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Abstract

Reservoir reduced order modeling includes empirical, fundamental, and hybrid model forms. The ob-

jective is to capture time-varying relationships and facilitate decisions made by optimizers to maximize

reservoir value in the near and long-term. The models used for simulation are often too complex and

computationally demanding for direct application in optimization. A number of techniques are summa-

rized that either reduce or simplify the model form to capture dynamic relationship between injectors

and producers in complex fields. A case study is also included with Model 2 from the 10th Society of

Petroleum Engineers comparative solutions project. Dynamic models of injector to producer relationships

are created with and without fundamental reservoir information in the form of gain constraints. Higher

order reduced models and gain constraints reduce the data requirement to obtain a satisfactory fit. Future

needs are discussed such as quantification of model parameter uncertainty, optimal design of experiments

for closed-loop identification, and improved modeling to capture nonlinear effects.

Keywords
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Introduction

Reservoir model reduction techniques generally fall into

two categories: (1) methods that are data driven and

do not require fundamental knowledge of the reservoir

and (2) physics-based reduced order models that exploit

production data or reservoir knowledge. Physics-based

models are further classified into two classes of reduced

order models including those that are derived from fi-

nite element, first principles simulators and those that

begin as lumped parameter models. The advantage of

using physics-based models is that predictions are bet-

ter extended outside of the training data but that addi-

tional geologic information can be difficult to acquire

and assimilate into the predictive models. Commer-

cial reservoir simulators use high-fidelity, physics-based

models discretized onto finite-volume grids to provide

predictions of reservoir performance. While these sim-
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ulators attempt to provide an accurate description of

reservoir geology and flow properties, the large size of

these models make them computationally expensive to

solve, especially in optimization (Awasthi et al., 2007)

where many simulations of the model may by required

to reach convergence. Often, such models have millions

of grid blocks with associated state dimensions that are

often multiples of the number of grid blocks (Foss, 2012).

This makes injection optimization difficult and time-

consuming without the aid of model reduction tech-

niques or new reduced order models. This paper exam-

ines existing types of reduced order models and model

reduction techniques that are applied to optimization of

reservoirs, as shown in Figure 1. These methods enable

history matching and optimization with limited compu-

tational resources. The reduced order models can then

be used to guide decisions about reservoir injection.
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Figure 1. Empirical (based solely on data), fundamental,

and hybrid models are all used for optimization with a

range of trade-offs centered on computational expense

and availability of data and reservoir information

Model Reduction Techniques

Model reduction is implemented to reduce simulation

run time or investigate dominant reservoir dynamic fac-

tors. The process takes large models and creates smaller

ones by reducing the number of variables, referred to

as upscaling the model. Reservoir models can be re-

duced into both linear and non-linear models. Many

linear models are not of practical use because they re-

quire frequent reconstruction that outweighs computa-

tional speed benefits (Heijn et al., 2004). This section

focuses on non-linear model reduction techniques. Al-

though non-linear models take more time to construct,

the range of operation is greater for improved simulation

performance.

One of the most common nonlinear model re-

duction methods is Proper Orthogonal Decomposition

(POD) (van Doren et al., 2006; Fragoso et al., 2014; He

et al., 2013; Cardoso and Durlofsky, 2009; He et al., 2014;

Klie, 2013; Heijn et al., 2004; Alghareeb and Williams,

2013; Suwartadi et al., 2015; Cardoso et al., 2009). The

POD method reduces the model size of high-fidelity sim-

ulators with a similarity transform (T ) between the orig-

inal states (x) and a reduced set of states (x̄ = T x) that

capture the dynamics of the system. This reduces the

number of parameters and state variables in simulations

through either truncation where non-essential trans-

formed states are set to zero or residualization where

these same states are fixed at nominal values (Heden-

gren and Edgar, 2005). Residualization preserves steady

state relationships to preserve important relationships

such as mass or energy conservation and is preferred

over the truncation approach. Cardoso et al. (2009) de-

velops and applies POD for reservoir systems. Various

model reduction techniques are applied to two-phase (oil

and water) reservoir flow with POD having potential as

a reduced order representation for reservoir simulation

due to the ability to capture non-linear dynamics (Heijn

et al., 2004). POD is used to reduce model size while

incorporating an Ensemble Kalman Filter (EnKF) for

history matching of reservoirs (He et al., 2014). POD is

also used to create reduced order models and apply these

models in adjoint optimization methods. The reduced

order model is nested within the high-fidelity model to

improve simulation runtime by up to 35% with nearly

identically-optimized solutions when compared with the

high-fidelity model (van Doren et al., 2006; He et al.,

2014; Jansen and Durlofsky, 2016).

Although speedup can be achieved with the POD

method, these improvements are limited because the Ja-

cobian must be determined and projected into the re-

duced order space at each time step during the simu-

lation (Cardoso, 2009). To overcome these challenges,

Trajectory Piecewise Linearization (TPWL) can be used

in conjunction with POD (Jansen and Durlofsky, 2016).

TPWL is implemented in order to avoid construction

of the full Jacobian and residual matrices at each time

step. Using a limited number of training runs, TPWL

creates reduced order state and Jacobian matrices. The

procedure is then represented in a reduced order space

using POD (Cardoso and Durlofsky, 2009). A more de-

tailed description of TPWL can be found in Cardoso and

Durlofsky (2010) and Cardoso (2009). TPWL and POD

have been used together to speed up reservoir optimiza-

tion times by an order of 500 (Fragoso et al., 2014). Im-

provements to TPWL are made that provide improved

resolution at grid blocks near wells and other impor-

tant areas in He et al. (2011). TPWL is used to reduce

model size in order to improve a history matching al-

gorithm involving an EnKF (He et al., 2014). These

different reduction techniques provide a method to run

simulations more quickly by allowing the reduced model

to run a majority of the iterations, while the full-fidelity

model is only used to update the reduced model.

Other model reduction techniques are less common in

literature. Various model reduction techniques are com-

pared for use in low-order controllers, and Krylov based

methods are determined to be efficient for large reser-

voirs (Gilden et al., 2007). Krylov methods and other

projection techniques are compared in Gilden et al.

(2006). The Discrete Empirical Interpolation Method

(DEIM) has become an increasing area of interest for

model reduction (Klie, 2013; Alghareeb and Williams,

2013; Ghommem et al., 2013). DEIM is coupled with

POD or other model reduction methods to improve

the modeling of system nonlinearities. An in-depth de-



scription of DEIM can be found in Chaturantabut and

Sorensen (2010). Future work involves improving these

model reduction techniques for multiphase flow as well

as accounting for the changing bottom-hole pressure as-

sociated with well shut-ins. Another area of future re-

search is quantifying the relationship between computa-

tion speedup and accuracy. Scaling these procedures for

use on large fields with tens or hundreds of wells is of

future interest as well.

Reduced Order Models (Proxy Models)

Instead of reducing high-fidelity models, another

method of improving simulation time is to use stand-

alone reduced order models. These models can be based

on the physical properties of the reservoir, or they can be

completely empirical with no physical basis. A common

objective of many model types is to determine the dy-

namic relationship between injector and producer wells.

With this type of model, engineers can determine which

wells to shut in and which wells are contributing most

to production gains and long-term reservoir extraction

targets. This type of model can also be used to deter-

mine various geological features in the reservoir, such as

faults and heterogeneities (Panda and Chopra, 1998; Liu

et al., 2007). The downside of this class of model is that

it requires production and injection data, and so it is

not useful before the field has been developed. Prelimi-

nary artificial data can, however, be obtained by simu-

lating injection and production data from high fidelity

simulators. Developing a reduced order model from

simulators has an advantage over POD based methods

because only input-output data is collected instead of

modifying the source code of the simulator. A design

of experiments (Darby and Nikolaou, 2014; G. D. Bar-

ros et al., 2015) to best optimize well performance and

reduce model parameter uncertainty is a future oppor-

tunity that has not been adequately addressed in the

literature.

Data Driven Models

Data driven models allow for evaluation of reservoir dy-

namics using only production and injection data. One

of the advantages of empirical models is that they often

do not require geological data from the reservoir. These

types of models are useful for legacy fields, in which the

reservoir has been passed from various companies and

geologic data is no longer known or was compiled long

ago. Lee et al. (2008) used a finite impulse response

model (FIR) to determine flow units between injection

and production wells. The FIR model requires a large

number of parameters to achieve comparable accuracy

with other empirical models, making it computationally

inefficient. Lee et al. use a multivariate autoregressive

model to quantify the relationship between injection and

production wells. The model was found to be more ro-

bust to noise than the FIR model (Lee et al., 2010).

An Auto-Regressive eXogenous inputs (ARX) model is

a time series representation that includes past externally

determined inputs u and the output variable of interest

y in the form yk =
∑ny

i=1 αiyk−i +
∑nu

i=1 βiuk−i. The

parameters αi and βi are determined through regres-

sion to measured dynamic data (ym and um) with a

least squares objective
∑n
i=1 (ymi − yi)

2
. In this case,

n is the number of data points, nu is the number of β

coefficients, and ny is the number of α coefficients. A

nonlinear autoregressive exogenous (NARX) model of

the form yk =
∑ny

i=1 f (yk−i) +
∑nu

i=1 g (uk−i) is used

to simulate a naturally fractured reservoir under gas-

drive (Sheremetov et al., 2014). The NARX model is

more easily trained and converges faster than feedfor-

ward ANNs and the ANN architecture considerably af-

fects model output.

An autoregressive model with two parameters per in-

jector employs an extended Kalman filter to continually

update the model parameters (Liu et al., 2007). The

filter is used to quickly infer relationships between wells

and even determine faults and other geological hetero-

geneities. Daoyuan Zhai (2010) further validated this

model and more easily determined relationships between

injection and production wells. A constrained Kalman

filter is used to ensure that the injector-producer re-

lationships are physically plausible. These data driven

models allow engineers without prior knowledge of reser-

voir geology to understand the dynamics and infer geo-

logic structures between different wells within the reser-

voir. The lack of fundamental insight provided by data

driven models, and the inability to extrapolate beyond

the training data, are weaknesses of data driven models

when compared to reduced order or physics based mod-

els. However, with constraints or other information to

constrain the empirical models, extrapolation potential

is improved.

Artificial Neural Networks (ANNs) are common data

driven models used in the petroleum industry. ANNs

have been an area of intense research in the petroleum

industry in recent years. ANNs are empirical models

that are used as proxies to improve reservoir simula-



tion time in optimization and history matching prob-

lems. Each input neuron is given a weight, and these

impulses move through the network until the output

neurons are reached where a solution can then be read

(see Figure 2). Because ANNs are data driven models,

the accuracy of these models are solely dependent on

the quality of the data used for training. The greatest

advantage of ANNs is the ability to model nonlinearities

with little computational effort or physical understand-

ing of the process. However these models are difficult

to train and have pitfalls such as overtraining, extrap-

olation, or lack of validation. For these reasons ANNs

require user knowledge and understanding in order to

select the proper architecture of the network and train

routine. Sampaio (2009) gives an overview of methods

for training and developing ANNs for use as proxy mod-

eling in reservoir simulation and history matching.
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Figure 2. Schematic of a sample ANN architecture with

output dynamics

ANNs are applied as proxy models to improve reser-

voir simulation time, history matching, optimize reser-

voir production, and to discover inter-well connectivi-

ties. This type of model also allows for quicker eval-

uation of reservoir heterogeneities such as faults and

pinchouts (Panda and Chopra, 1998). ANNs are also

used for history matching injection and oil production

to maximize future production while minimizing injec-

tion (Nikravesh et al., 1996). These models provide in-

formation to reservoir engineers can use to avoid reser-

voir damage caused by over-injection while maximizing

production. As mentioned earlier, Sheremetov et al.

(2014) used a hybrid ANN model to predict reservoir

performance under gas drive. This work was success-

fully applied to a simple reservoir and future studies are

anticipated to apply this methodology to larger, more

complex reservoirs. ANNs are found to provide a rea-

sonable substitute for reservoir simulators as a history

matching tool, providing improved simulation time, al-

though with lower confidence in the results. High fidelity

simulators are suggested to validate the results of his-

tory matches obtained via ANN proxy models (Costa

et al., 2014). ANNs are applied to proxy models for

history matching on the Brugge field and an Iranian

reservoir with fewer simulation runs than the methods

compared in Foroud et al. (2014). ANNs are also used

with Markov Chain Monte Carlo techniques to perform

history matching on synthetic reservoirs (Maschio and

Schiozer, 2014). ANNs have also been applied to steam

flooding in heavy oil fields (Amirian et al., 2015; Panjal-

izadeh et al., 2014). Many of the studies mentioned in

this section are done with simple or synthetic reservoirs.

Application of these techniques on larger and more re-

alistic fields is needed to confirm the robustness of these

modeling methods. Another area of future research is

in the optimal design of ANNs. Little has been done

in this area, specifically for ANNs as proxy models for

reservoir injection optimization.

Physics based models

Reduced order models with reservoir physics have also

been developed. The models mentioned above are

mostly data driven, and are not particular to model-

ing petroleum reservoirs. One example of the physics

based approach is a streamline model, that predicts

flow on streamlines rather than through grids in finite

volume modeling. Streamline models are used to de-

termine how injected fluids flow and affect production.

These models provide significant speed-ups in compu-

tation time by assuming incompressibility of the reser-

voir fluids. This allows the pressure and transport equa-

tions to be decoupled and solved more easily. Stream-

line models have been applied extensively to water-

floods (Safarzadeh et al., 2014; Park and Datta-Gupta,

2013; Bostan et al., 2013; Ghori et al., 2007; Thiele and

Batycky, 2003; Bostan et al., 2011). These models are

used to determine the efficiency of individual injection

wells (Thiele and Batycky, 2003; Bostan et al., 2011,

2013; Safarzadeh et al., 2014). This allows engineers to

understand which injectors to shut in, as well as under-

stand subsurface flow in heterogeneous reservoirs.

Similar to streamline models, the Capacitance Resis-

tance Model (CRM) is a reduced order model that allows

for the evaluation and optimization of waterflood injec-



tion schemes over the time scale of months (Sayarpour

et al., 2009). Only the injection and production data

are required, although bottom hole data can be used to

obtain a more accurate model (Weber, 2009; Sayarpour

et al., 2009). Mamghaderi and Pourafshary (2013) de-

veloped a CRM model that accounts for the cross flow

of reservoir fluids between reservoir layers. This in-

creases the computation time and number of parameters

of the model, but allows for more accurate production

predictions to be made in layered reservoirs. Like the

data driven models, the CRM model is best suited to

legacy assets, allowing engineers to quickly and easily

estimate the connectivity and time constants between

wells. However the CRM parameters are time invariant,

therefore the model may not predict well over the whole

life of the well without refitting the parameters. Refit-

ting the parameters can happen either as a batch process

as additional production is available or as a Bayesian es-

timation approach such as an Ensemble Kalman Filter

(Jafroodi and Zhang, 2011).

To achieve a good fit with any of the data driven

models discussed above, it is necessary to train the

model. Without the right data all of the dynamics of the

model may not be excited and can lead to poor predic-

tions. Thus, it is important that data driven models are

trained on data with sufficient variation in injector flows.

Perturbation of injection rates is required for training

linear reduced order models (Rezapour et al., 2013) al-

though this is typically not an issue in practice due to

maintenance and other activities that require injectors

to be shut off periodically. Good training data contains

excitation of the dynamic modes of the reservoir while

also remaining in the linear regime for which the model

is still valid. It is important also to note that because

reservoirs are time varying systems, any data that is

used for training is only valid over a certain time and

therefore models must be periodically retrained to retain

accuracy. This poses a practical problem because it may

not be economically favorable to perturb injection rates

for model training purposes. Injection is scheduled to

meet these two constraints (Rezapour et al., 2013). In

the later production stages reservoir dynamics become

less nonlinear, favoring the use of simpler linear models.

Table 1 provides a comparison of the different mod-

eling methods reviewed. Each method has advantages

(+) and disadvantages (-) that make particular strate-

gies desirable for situations depending on geologic data,

production data, computational speed limitations, pre-

diction horizon requirements, presence of a gas cap ver-

sus incompressibility, and need for extrapolation outside

of the training data.

Table 1. Summary of model advantages and disadvan-

tages

Proper Orthogonal Decomposition

(+) Faster convergence than stochastic methods

(+) Does not require production data

(-) Requires geologic data

(-, without TPWL) Limited speedup because of

Jacobian reconstruction at each time step

(-, with TPWL) Requires preprocessing for

TPWL construction

Capacitance Resistance Model

(+) Ideal for legacy fields with production data

(+) Requires limited geologic reservoir information

(-) Requires extensive production data that

must include changes in injection rates

(-) Poor prediction over reservoir production

life-span due to time-invariant parameters

Streamline Method

(+) Improved computation speed over rigorous simulation

(+) Easily determine efficiency of injector

wells through streamlines

(-) Assumes incompressibility

(-) Only suitable for two phase (water and oil) systems

Linear Model Identification (ARX, FIR, etc.)

(+) Requires limited geologic reservoir information

(+) Linear time series model with reliable convergence

(-) Requires production data with input perturbations

(-) Higher order models may be over-parameterized

Artificial Neural Network

(+) Model nonlinearities with no reservoir knowledge

(+) Requires no geologic data

(-) Poor predictions outside of training data range

(-) Quality depends heavily on production/injection data

Case Study: SPE 10 Benchmark Model Reduc-

tion

An industry-standard waterflood injector case study

is used to illustrate model reduction methods with lin-

ear model identification. Model 2 from the 10th SPE

(Society of Petroleum Engineers) comparative solutions

project provides a large complex reservoir suitable for

this study (Christie et al., 2001). An ARX model of

varying orders and with or without constraints is used

in this study. Several different linear dynamic model



forms can be used to fit data generated by a process

or dynamic simulation. For this work, the ARX model

form is selected. The ARX relates previous values of in-

puts and outputs to the current model output estimate

(see Equation 1).

yk =

ny∑
i=1

αiyk−i +

nu∑
i=1

βiuk−i (1)

where α and β are model parameters and nu and ny

denote model order in the input and output parts of the

model. An advantage of the ARX model is it is linear

in the model parameters. A disadvantage is that, in

the presence of noise, the model is biased if the selected

model order is not sufficiently high. For the example

considered here, this will not be an issue since the data

is generated from a fundamental model without noise.

A constraint is imposed in this case study to bound

the model steady-state gains between every injector-

producer pair. From material balance considerations,

each gain must be less than one. The model gain, ex-

pressed as a function of the ARX parameters αi and βi,

is given by Equation 2.

K =

∑nu

i=1 βi

1 −
∑ny

i=1 αi
(2)

To satisfy the material balance in the reservoir con-

straints are placed on the model gains as shown in Equa-

tion 3.

0 ≤ K ≤ 1 (3)

The objective of the estimator is to align the model

and measured values by adjusting the parameters αi and

βi. A squared error objective function of the following

form shown in Equation 4.

min
βi αi

Θ =

n∑
i=1

(yi − ymi)
2

(4)

where n is the number of data points. The minimiza-

tion is performed subject to the above gain constraint

as shown in Equation 3.

Figure 3 is a graphical representation of the reservoir

and Table 2 show the specific well locations for each in-

jector and producer. The simulation is performed using

the CMG IMEX simulator.

Figure 4 shows the four injector inputs over the simu-

lation time span. Output data is recorded every 25 days

Figure 3. Example of injector and producer placement

in the SPE 10 benchmark.

Well Name X Location Y Location

Injector 1 9 20

Injector 2 21 20

Injector 3 33 20

Injector 4 45 20

Producer 1 9 200

Producer 2 21 200

Producer 3 33 200

Producer 4 45 200

Table 2. Well Locations on the SPE 10 reservoir model

for the first 650 days and then collected less frequently

as time approaches 2000 days.
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Figure 4. Injectors flow rate profiles over 2000 days of

simulation.

Results and Discussion

An unconstrained second order ARX model is ini-

tially generated using data for all 2000 days. A more

rigorous approach is to optimally design the input sig-

nals (Panjwani and Nikolaou, 2016; Darby and Nikolaou,

2009). Figure 5 shows the resulting model with the ar-

bitrary input signals.
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Figure 5. Second order ARX model without constraints.

Additional ARX models are generated using succes-

sively limited amounts of data to test the influence of

limited data availability on the regression method. Each

time the data is incrementally reduced and a model is

generated using the remaining data. Figure 6 shows an

example of one of these resulting models where only 450

days of data are used to build the ARX models.

0 50 100 150 200 250 300 350 400 450

Time (days)

0

20

40

60

80

100

120

P
ro

d
u

c
e

r 
O

u
tp

u
t 

(S
T

B
 o

il/
d

a
y
)

Measured Values

ARX model

Figure 6. Limited data with second order ARX model

without constraints.

Figure 6 shows that the model quality declines sig-

nificantly without the remaining data. Further analysis

shows that four of the 16 gain constants from this model

result in negative values, which would physically repre-

sent that the injector wells produce oil. Because this is

not plausible to have reverse flow, one way to improve

this model is to clip all negative gains at zero. With an

already poor model, such an adjustment exacerbates the

inaccuracy of this model and renders it of little value for

optimization. As an alternative to clipping, lower gain

constraints of zero and a sum of gains less than one are

added to the ARX models for the identification. Figure

7 shows the 2000 day constrained ARX model.
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Figure 7. Second order ARX model with constraints.

Notably, Figures 7 and 5 both fit the data very well

and would be expected to produce reliable control re-

sults. However, it requires 2000 days of data in order

to achieve this level of accuracy. By adding constraints

to the ARX model, the model quality improves signif-

icantly. Figure 8 shows an example of a data-limited

ARX model with 450 days of data.

0 50 100 150 200 250 300 350 400 450

Time (days)

0

20

40

60

80

100

120

P
ro

d
u

c
e

r 
O

u
tp

u
t 

(S
T

B
 o

il/
d

a
y
)

Measured Values

ARX model

Figure 8. Limited data, second order ARX model with

constraints. While the fit is excellent, an analysis of

the gains is necessary to demonstrate the superior model

quality with constraints.

Figure 9 shows a comparison of constrained versus

unconstrained ARX models with limited data. For each

ARX model, the sum of the absolute value of the 16



injector to producer gains are taken as a concise mea-

sure of the model accuracy. While this is not a perfect

measure, it is a consolidated metric that can be used to

evaluate the steady-state performance of the multivari-

ate system. Dashed lines are plotted to show the model

gains regressed from 2000 days of data. As data is re-

duced, both the constrained and the unconstrained ARX

models deviate from initial gain values. The constrained

models perform significantly better than the uncon-

strained models, especially with limited data, because

the constraints include physical information that would

otherwise not be included. Because constrained models

can implement balance equation constraints, the models

can be expected to maintain better accuracy when only

limited data is available. Without constraints, the mod-

els may fit the data better over the training data but

unrealistic parameters give undesirable control models.
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Figure 9. Constrained second order ARX models com-

pared to unconstrained models.

Benefits of Higher Order Models

Similar constrained and unconstrained analysis is

completed for third and fourth order models, as shown

in Figures 10 and 11. Higher order models can capture

more of the process dynamics but don’t have a signifi-

cant advantage like adding constraints.

Figure 12 shows the results of unconstrained second,

third, and fourth order models as data is limited. The fit

with only eight data points is not included in the fourth

order plot due to failure to converge, possibly due to

overparameterization with the limited data.

As was the case in the previous section, the metric for

goodness of fit is consistency in the gains as data is lim-

ited. For the unconstrained case, the second and third
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Figure 10. Constrained third order ARX models com-

pared to unconstrained models.
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Figure 11. Constrained fourth order ARX models com-

pared to unconstrained models.

order models maintain approximately the same gains

until about half of the data is removed. The fourth or-

der models maintain consistency until slightly more than

a quarter of the data is removed. On the other hand,

Figure 13 shows the constrained case, where there is

noticeably less deviation seen by all three ARX orders

from original gain values.

The advantage of both constraints and higher or-

ders is that model quality is higher with limited data.

One characteristic of high order models is that numeri-

cal solvers have difficulty converging when there is not

enough data because there are simply too many pos-

sible solutions (overparameterized). This can be seen

by eight of the models with fourth order unconstrained

ARX analysis did not converge, but all of these con-

verged when constrained. By adding constraints, the
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Figure 12. Unconstrained ARX models of various orders

(number of α and β parameters).

solution space is significantly reduced and reliable mod-

els are produced with limited data.
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Figure 13. Constrained ARX models of various orders.

The 4 injector and 4 producer reservoir history

matching problem provides a compelling example of

the value of adding constraints for model identification.

Convergence of higher order models is improved signifi-

cantly as well as consistency between the models of the

full data set and those of the limited data sets. Future

work should include extension of this trend to more com-

plex systems, higher order models, extension to an `1-

norm objective function, and model identification with

other methods such as Output Error (OE) to reduce the

potential for biasing.

Conclusion and Future Work

This brief review article discusses reduced order model-

ing techniques that enable optimization algorithms for

injection planning and forecasting. Model reduction can

be performed by either reducing high fidelity simulator

models or by creating new reduced order data driven

models. Both methods have been shown to significantly

improve computation time allowing for optimization al-

gorithms to be used. While many reduced models have

been applied to waterflooding, there are relatively few

models for enhanced oil recovery techniques, such as

steam and polymer flooding. There is also future work in

quantifying the uncertainty of model parameters. There

has been some progress regarding design of experiment

to determine the best type of data to train reduced or-

der models, however this is an area that has received

little attention. Linear time variant systems are inher-

ently difficult to model and continued improvements in

modeling important reservoir non-linearities are neces-

sary future research subjects. Constrained identifica-

tion allows for improved estimation under limited data.

Results show that enforcing parameter constraints in

conjunction with estimation allows for use of less data

during training and improves model fit. Higher order

constrained models also show improved training with

less data. The benefits of higher order models can still

be achieved under limited data by adding constraints.

More research is required in creating accurate models of

these systems while remaining computationally efficient.
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Data-driven forecasting of naturally fractured reservoirs

based on nonlinear autoregressive neural networks with

exogenous input. Journal of Petroleum Science and Engi-

neering, 123:106–119.

Suwartadi, E., Krogstad, S., and Foss, B. (2015). Adjoint-

based surrogate optimization of oil reservoir water flood-

ing. Optimization and Engineering, 16(2):441–481.

Thiele, M. R. and Batycky, R. P. (2003). SPE 84080 Water

Injection Optimization Using a Streamline-Based Work-

flow. In SPE Annual Technical Conference and Exhibition.

Society of Petroleum Engineers.

van Doren, J. F. M., Markovinović, R., and Jansen, J.-D.
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