown ≤ dEsmr

dt
≤ rup (1g)

0 ≤ S ≤ Ntes (1h)

Dcost = Dcost,smr

∫ nhrs

0

(
dEsmr,t

dt

)2

+Dcost,tes

∫ nhrs

0

(Etes,in,t + Etes,out,t) dt (1i)

2.1.1. Objective Function

The objective function, as shown in Equation 1a, is to minimize the sum of the system
LCOE over the dispatch horizon length while penalizing overproduction of electricity. The
calculation of the LCOE itself is formulated as a constraint in the optimization, as shown
in Equation 1b. The second term in the objective function allows penalizing overproduction
without that penalty contributing to the LCOE. It is weighted light enough to discour-
age overproduction without driving the optimization to economically unfavorable dispatch
profiles.

2.2. Decision Variables

The decision variables for the optimization problem consist of design and dispatch vari-
ables. The design variables (xd) for this problem are the capacities of the SMR (NSMR),
turbine (Nturb), and TES (NTES). The dispatch variables (xop) for the problem the amount
of energy produced by the SMR at each point in time (ESMR) and the amounts of energy
stored (ETES,in) or retrieved (ETES,out) from the TES at each point in time. The design
parameters, time series, and dispatch horizon length are taken as model inputs, but cannot
be modified by the optimizer. Both the design and dispatch variables are simultaneously
co-optimized.

2.3. Constraints

The constraints on the optimization problem are given in Equations 1b-1i. These con-
straints ensure the feasibility of the solution by ensuring that the heat and electricity balances
are satisfied, that the units are operating within the respective constraints for those units
and that the LCOE is calculated accurately.
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The LCOE, shown in Equation 1b, is formulated as a sum of the costs from each com-
ponent divided by the total power output of the system. Capital costs of n components
are scaled with regard to system lifetime to account for continued value beyond system ex-
haustion. Fixed operational costs refer to costs from standard operation and maintenance.
Variable operational costs are costs related to fluctuations in component use. The Dcost is
the discrete trajectory costs, accounting for the cost of actively manipulating component
outputs.

The transfer of electrical and thermal energy is handled in two separate energy balances
connected by the efficiency loss in the turbine. Equation 1c represents the transfer of ther-
mal energy in the form of high temperature steam between the SMR, TES, and turbine.
Equation 1d takes electrical output from the turbine and combines it with the time variant
inputs of wind and solar energy to meet the load. Equation 1e shows the limits on total SMR
production, limited by a maximum capacity. Equation 1g considers the ramping capabilities
of an SMR and Equation 1h shows the storage capacity of the TES, constrained by a max-
imum capacity. The capacity limit of the turbine is represented in Equation 1f. rdown and
rup are the ramping constraints (Table 2). Equation 1i sums the component manipulation
costs, simulating possible expenses, and safety concerns related to component dynamics.

2.4. Model Parameters

Model parameters are uncertain economic and system parameters in Tables 1 and 2 and
fixed parameters in Table 3. Exact values for the uncertain parameters are included in the
model analysis as a range of possible values as they are not well-known for the proposed
system. The range between the minimum and maximum values for each parameter are
chosen such that the real value of the parameter should be within the range. Each of the
uncertain parameters has a nominal or best-estimate value, which is the value used when the
uncertainty of that parameter is not being considered and is an estimate based on literature
sources as described in Section 2.5.

Economic parameters for the renewable generation resources are not the focus of this
study and variation in these parameters cannot affect optimal system design or dispatch,
so these parameters are not varied as part of the study. Variation in component lifetimes
also is equivalent to variation in component capital costs for this model, so the component
lifetimes are held fixed.

2.5. Data Sources

Due to the nature of an uncertainty analysis, perfect adherence to specific values is not
required. Of greater importance for this model are results that are applicable a variety
of feasible NHES scales. All parameter values in this study are chosen to resemble those
found in literature. Exact values of the nominal, maximum, and minimum values are largely
arbitrary, but ranges are determined based on an analysis of currently available resources.

Time series data used in this model includes load, solar, and wind profiles from the
California Independent System Operator (CAISO). It is based on the period from 29 March
2020 to 1 Aug 2020. The time series data is arbitrarily scaled so that the maximum load
in the first two weeks of data matches the anticipated nameplate capacity of a 6-module
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Parameter Nominal Min Max Description Units

Dcost,smr 2e-6 1e-5 1e-6 SMR manipulation penalty USD/MWth/hr
Ccap,smr 1.1428e7 8.143e6 2.4303e7 SMR capital cost USD/MWth
Cfoc,smr 4.781e4 3.825e4 5.737e4 SMR fixed cost USD/MWth-yr
Cvoc,smr 2.39 0 5 SMR variable cost USD/MWth-h
Dcost,tes 2e-6 1e-5 1e-6 TES manipulation penalty USD/MWth/hr
Ccap,tes 7.171e4 3.134e4 1.3147e5 TES capital cost USD/MWhth
Cfoc,tes 20 14 43 TES fixed cost USD/MWhth-yr
Cvoc,tes 14 3 29 TES variable cost USD/MWth-h
Ccap,turb 6.66e5 5.00e5 7.00e5 Turbine capital cost USD/MWe
Cfoc,turb 5.2e4 4.0e4 6.0e4 Turbine fixed cost USD/MWe-yr
Cvoc,turb 1.0 0 2.0 Turbine variable cost USD/MWe-h

Table 1: Economic Parameters

Parameter Nominal Value Min Value Max Value Description Units

Nsmr,min 0.2 0 0.4 SMR min capacity NA
ηturb 0.35 0.25 0.4 Turbine efficiency NA
rup 1e3 1e3 1e3 Max ramp rate MW/hr
rdown -1e3 -1e3 -1e3 Min ramp rate MW/hr
ηtes 0.7 0.5 1.0 TES efficiency NA

Table 2: System Parameters

Parameter Value Units Description

Lsmr 60 yrs SMR lifetime
Lsol 35 yrs Solar lifetime
Lwind 30 yrs Wind lifetime
LTurb 50 yrs Turbine lifetime
Lsys 30 yrs System lifetime
Ccap,wind 1.877e6 USD Wind capital cost
Cfoc,wind 3.97e4 USD Wind fixed cost
Cvoc,wind 1e-4 USD Wind variable cost
Ccap,sol 2.534e7 USD Solar capital cost
Cfoc,sol 2.18e4 USD Solar fixed cost
Cvoc,sol 1e-4 USD Solar variable cost

Table 3: Fixed Parameters

NuScale power plant. The US Energy Information Administration provides estimates for
both capital and operational costs involved with solar and wind power generation. [17].
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Capital cost values for SMRs are based on 2020 capital cost estimates from NuScale
[36, 35]. Operation and maintenance data from Kehlhofer et al. [28] gives reasonable values
for the fixed and variable costs of an SMR. Estimates for turbine costs are taken from a
Department of Energy report on combined heat and power systems [15].

Jacob et al. provided capital cost estimates for a TES system [27]. The range of TES
fixed and variable operational costs are based on a report released by IRENA [26] and work
done by Wagner [45]. Kuravi [31] and Alva [5] give the values used to produce the TES
efficiency range.

2.6. Sources of Uncertainty

There are three sources or categories of uncertainty considered in this model: variation in
design parameters, variation in length of dispatch horizon, and variation in simulated time
series. The first of these is due to uncertain model parameters that remain fixed over the
dispatch horizon. These parameters are expected to have a single, fixed value, but the exact
value is not well-known, so a range of possible values must be considered. These parameters
include the economic and design parameters as described in Tables 1 and 2.

A second source of uncertainty is in the length of time horizon used for the dispatch of the
system. Due to limited computing power, it is not generally feasible to perform a detailed
simulation of the dispatch over the entire system lifetime. The length of the time horizon used
for the dispatch optimization can affect the optimal sizing of system components, particularly
storage components.

The third source of uncertainty is the variation in the uncertain time series involved in
the problem. The wind and solar generation as well as the system load at each point in time
are not perfectly known ahead of time and exhibit random or imperfectly-known variation
in existing power grids. The variation in each of these time series must be addressed in order
to design a robust plant capable of operating under a wide range of circumstances.

The economic costs of the fixed-capacity elements of the system (wind farm, solar farm,
and turbine) are not analyzed as a source of uncertainty in this model. The sizing and
operation of each of these components is fixed by the problem definition. A change in these
values does not affect the optimal design or operation of the system, although they would
affect the resulting system LCOE.

3. Calculation
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Figure 2: Flowchart for selection of model parameters
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The purpose of this work is to determine which sources of uncertainty are most important
when optimizing the design and operation of a simple NHES system. A number of sensitivity
analysis methods are compared to determine which sources are most influential. The effects
of each of the sources or categories of uncertainty are first considered independently. This
means that when one category of uncertainty is being analyzed, all the other categories are
held at nominal values as indicated in Figure 2. Some combined effects are also considered
as discussed below. Inflation, demand-side response and market effects are not considered
in this work.

3.1. Optimization Problem Formulation

The model is formulated as a combined design and dispatch optimization problem using
GEKKO [8]. Combining the optimization of the design and dispatch into a single problem
is a common method for efficiently sizing hybrid energy systems [12, 37].

GEKKO provides an intuitive Python algebraic modeling language with an interface to
large-scale nonlinear optimizers including APOPT [22] and IPOPT [44]. GEKKO also pro-
vides algorithmic differentiation for efficiently determining model derivatives and orthogonal
collocation on finite elements for discretizing differential equations. These features facilitate
the clear and efficient formulation of nonlinear programming problems.

The combined design and dispatch problem is formulated with GEKKO fixed variables
used to describe the design variables and GEKKO variables to define the dispatch variables.
This allows the design variables to have a single optimized value over the dispatch hori-
zon while the dispatch variables and differential equations are automatically discretized by
GEKKO.

Several techniques were used to increase problem tractability and thereby facilitate more
sophisticated uncertainty analysis for this model. First, the problem was formulated so as to
maintain continuous first and second derivatives. This included replacing square roots and
other functions with equivalent formulations that have continuous derivatives throughout the
model. Second, the electrical energy balance was formulated as an inequality constraint with
a penalty for overproduction rather than as an equality constraint. Both of these techniques
greatly improved the model tractability and decreased the required time to solution. The
resulting base model with a dispatch horizon length of 360 hours results in a nonlinear
programming problem with 12930 variables and 11488 constraints that is solved with a
large-scale, sparse, nonlinear programming (NLP) solver.

3.2. Monte Carlo and Sensitivity Analysis

A Monte Carlo analysis using Latin hypercube sampling (LHS) and local sensitivity
analysis at each sample point provides insight into the sensitivity of the optimal system
design to variations in the design parameters. A large number of LHS samples of the input
parameters are generated. The model is then evaluated for each particular sample and local
sensitivity is performed around each sample point using a forward difference strategy with
an adaptive step size.

The sensitivity at each point is a forward difference from the sample point for each
input parameter. Each of these sensitivities is normalized by both the model output at the
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samples point (Qj,0) and initial sample model input at that point (Pi,0), allowing the various
sensitivities to be analyzed in terms of the percent output parameter change that is caused by
a percent input parameter change. The sensitivity calculation is described mathematically
in Eqn. 2 where Si,j is the sensitivity of the ith parameter with respect to the jth output.

Si,j =
Pi,0

Qj,0

dQj

dPi

(2)

The result of this analysis is a n×m matrix of sensitivities at each sample point where n
is the number of uncertain model parameters (inputs) andm is the number of model outputs.

Useful results from this analysis include the distributions of the model outputs, correla-
tions between the models input and outputs, and distributions of the normalized sensitivities.
This method analyzes the effect of a parameter variation across the design space and de-
termines where a design space parameter is likely to have the greatest effect. Because the
sensitivities are normalized, they can be compared to determine which parameters are most
influential on the performance of the system and which are least influential.

3.3. Dispatch Horizon Length Variation

The length of the time series also affects the optimization results. Longer time horizons
produce different optimal dispatch patterns. In particular, the usage pattern and optimal
capacities of storage elements changes with the length of the dispatch horizon. The effect
of NHES time horizon length is characterized by analyzing the variation of optimal LCOE,
TES capacity, and SMR capacity. The purpose of this analysis is to determine what dispatch
horizon length is most efficient while still maintaining optimal dispatch.

Further insight into the impact of dispatch horizon length is obtained by repeating the
analysis at each distinct length with a number of LHS samples of the design parameters.
This allows visualization of how the output distributions change with increasing dispatch
horizon length rather than simply observing the change for the nominal case.

3.4. Time Series Forecast Variability

Variation in uncertain time series also affects the performance and optimal design of
NHES. The variation in uncertain time series can be due to both predictable sources (e.g.,
solar radiation patterns) and currently unpredictable sources (e.g., local wind speed) result-
ing in time series consisting of both predictable and stochastic elements.

Systems optimally sized for a single sample of an uncertain time series may perform
poorly or completely fail for other samples of the time series. This work aims to quantify
the variability in system performance, optimal sizing, and feasibility due to variations in
uncertain time series.

For the purposes of this work, uncertain time series are modeled using the Fast Fourier
Transform (FFT) detrending and auto-regressive moving average (ARMA) time series mod-
eling tools provided in RAVEN [3, 11]. These tools model uncertain time series as a combina-
tion of predictable and stochastic variation and allow generating large numbers of synthetic
samples from the modeled uncertain time series. The generated samples can then be used
to evaluate the performance of an NHES under a wide range of conditions.
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In modeling the uncertain time series, the synthetic samples show a visible decrease in
sample smoothness as compared to the original samples. In order to correct this, the samples
are smoothed using rolling averages until the first and second auto-correlation lag coefficients
as well as the standard deviation of the signal are close to the original signal [47]. An example
of how the synthetic time series are generated from historical data is shown in Figure 3.

Historical CAISO load
data

Scaling Stochastic Sampling
using RAVEN

Smoothing the
stochastic samples

Figure 3: Example of time series generation for CAISO load data

The variability of NHES performance and optimal design due to time series uncertainty
is quantified by optimizing the system for a number of different realizations of the uncertain
time series. This is done for each of the uncertain time series individually (load, wind, solar)
with the other time series fixed and then again with variations in all the time series. This
quantifies the uncertainty due to each of the time series as well as capturing the combined
effects of the variation.

4. Results and Discussion

The effect of each source of uncertainty is analyzed according to the methods described
above. These effects can be ranked by the output distributions that they cause on the model
outputs (NSMR, NTES, NTurb, LCOE). Broader distributions indicate stronger effects while
narrower distributions indicate weaker effects.
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Figure 4: Heatmap of the Pearson correlation between model inputs and outputs using 20000 samples and
a 500 hour dispatch horizon

4.1. Monte Carlo and Sensitivity Analysis

Monte Carlo sensitivity analysis for 360 and 500 hour dispatch horizons quantify the
model output uncertainty due to the design parameter uncertainty. A heatmap of the Pearson
correlations between the LHS inputs and model outputs is shown in Figure 4. The correlation
between the model inputs is not considered as they are independent uniform variables in this
model. Dispatch horizons longer than 500 hours are not considered as computational demand
did not allow good sampling of the input space.

The optimal turbine size is excluded as it remained essentially the same for each time
horizon length and so is not correlated to any other inputs or outputs. This lack of variation
in optimal turbine sizes is due to the fact that the time series are not varied in this part of
the analysis, leading to a consistent maximum net system load and thus a consistent required
turbine capacity. Results between the 360 and 500 hour dispatch horizons are nearly the
same, so only the 500 hour dispatch results are shown.

The top five parameters with absolute Pearson correlations coefficients (r) greater than
0.1 are the turbine efficiency (ηturb), the SMR capital cost (Ccap,SMR), the TES efficiency
(ηTES), the SMR variable cost (Cvar,SMR), and the TES capital cost (Ccap,TES). The remain-
ing design parameters had either very weak (r ≤ 0.05) correlations to the model outputs or
no correlation at all (r = 0). Excluding nonlinear or combined effects, this clearly emphasizes
the importance of accurately determining the value of the most significant parameters over
the ones with no significant correlation and greatly reduces the input space of the model.

An increase in efficiency of either sized unit is correlated with a decrease in both system
LCOE and both unit capacities. The SMR and TES capital cost correlations highlight
the competing relative sizes of the TES and SMR. The two components can to some extent
compensate for each other and the precise sizing decision is likely an economic one. The single
parameter modification most likely to improve the system LCOE would be a reduction in
the SMR capital cost.

Eleven non-zero normalized sensitivities of the system are shown in Fig. 5 with the
outlier values excluded. With the exception of outliers, the absolute values of the remaining
normalized sensitivities are all less than 0.001. All but the two weakest of the plotted
sensitivities are with respect to one of the top five influential parameters. This strengthens
the conclusion that the top five parameters shown above are the most important of the
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Figure 5: Selected normalized sensitivities of model inputs/outputs based on 10000 LHS samples using 495
hour dispatch horizons. Outlier values are excluded.
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Figure 6: Approximated probability density functions of model outputs using 360 and 500 hour dispatch
horizons

proposed parameters to correctly determine, while the exact values of the remaining eleven
parameters are largely negligible.

Finally, approximations of the model output probability density functions are generated
using Gaussian kernel density estimators as shown in Figure 6 with the triangles representing
the distribution medians. There is a minimum value for the SMR when the design parameter
uncertainty is considered. Any size below that is insufficient, but it is less likely to need one
of larger capacity. All three outputs show broad distributions, indicating that variation in
the modeling parameters do have a strong effect on the model output.

Both the 360 and 500 hour dispatch results are shown for comparison. The median SMR
capacity increases by 7.8 MWth from 360 hour to 500 hour dispatch with a significant change
in the shape of the distribution. With a complete change in the shape of the distribution,
the median LCOE increases by 5.7 USD/MWh and the median TES capacity changes by
over 10200 MWhth.

The large change in expected storage capacity indicates that expected cycle time of the

14



storage unit may be a key consideration in choosing the dispatch horizon length. The chosen
dispatch horizon must be longer than the expected storage cycle of the longest storage
element in the system.

None of the output distributions are normal distributions, which indicates the nonlinear
relationship between the model inputs and outputs. Linearized approximations of the current
model introduce an approximation error.

The analysis indicates that the most important parameters to accurately determine for
this system are the turbine and TES efficiencies, the SMR and TES capital costs, and the
SMR variable cost. None of the other parameters exhibit a large influence over the tested
parameter space, but the expected variation due to design parameter uncertainty is high.

4.2. Dispatch Horizon Length Variation
The response of both the nominal case and LHS samples of the uncertain design param-

eters to variation in the dispatch horizon length is shown in Figure 7. The nominal case is
shown as a blue line for each of the model outputs and the variation due to design parameter
uncertainty is shown in the violin plots along the x axis. Time series variation was not
included in this part of the study.
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Figure 7: Model response to variation in dispatch time horizon

There is no conclusive evidence that the dispatch horizon length is long enough to ap-
proach an infinite horizon solution. Further analysis with longer time horizons is needed, but
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this is currently not feasible with this study and the limitations of compute power. These
results illustrate the sensitivity of the system to the choice of dispatch horizon length.

The turbine size (Nturb) is once again fixed at each dispatch horizon length by the max-
imum net load in the horizon. As such, it does not have variability with the system design
parameters. Including the uncertainty due to time series variation would likely cause varia-
tion in turbine size.

The high levels of variability in the nominal case are evidence that dispatch horizon length
is a critical consideration in optimal design of NHES. There are ranges of dispatch horizon
lengths that produce similar model responses, which indicates that there may be unique
modes of operation depending on the length of time horizon being considered. For example,
for cases where storage is used for daily peak-shifting, 200 hour dispatch horizons may be
sufficient, while longer horizons would be required for more demanding storage schemes.

The high levels of variability in the LCOE and TES and SMR capacities at the majority
of the dispatch horizon lengths indicate that, while dispatch horizon length is a critical
consideration, uncertainty in the design parameters must still be considered. Uncertainty
in the design parameters has a much larger effect on the LCOE and SMR capacity and a
comparable effect on the TES capacity.

Most of the uncertainty in the LCOE and SMR capacity are a result of uncertainty in
the design parameters, rather than the length of the dispatch horizon used in the problem
while the uncertainty of the turbine and TES capacities are more affected by variations in
dispatch horizon length than by design parameter uncertainty.

4.3. Time Series Variability

Gaussian kernel density estimator (KDE) approximations of the model output distribu-
tions for the uncertain load, wind, and solar time series are shown in Figure 8. The standard
deviation and mean of each output distribution for each variable is tabulated in Table 4. The
uncertain time series are examined one at a time using 1000 samples. Parameter covariance
is not considered. Lack of rigorous validation in the generation of time series samples limits
the conclusions that can be drawn from this study as the input samples are not guaranteed
to be representative of a real system.

Time
Series

LCOE
Std. Dev. (Mean)

NTES

Std. Dev. (Mean)
NSMR

Std. Dev. (Mean)
Nturb

Std. Dev. (Mean)

Load 0.54 (65.52) 1992.08 (5597.69) 17.61 (1024.45) 12.30 (497.56)
Wind 0.91 (67.10) 1381.25 (5618.93) 19.22 (906.44) 9.88 (460.43)
Solar 0.38 (68.29) 524.61 (12697.77) 3.10 (893.33) 3.50 (438.92)

Table 4: Standard deviations and means of output distributions caused by time series variation

Variation in the solar generation profile produces the tightest output distribution in
all four cases as well as higher mean values for both system LCOE and TES capacity.
This may be due to the more predictable daylight generation of solar power and makes
characterization of the solar generation profile less important for reducing output uncertainty
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Figure 8: Distribution of model outputs for individual time series variation

than the wind and load profiles. Both wind generation and load profile uncertainty result
in output distributions similar in width although different in range for each of the four
cases. Wind and load profiles are of approximately equal importance for optimization results
depending on the output parameter.

The combined effects of the uncertain time series, based on 10,000 samples with 495 hour
dispatch horizons, are shown in Figure 9. The standard deviations of the output distributions
are also shown in Table 5. All four outputs are positively-skewed, near-Gaussian distributions
of varying widths and standard deviations. The individual effects of time series variation are
often significantly non-Gaussian, which indicates that some variation caused by individual
time series variation is not additive in this system.

Both the SMR and turbine capacity distributions are shifted higher than the distributions
predicted by the individual time series variations. The distributions are not necessarily wider,
but fall outside the range of the individual time series variation predictions. This leads to an
important observation that the output distributions or even upper and lower bounds on the
output distributions cannot be accurately predicted based on the results of individual time
series variation. While the lack of validation in NHES and time series modeling limits the
applicability of these results, this work highlights the importance of combined time series
variation analysis.

4.4. Relative Effects

The relative effects of the various sources of uncertainty on the model outputs are shown
as violin plots in Figure 10 where the type of uncertainty is listed on the X axis for each
subplot.
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Figure 10: Comparison of the output variation due to the three categories of input variation

Variation
Source

LCOE
Std. Dev. (Mean)

NTES

Std. Dev. (Mean)
NSMR

Std. Dev. (Mean)
Nturb

Std. Dev. (Mean)

Parameter 22.68 (91.01) 3586.49 (11522.71) 79.00 (893.00) 0.00 (437.17)
Dispatch length 1.24 (66.16) 5776.22 (13570.32) 0.00 (873.30) 59.30 (491.38)
Time Series 0.97 (69.41) 1875.56 (5185.27) 26.02 (1104.66) 14.73 (526.86)

Table 5: Standard deviation (rounded) of each of the output distributions for each source of uncertainty

The effect of parameter variation on system LCOE is at least an order of magnitude
greater than either of the other sources of uncertainty. Parameter characterization is there-
fore the most important method for reducing uncertainty in the system LCOE. The three
sources of uncertainty produce similar ranges of values for the TES capacity with dispatch
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horizon length and time series variation being respectively the most and least influential
sources. Parameter variation has the largest effect on the SMR capacity with time series
variation having a significant effect and dispatch horizon length having little to no effect. Pa-
rameter uncertainty has no real effect on the turbine capacity while dispatch horizon length
has the largest effect and time series variation has a significant effect.

As noted in Section 4.1, effects of parameter variation on turbine capacity are not fully
represented as the turbine capacity is fixed when both the time series and dispatch horizon
length are fixed. This is due to the design of the sample NHES system. Other systems may
exhibit different relative effects of the sources of uncertainty.

4.5. Summary

Overall, the impact of the various considered uncertainties varies widely, particularly
when this impact is broken down by model output.

Dispatch horizon length is important, but does not have a large effect on the optimal
SMR capacity or the system LCOE. For this particular case study, it does have a large effect
on the TES and turbine capacities. Depending on the design details of the NHES under
consideration, some sources of uncertainty may be negligible.

Variations in the wind power production and load signals are independently more influ-
ential than variations in solar generation. When considered together, the combined effects
from the time series variation are not always predictable based on the individual effects.
Proper analysis requires a combination of multiple uncertain time series.

The relative impact of each of the sources of uncertainty depends on the model output.
The SMR capacity and LCOE are most affected by design parameter uncertainty, while the
TES is affected by all three sources, and the turbine capacity is most affected by the dispatch
length. This understanding of the relative importance of each of the parameters can help
drive model accuracy improvements in an efficient manner.

Based on the standard deviation of the output distributions, the parameter uncertainty
has the largest impact in 2 of the 4 outputs and dispatch horizon length was the largest in
the remaining 2. Time series variation was the least influential source of uncertainty in the
proposed system.

5. Conclusions

Understanding the effects of parameter, time series, and modeling uncertainties is criti-
cal to furthering the development of NHES. A proper understanding of these uncertainties
increases the accuracy of modeling results and can speed model development and analysis by
excluding insignificant uncertainties. While the numerical results of this work are not broadly
applicable to all NHES, the methodology presented in this paper is useful for a broad range
of systems. There are a number of useful conclusions for this system that characterize the
insights gained by this methodology and may be applicable to other NHES.

First, of the 16 design parameters considered only 5 have significant impact on the system
performance which allows for model reduction. Similar model reductions may be possible
for a wide range of NHES models.
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Second, different design variables of an NHES can be impacted very differently by the
same uncertainty. Some uncertainties, or sources of uncertainty, may be negligible for one
design variable while being highly influential for another design variable. This analysis
demonstrates methods of comparing dissimilar uncertainties, and sources of uncertainties,
to determine which are most important for a given model.

Finally, this analysis demonstrates that uncertain time series are more accurately handled
together rather than individually. Isolating the effects of individual uncertain time series can
ignore important interactions between dissimilar time series.

Areas of future work include analyzing the impact of linear approximations when model-
ing NHES systems and analyzing the impact of time series forecasting on NHES performance.

6. Data Availability

The input data, Python scripts for analysis, and plotting as well as the analysis results
are available in the following Git repository:
https://github.com/BYU-PRISM/NHES-opt-sensitivity

Additional information about the available data and scripts are available in the Readme.md
file at the root of the repository.

7. Future Work

The accuracy of this work is limited by the short dispatch horizons used to allow for
computationally reasonable models. More work is needed with longer dispatch horizons,
which may require linearized models for the infinite horizon arrival cost. In this case, this
approximation needs to be examined as well.

Additionally, this work is confined to a single NHES operating independently to meet a
required electrical demand. Further work is required to analyze how such a system responds
when operating as part of a larger electrical power grid in both regulated and deregulated
energy markets. Additional work is also needed to determine how generalizable the results
of this study are to NHES generally.

Finally, limited parameter and operational data is available due to the proprietary nature
of commercial operations and the lack of existing NHES. Repeating or modifying this work
with more accurate model parameters and operation data would further clarify the role that
each of the involved uncertainties has on system performance.
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