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Overview

Objective:

Perform load-following and disturbance rejection with tubular solid oxide fuel
cells while operating within thermal stress-based constraints. Multi-input multi-
output (MIMO) linear model predictive control combines controlled variables for
power, thermal stress, and other failure modes into one performance index.

Agenda:

e Description and Motivation of SOFC Power Generation
e Dynamic Modeling of Thermal Stress Indicators
e Constrained Predictive MIMO Control of the SOFC

e Conclusion
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Description and Motivation of SOFC Power Generation




Tubular Solid Oxide Fuel Cells

SOFC Operational Principles
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Electricity is primarily produced through H, oxidation. CO oxidation also occurs.
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Methane is internally reformed given operating temperatures from 600-1000°C.
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Tubular Solid Oxide Fuel Cells

Why the interest in SOFCs?

e High efficiencies over a wide power range (1 kW — 100 MW):
40-50% (LHV) for SOFC, 60-70% for GT-SOFC, 80-90% for GT-SOFC + cogeneration.
e Fuel flexibility:
— Natural gas, gasoline, diesel, coal
— Hydrogen, methanol, ethanol, biomass

e Suitability for cogeneration with high exhaust temperatures
e Low noise and emission levels.

Why are SOFCs not in widespread use?

e Reported lifetimes have yet to reach goals — 40,000 h (DOE) —
causing cost of electricity to be high.

e Microcracking, sulfur catalyst poisoning, carbon deposition, and
air & fuel starvation decrease lifetime.
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Dynamic Modeling of Thermal Stress Indicators




SOFC Performance and Operational Variables

s v

Thermal Stress Minimization Minimum Cell Temperature (K)

Radial Thermal Gradient (K/m)

MMWM -arbon Ratio

Avoid Air and Fuel Starvation  Air and Fuel Utilization (%)

Fischer (2009) reports that minimum stack temperature and radial thermal
gradient are the primary two contributors to high tensile thermal stresses.
Conclusion agrees with Nakajo (2006).
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SOFC System Model in Simulink
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Next Slides: SOFC model details
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SOFC Submodel: 2D Model Discretization

SOFC Cross-Section in Radial (r) and Axial (x) Directions

Solid Element States:
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Total DAE States per Radial Element = 65 : Temperatures, Molar Flows, Current, and
Intermediate Variables

Total Nodes per Steady-State Model = 40, per Dynamic Model = 10

The distributed parameter model captures factors causing high thermal stresses
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SOFC Submodel: First-Principles Equations

ﬂlectrochemical Model \
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Some past literature iterate b/t
electrochemical and energy models for
steady-state solutions — here it is solved
simultaneously and dynamically using
APMonitor Modeling Language.

Benjamin James Spivey

ﬁinergy Conservation Model
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SOFC Submodel: Radiation Sensitivity

Radiation Analysis for Plant B : Air channel radiation is significant

Without Radiation With Radiation Radiati
adiation
1000 1050 .
950 Effects:
- Zgg S ~ e|ncreased
T 800 " / . g 850 vy '/ —rre N\ Peak
Z om0 — 7 T £ 30 7 7/ —T_anode temperature
g 700 ,A@‘// —T_anode o} 750 a4 ——T_electrolyte )
el =/ ——T_electrolyte £ ;gg 1z Z/ T _cathode e|nlet air and
= 600 / T_cathode 2 500 / —T_air2 |d PEN .
—T_airl closer in
500 T T 1 sw T T 1
e 2 8 2 ° 2 8 3 temperature
Position (cm) Position (cm)
0.6 0.6
—Hz 20 _— —H2  ——H20 _—— ¢ Molar flow
0.5 0.5

—N2 CH4
—CO —CO02

o
i

e
s

Molar Fraction
e o ©
N W

|
o o
N N
]

;%_} / exhibits

X negligible
S ~—_—
- \ ~___— change.

S

Molar Fraction
o
w

o ——— . [ —
0 I T 1 0 T [ I |
[=) o o o o o o o
. S 2 ® 2 2
Position (cm) Position (cm)

Final Steady-State Model = Validated Campanari Model + Air Channel Radiation
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Next Slides: Dynamic results for full SOFC system model
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Dynamic Response of Controlled Variables
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New Conclusion - thermal gradients should be controlled at the same time scale as the power
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Dynamic Response of Controlled Variables
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Constrained Predictive MIMO Control of the SOFC




MIMO Control Structure

Decentralized MIMO + SISO Control

Thermal Stress Indicators
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Measurements or estimates of the thermal stress indicators are used
directly as controlled variables.
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Linear MPC Algorithm

MPC Formulation:
Constrained Nonlinear Programming Optimization MV horizon

min J = (x Xref) Q(x— Xref) + 2Au RAu + {TV.‘;' sl ,:,, - | ‘ :
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Unique Features Vectors represent

: : _ _ variable values
- Tracking and slack variable weights vary by variable  3cross the horizon

and time step to control variables with very different
dynamics and settling times.

- Minimum cell temperature has a time constant 100-
1000x greater than the fast time constant of other CVs.
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Linear MPC Algorithm

Reference TraJECtory Reference trajectory converges to the CV

target with first-order dynamics.
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MPC Results: Reliability Control Study

Objective: Determine whether controlling outlet gas temperatures or average
cell temperature provides control of thermal stress indicators — common
approach in literature.

Minimum Temperature Control - Power output settles in 400 s.
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Load-following is achieved while maintaining thermal stress indicators in limits.
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MPC Results: Reliability Control Study

Average Temperature Control
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Nearly identical results when outlet gas temperature is controlled.
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MPC Results: Load-Following Study

Objective: Test load-following while satisfying thermal-stress based constraints.
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MPC Results: Disturbance Rejection Study

Objective: Investigate whether LMPC maintains power output in the presence
of alternating fuel quality, relevant for biogas applications.

270 Measurement

- An augmented MV variable is used to
include disturbance measurements.
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MPC Results: Disturbance Rejection Study

Manipulated Variable Plots
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3 of 4 manipulated variables are at constraint values as methane decreases
from peak values.
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Conclusions

Dynamic Modeling of Thermal Stress Indicators

e |nvestigated dynamics of minimum cell temperature and
maximum radial thermal gradient for the tubular SOFC.

e Thermal stress should be controlled on same time scale as load
due to numerator dynamics of thermal gradient.

e Demonstrated effect of radiation on tubular SOFC temperature
and concentration profiles.

Constrained Predictive MIMO Control of the SOFC

e A distributed-parameter based model is recommended for
controlling thermal stress indicator dynamics. Lumped models or
outlet temperature measurements are not sufficient.

e Varying time constants of SOFC can be accommodated by using
non-constant MPC tracking weights.

e LMPCis capable of rejecting measured fuel quality disturbances.
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Tubular Solid Oxide Fuel Cells

Problem Statement

Research is needed to investigate the dynamics of factors
causing the SOFC to experience shortened lifetimes, especially
microcracking, and directly control these factors.
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SOFC System Modeling Decisions

Feature Description

7 Molar Gas Species

7 species (H2, H20, N2, 02, CH4, CO, CO2) are needed to accommodate
methane fuel and air oxidant. Some models may use 3 (H2, H20, 02).

Reformation
Reactions

Steam-methane reformation, water-gas shift. Introduce nonlinearities and
implicit equations — increased convergence difficulty. Unnecessary with H2 fuel.

2D Discretization

Voltage Losses

Axial and radial discretization is required to capture minimum cell temperature
and maximum radial thermal gradient. OD (lumped) and 1D models capture
neither and have less accurate performance prediction.

Includes ohmic, activation, and diffusion losses. Some models include only 1.

Material Properties

Temperature-dependent, nonlinear ohmic resistance and specific heat models.

Pressure Drop

Based on Darcy’s law, compressible flow with < 10% pressure drop. Models may
choose constant pressure drop.

Minimum/Maximum
Functions

Variables may occur at different locations — maximum gradient, minimum
temperature.

Multiple Submodels

SOFC, Ejector, Prereformer. Necessary for modeling real inputs.

Heat Transfer

Non-Isothermal. Convection, Radiation, and Two-Dimensional Conduction.

Time Delays

Transport time delays since molar transport is assumed at quasi-steady-state

Goal: accurate dynamic model directly applicable to real SOFC system operation.

Benjamin James Spivey
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SOFC and Balance of Plant
@P Several MVs and

Variable Speed % DVs enter through Fuel Tanks
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Ejector and prereformer models are necessary to accommodate realistic MVs

Benjamin James Spivey The University of Texas at Austin 30



SOFC System Simulink Model

SOFC
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Simulink Dynamic Simulation Design

Simulation Time Discretization: Transport Time Delays
Power Response to Voltage Step
1 —1s
ol B 264.5 - -

264 - . =05s 264 - All Transport Delays
e N | S 30s E 263.5 - ——No Transport Delays
= 263 E 263 -
$ 262.5 g 29625 ‘\1
£ 262 * 262
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0 200 400 600 800 0 50 100 150
Time (s) Time (s)

 Decreasing time steps below 1 s

e Del i tant f b-60
yields little change in dynamic elays are important for su >

response.
response. T t delay is a function of
_ e Transpor
The QSS gas transport assumption mass flow.

is valid to 1s time steps.
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Model Validation and Verification

Verification Process
Dynamic Model

1) Ensure credibility of model equations
published in literature. Model is sourced
from many authors due to incomplete or
inaccurate models in literature.

2) Literature search for design parameters.
2D model requires many specific parameters
from many authors.

3) Match model output directly to empirical
and simulation data. Only used 3 tuning
parameters — heat transfer coefficient, cell
outer diameter, and contact resistance.
Authors may not describe theirs.

e model validation is consistent

with the leading SOFC models in literature
(Ca m p a n a I"I, 200 4:‘“""g‘ltuw‘IM\IMIJ\wﬂWW’NNNNW\?W\m\Wi\mNWMNMNMNMNH‘W“‘H‘“““”““”””””

Benjamin James Spivey

1) Add energy balance dynamics to
account for thermal time constant.

2) Compare open-loop settling time,
dynamic characteristics, and MV-CV gains
to other SOFC models. Results seen in both
single-step test and staircase test.

Verification is challenging because public
validation data is scarce. Noted by other
authors (Bhattacharrya, 2010).
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SOFC Submodel: Steady-State Validation

Validation: Match to Simulation Data

Spivey Model Campanari Model
1000
950
900
s 850
¢ 800
g 750 // 4
g 700 S s/ ——T_anode
£ 650 /‘// —T_electrolyte
= e T_cathode
600 4
550 __“ —T_air2
500 —T_airl :
o Q 0 20 40 60 8 100 120 140
- cm
The mean absolute MAP for Electrolyte Temperature = 3.85%
percentage (MAP)
error is used to VAP - 12 A, —P,
compare the n & A,
models.
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SOFC Submodel: Steady-State Validation

Validation: Match to Simulation Data

Spivey Model Campanari Model

o
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e ©
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1
o =
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Comparison of the concentration profiles also indicates that the
steady-state model matches well versus the standard models used

for tubular, high-temperature SOFC modeling.
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Radial versus Axial Temperature Gradient

The radial gradient is negative near the fuel inlet placing the anode in
tension. The radial gradient is several times the axial gradient.

1,000
500 N

0 l \ /|
0 20 40 60 00 120140
-500
/ —Radial
-1,000 / —— Axial
-1,500
-2,000 /
2,500 -Hinnnnnd

dTdr (K/m)

Position (cm)

Simulation results agree with prior studies indicating that radial thermal
gradients are most significant.
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SOFC System Model: Dynamic Model Verification

Open-loop response to fuel pressure step

170 J 3,500 -
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Numerator dynamics is expected due to multiple time constants.
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OL settling time of 2500-12000 s is consistent with literature (Hall, 1999).

Higher fuel flow increases power but decreases minimum temp — a higher
reaction rate of steam-methane reformation
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Dynamic Response of Controlled Variables

Fuel Utilization

vl —9 Voltage has linear effect on fuel utilization —
So08 .. e ' S voltage changes current directly, thereby
H e e mmmm . .
N g; 1 e changing fuel consumption.
c V9
% 0.5 - — - cell voltage
N 0.4 - ) .
Z03. inlet fuel temperature Changing fuel flow rate (pressure or
g 0.2 1 system pressure temperature) does not affect fuel utilization
01 - .
0.0 | | | | - greatly because it also affects power.
time[s] O 500 1000 1500 2000 2500

Steam-to-Carbon Ratio (SCR)
Adding fuel (increasing pressure or decreasing

7 inlet fuel pressure

| — . cellvoltage temperature) causes the steam-to-carbon ratio

----- inlet fuel temperature to decrease.
- = system pressure

Increasing system pressure increases SCR —
more recycle flow.

steam-to-carbon ratio
O -k N W b un OO~

Decreasing voltage increases SCR — higher rate

time [s] O 500 1000 1500 2000 2500 . . .
for electrochemical reaction with H,O product.
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Linear MIMO Control Model Identification

Test Signals for Dynamic Excitation b_Pin
- Generated a restricted and variable length Lo )
random walk signal. oo r
- MVs and CVs are normalized by bias and slope. spor®® 70 TR {’}Q\ 1000

-2.E+00

Transfer Function Model

Y(s) = G(s)U(s) Staircase tests used to constrain model
_ ) parameter estimation — sign of gain,
G(Q) = K(tas+1) K (7as+1) .
{ metlmsdD) *° Tmetimetn| presence of numerator dynamics.

State-Space Model

Conversion from transfer function to
Zn (k+1) = An, Zn, (k) + By, u(k) state-space is necessary for efficient MPC
y(k) = Cn, zn, (k). matrix calculations

Process knowledge + numerical parameter estimation - model identification

Benjamin James Spivey The University of Texas at Austin



Eliminating Steady-State Offset

An unmeasured fuel quality step disturbance is applied at t = 5s.

Disturbance Variable Controlled Variable

100% \ 0.25

0.25 O 50 rf 00 1 200

T 7% % e T J}Jf’“' o -
'13 50% E-OJS [J""Jf' —— Disturbance estimation
L; —CH4 g 1 ——Bias correction
g _— —_—C02 g 25 P:J —— Augmented integration
175 L ——QOpen loop
0% [ | | ‘ -2.25
0 50 100 150 200 Time [s]
Time [s]
Augmented State-Space Model with Integration
(S Measurement
Augmented feedback is key to
State Vector

eliminate offset

The augmented model with integration produces a negligible steady-state offset.
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MPC Results: Reliability Control Study

Reliability Study Implications:

- A control model based on distributed parameters is necessary since controlling
an average SOFC temperature does not sufficiently constrain minimum
temperature dynamics.

- Control based on a thermocouple measuring the outlet gas temperature would
not be sufficient for containing thermal stress indicators.

- Constrained control is necessary for ensuring that the CVs do not exceed
operability limits.

Benjamin James Spivey The University of Texas at Austin



MPC Results: Disturbance Rejection Study

Disturbance Rejection Study Implications:

- Load-following is achieved despite 3 CVs and 3 MVs riding constraints at
different times due to £ 10% fuel quality variation.

- The controller is capable of reacting to prevent temperature excursions even
though the thermal settling time is 2500s +.

- Constrained MVs suggest improvements for system design given these
disturbances — sizing an air compressor to handle lower pressures.
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SOFC Optimization Subject to Operability Constraints




Steady-State Constrained Design Optimization

Objective
Find a minimal cost design and set of operating conditions for a
given power demand profile of a load-following system.

Economic Optimization Model Optimality defined as minimum

Cip— Ccap + Cop, annual System cost
minJ = Ciy
Cop = €5 Vi N, u(t)
Cosp = Cpin + Crmasi + Cins,s st. glzu) =
Unpin < ulk) < Upeo
Cpur == sofc =5 Cinv i Cpre o3 Cau:r- Ymin S y(k-) S ..

Csofe = Meelts T Douter L (2.96 Tsopc — 1907) The first-principles SOFC system

p 0.7 model with 2000+ states and
Cino = 10° (ncel[s %) intermediate variables permits
e inclusion of real CV limits.
Cpre = 130 (WA%) + 3240V 4 21280.5Vr,
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Optimization Algorithm for Load-Following

. hi(x) 5
,% b — . h2(x) ,’ \
BinaEd) i el _ Ly
hueibun (¥) = = (3) exp |- (3) ; Identify load : |\
L . . Z 008 7
hesp() = Aexp [\ (z — 267)] profile PDHs) : ol
et el Nex T — xr —c ;
P p Z 0o ‘_-/_-'—’/_— \
---------- -
0220 2.")0 ztlm 250 260 2‘70
Power [kw]
$210,000 -
205000 — Choose power |
P . outputs i Decision Variables:
R ' | SOFC size (1)
= ’ . . - ——— Poly. (ncells = 1847) M :
B swo000 e — - Poly. (ncells = 1778) SOIVe foroptlmal ' CO”trOl MVS (4)
2175’000 ~ =~~~ Poly. (ncells = 1681) SO FC deslgns and :
170,000 ~ — Linear (default, ncells = 1704) :
susom B - Total Cost curves . Not Satisfied
Power [kW] ¢ :
Calculate the g c
. mpare
267 Annual Cost omp

E; [fz(x)] = /22

h;(z) - fi(z) dz
0

Expectation for a
chosen design and
load profile

Criterion

Optimality

>—»

annual costs

for optimal
solution

J

Power demand is probabilistic for load-following applications and requires
calculation of expectation values for optimization.

Benjamin James Spivey

The University of Texas at Austin
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Design Optimization Results

L~
L
1%
L
d

$9,500

$7,500

$5,500

$3,500

$1,500

Expected Annual Cost Differential [$]

$500 -

M ncells = 1847
H ncells =1778
" ncells = 1681

1

B default, ncells = 1704

h1{x) h2{x) h3(x)
Load Probability Density Functions

- Optimization results in cost
savings of $5300-6100 or 5% of
operating costs.

- Majority of cost savings is
achieved through finding
optimal operating conditions for
load following.

Design optimization is achieved simultaneously with constraint satisfaction

Benjamin James Spivey

The University of Texas at Austin
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Summary of Contributions



Contributions

SOFC Optimization Subject to Operability Constraints

e Using a detailed, first-principles system model for optimization
ensures operational feasibility of optimum.

e Demonstrated a probabilistic approach for load-following system
optimization.

e Design optimization reduces operating costs by five-percent at
the steady-state value while satisfying control constraints.
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SOFC Submodel: Modeling Challenges

e Distributed parameter approach produces a large number of
states: 650 states and intermediates for 10 finite volumes.

e Dynamic system of differential and algebraic equations to be
solved simultaneously (without algebraic loops).

e Algebraic equations are in an implicit form.

* Nonlinearities introduced by reaction and electrochemical
terms.

e Multiple time scales varying from milliseconds to hours.

min J(x,u)
The complete SOFC model is solved vee
simultaneously via constrained NLP using

the APMonitor Modeling Language.

s.t.x=f(x,u)
0=g(x,u)
h(x)>0

Benjamin James Spivey The University of Texas at Austin

50



SOFC Steady-State Model Validation

The SS SOFC model results (model) are compared to the actual plant data
(expected). The model error is also compared to the Campanari model error.

Plant A
Model Expected |_ T—er_or_ _C:m;su;ri_Er;)r_ |
|
I
Single cell power output (W)  109.0 104.8 I 4.0 1.6 |
: |
Current density (A/m?) 1792.0 1800.0 I 04 0.4 I
I
Voltage (V) 0.7294 0.6981 I 4.5 1.6 |
Fuel utilization (%) 68.4 69.0 I 08 0.6 :
Air utilization (%) 173 17.8 : 2.6 1.7 |
i 1
Plant B I
L
: I
Model Expected I Error Campanari Error |
i
. |
Single cell power output (W)  158.0 157.0 I 06 3.0 :
= I
Current density (A/m~) 3000.0 3000.0 I 0.0 11 |
Voltage (V) 0.6315 06275 | 06 3.0 :
Fuel utilization (%) 70.1 69.0 : 1.6 2.9 |
Air utilization (%) 23.8 23.8 | 0.1 1.7 :

The model validation error is comparable to the Campanari model error.

Benjamin James Spivey The University of Texas at Austin




SOFC System Model in Simulink

MV cv
naciniiastinfianipiniinsiniiosinioniinsininsinilcaiinkalier Ballbeilcoded e Bl el R - .
i o I T electrolyte,min
P p,in i ' ‘ v i -‘"
_’"‘T+ E i AT radial, max
V cell 11 - | 1 o~
L4 Rl — I
m air,in 8 SOFC [eetat | $--—>
—=—¢ i l i1 Ua
- [ - S B . +-__;
T air,in i : 1 9
_’_...+ : : 1 1 Uf
L T T s =
—--1¢ LI sCR
P system i L ?:“-
—-¢ ! 3 1] Efficiency
H I 5 | §--——>
Prereformer J

SOFC, ejector, and prereformer models are solved at each time step to
investigate MV-CV relationships

Benjamin James Spivey The University of Texas at Austin
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Current and Overpotential Plot

Overpotential (V)

Benjamin James Spivey
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Hall — Tubular SOFC Thermal Time Constant

0.45 —“+— — -+ —e— — +
600 0 600 1200 1800 2400 3000 3600
time (se0c)
1350 T L |
g 1300 1 ,I" ...... Tmax
5 1250 + + ——— Tren
Emw ._,."’
K 1150 +
3 "m./
1050 +—t —t + +
500 200 1000 1800 2600 3400 4200 5000

time (sec)
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SOFC Electrical Characterization

SS Electrical Characterization with Fixed Fuel Flow Rate (Plant B)

Plant B : 267 kW, 3.50 bar

12 ———7 180 100% 100%
1.0 - e - = 160 Efficiency - I
. o/ | 4 [¢) 1)
7 T 140 _. 80% — — — Fuel Utilization P 80% &
=0.8 | . 120 Sy - s
= §Pie 100 > > 60% A rad 1 60% 2
1 = _
=067 7 18 2 I Prad | 2oy =
= P S 40% 40% 5
204 e te0 & & et 2
g (]
Y e 40 20% - 7 T20% 2
: - Voltage — — — Power + 20 =
0.0 + 0 0% 0%
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Current Density [A/m72] Current Density [A/mA2]

e LHV efficiencies are 45% and 38% for Plants A and B respectively - typical for 100-300 kW SOFC.

* Nominal efficiency is based upon provided inputs, not plant modeling. ,_ I-v
LHV}20 " Nk 20,in +LHVeo “Neo,in +LHV g Newa,in

Benjaniin James 3pivey The University of Texas at Austin




Example Staircase MV Profile
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o
o

8.0
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Discretization Comparison

1,050 -

1,000
950 -
900
850
800
750

------
an®”

e 40 vOlUMES

........ 10 volumes

Temperature (°C)

650
600
550
500

0 50 100 150
Position (cm)

Benjamin James Spivey The University of Texas at Austin




Fuel Quality Disturbance
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MPC Results: Reliability Control Study

Outlet Temperature Control
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