Optimal Trajectory Generation for Aerial Towed Cable System Using APMonitor

Liang Sun

Multiple AAgent Intelligent Coordination & Control (MAGICC) Laboratory
Department of Electrical and Computer Engineering
Department of Mechanical Engineering
Brigham Young University, Provo, UT, USA 84602
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Overview of UAVs
Overview of UAVs

- Communication and Control

![Diagram of UAV communication and control system]

- Modem
- Autopilot
- Combox
- Virtual Cockpit
- VCListen.mex
- Matlab

UAV

Ground Station

RS232
Overview of UAVs

- Cool videos!
 - Fixed wing
 - http://www.youtube.com/watch?feature=endscreen&v=Xlrqxhz1iGc&NR=1
 - Quadrotor
 - Aggressive Maneuvers
 - http://www.youtube.com/watch?v=MvRTALJp8DM
 - Builder
 - http://www.youtube.com/watch?v=xvN9Ri1GmuY&feature=player_embedded
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Overview of Aerial Recovery

- Question:

 How can we retrieve Micro Air Vehicles (MAVs) in the air after they complete their missions?
Retrieval strategies
Basic concept

Mothership

Actuated drogue with small autopilot and homing beacon

V

ℓ

v_d

R

v

MAV
System dynamics

- Cable-drogue dynamics using Newton 2nd law

\[
m_N \ddot{p}_N = T_N + \Omega_N
\]
\[
\Omega_N = G_N + D_N + L_N,
\]
\[
m_{j-1} \ddot{p}_{j-1} = T_{j-1} + \Omega_{j-1} - T_j
\]
\[
\Omega_{j-1} = G_{j-1} + D_{j-1} + L_{j-1}
\]
\[
j = 2, 3, \ldots, N,
\]
\[
T_j = \frac{EA}{\ell_0} \left(\|p_{j-1} - p_j\| - \ell_0 \right) \frac{p_{j-1} - p_j}{\|p_{j-1} - p_j\|},
\]
\[
j = 1, 2, \ldots, N,
\]
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Flight test setup
Flight test results

- Drogue orbit with flat mothership orbit in wind

Flight Test

Simulation
Flight test results (cont’d)

Mothership Tracking Error

GPS Wind Est in VC

System Trajectory (80-150 s)
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Motivations of using APMonitor

- Replan the desired mothership trajectory each circle using the updated wind estimation
 - Replan every minute
- Constraints: mothership has its operational limits: airspeed, roll angle, pitch angle
 \[10 \text{ m/s} \leq V_a \leq 20 \text{ m/s} \quad -35^\circ \leq \phi \leq 35^\circ \quad -15^\circ \leq \gamma_a \leq 35^\circ \]
- Large amount of states in dynamic equations
 - 5-link cable = 30 states
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Simulation mode – 2-D 1-link model

- Simulation mode with no constraints
- Solution time: 0.624 sec.
Trajectory Generation (2-D 1-link model)

- “nlc” mode, solver: IPOPT
- CVs:
 - \(V_m \), Tension
- Solution time: 18.17 sec.

![System trajectory graph](image)
“nlc” mode, solver: IPOPT

CVs:
- Vm, Tension

Solution time: 14.3328 sec.
TG (3D, multi-link, no wind)

- “nlc” mode, solver: IPOPT
- CVs:
 - V_m
- Solution time: 141.6326 sec.
TG (3D, multi-link, wind)

- “nlc” mode, solver: IPOPT
- CVs:
 - CVs
- Wind (3,0,0) m/s
- Solution time: 163.6704 sec.
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work
Future work

- Decrease the solution time
 - different solver
 - different configuration of the problem

- Add more constraints
 - Tension, roll angle, pitch angle, and etc.

- Motion planning of orbit-insertion-removal
 - Fly into an orbit to perform the retrieval and leave out of the orbit

- Orbit regulation problem
 - Find an optimal orbit for the mothership to minimize the drogue altitude deviation
Thank You!
Outline

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - OTG (2D, 1-link cable)
 - OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work

Questions?