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HIS ARTICLE PRESENTS A
Lyapunov function approach to
the control of nonlinear systems
that are subject to pointwise-in-
time constraints on state and
control. This approach is applied
toan electromechamcal system that serves asa
prototype for the first mode of an electrostati-
cally shaped membrane.

Electrostatically shaped membranes have
been proposed as mirrors and antennas since
the early 1960s [1]-[4] because they can beused
as lightweight reflectors for radar, radio, and
optics applications. Lightweight reflectors are
in demand, for example, in spacecraft applica-
tions where launch weight is a significant con-
straint. A thin, electrically conducting
membrane is formed into a desired shape by
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electrostatic forces that are controlled by varying the elec-
trical potential hetween the membrane and an electrode
mounted helow it. Because the membrane is under lateral
in-plane tension and a uniform normal stress due to the elec-
trostatic potential, it assumes a paraboloidal shape for op-
tics applications. Since the focal length can be varied by
changing the gap distance, electrostatically controlled
membranes are particularly suitable for adaptive optics ap-
plications [5]. Small focal lengths needed for many applica-
tions can be achieved if the gap distance between the
membrane and the fixed plate is made sufficiently small.

The highly nonlinear behavior of
the electromagnetically actuated
mass-spring damper suggesis the use of

Lyapunov function methods.

Also, the voltage required to maintain the equilibria with a
small gap distance decreases as the gap distance decreases
[4]. Consequently, steady-state operation at equilibria with
small gap distance values is highly desirable. However,
these equilibria are open-loop unstable [4], and active con-
trol is needed to achieve their stabilization for a suitable
range of gap set points.

Unfortunately, this technology was essentially aban-
doned due to difficulties in stabilizing the membrane at de-
sired open-loop unstable equilibria. Thus, it is an
application where control may be a critical enabling tech-
nology. P.D. Washabaugh has developed an cxperimental
testbed for studying the application of advanced membrane
control algorithms (see photograph on previous page),
While the deflection of the membrane is described by a par-
tial differential equation, the control voltage is scalar. The
{ahoratory membrane exhibits the open-loop unstable equi-
libria and is subject to severe state and control constraints,
The constraints are due to the limits on the maximal voltage
the amplifier can deliver, membrane collisions with the
fixed electrode, and electric field breakdown,

Figure 1. Theelectromagnetically actuated mass-spring damper.
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Concurrent with the membrane work, experiments on a
simpler physical system that illustrates similar control dif-
ficulties were deemed important. This led to the system
considered in this article: an electromagnetically actuated
mass-spring damper (EAMSD) that exhibits the same gen-
eral behavior as the first mode of an electrostatically con-
trolled membrane [6]-[8]. It has been implemented in the
control laboratory of D.S. Bernstein (see Fig. 1). Results
presented here include the description of an effective non-
lincar control scheme and experiments involving its use
with the laboratory hardware. Naturally, the objective of
this article falls short of developing a
successful control scheme for electro-
statically controlled membranes;
however, light is shed on the basic
control scheme and its effectiveness
in dealing with the key problems of
electrostatic membrane control.

The highly nonlinear behavior of
the EAMSD suggests the use of
Lyapunov function methods. Although
these methods are popular for designing nonlinear control-
lers, their application to systems with general reference
commands and demanding state and control constraints is
problematic. The approach described here takes its inspira-
tion from prior work on reference governors [2]-[15]. Refer-
ence governors are auxilary nonlinear systems that filter
reference commands to closed-loop systems in such a way
that constraints on their internal variables are satisfied. Un-
like input preplanning schemes, such as those used in ro-
botics applications to generate constraint-admissible
motions, reference governors operate online, responding
immediately to reference commands as they occur. Maxi-
mal constraint-admissible positively invariant sets play a
dominant role in the prior literature.

Our approach exploits a family of Lyapunov functions
that are parametrized by set-point-determined equilibria of
the closed-loop system, The resulting reference governor
generates a piecewise constant output that, subject to fu-
ture constraint satisfaction, tracks as closely as possible
the reference command. The design process has consider-
able flexibility and is conceptually simple. It should be em-
phasized that the exploitation of parametrized equilibria is
distinctly different than in gain-scheduling of linear designs.
In the reference governor approach, it is assumed a priori
that a control scheme (perhaps a gain-scheduled one) has
been devised that provides good performance in a neigh-
borhood of each set-point determined equilibrium, The cen-
trai purpose of the reference governor is to guarantee
constraint satisfaction in the presence of a very general
class of input commands.

This article is organized as follows, The next section de-
scribes the nonlinear control algorithm in general terms.
Then an empirically based model for the EAMSD is devel-
oped that includes inequality constraints on magnet cur-
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rent and mass displacement. Equilibria for the model are
then characterized, after which equations that implement
the control algorithm for the EAMSD are considered. If the
current constraint is sufficiently binding, the set of achiev-
able equilibria is disconnected. Then, as described in the
next section, the overall control algorithm must be aug-
mented to include a temporary, unstable phase for imple-
menting transfer between equilibria that belong to separatc
components of the set of achievable equilibria. Finally,
some experiments with the actual hardware are described.
The conclusion summarizes the principal features of the ref-
erence governor scheme.

Basic Control Algorithms
Suppose the plant model is of the form

X = Flx,u), )

where x is an nvector and u is an mvector. Our reference
governot approach is based on parametrized equilibria of
this system that are generated by means of a stabilizing and
performance-enhancing controlleru = U(x, r). The result-
ing closed-loop system is

5 = fCer) = FGeUGr ), @

where r is an mvector reference command which, when
held constant, becomes a set point. Set points are restricted
to a set.$ which determines the desired equilibria (i.e.,r € §
implies f(x,(r),r} = 0).Notcthatforsomer € §,there may
he several equilibria; the functional notation x,(r) means
that one of themn has been chosen, A variety of effective de-
sign tools exist for determining the controller, I/(x, r), at
each equilibrium point; see [16] for a general discussion of
Control Lyapunov Function (CLF)-hased design proce-
dures. Often such controllers can be shown to be optimal
with respect to certain types of integral performance crite-
ria and to have an associated Lyapunov function. Dynamic
controllers can also be introduced. In this case, the state in
(2) is augmented to include controller states.

The key to our approach is an r-parametrized Lyapunov
function for (2), V(x,r). Specifically, we suppose that
V(x,r}is smooth and for each r € 5 satisfies the following
assumptions: (a) V{x,r) 2% (b) V(x,r) = 0 only for
x = x,(r)(c)thereisag(r) > 0suchthat the sublevel set

Ny = {x:V(x, N <q(n} 3)

is bounded; (d) for all x = 11(r)

Vix,r) = fg(x, DFx, r) < 0. @

Then, under an additional .aSalle invariance assumption
[17], it follows that [T(r)is a positively invariant set that is a
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Figure 2. Reference governor: The arrangement of the control
algorithm.

domain of attraction for x,(r) [i.e., x(0) ell(r) implies
x(H)el(ry all 1 >0 and x(£) — x,(r) as t — =]. Suitable
Lyapunov functions are often associated with controller
synthesis methods, or they can be generated by recursive
procedures [16]. Another approach is to feedback linearize
(D) by U(x, r). V(x, r) can then be generated by solving a
Lyapunov equation associated with the resulting linear sys-
tem (2). See [18] and [19] for examples of this approach in
the context of automotive contrel problems.

In most applications, such as the EAMSD, state and con-
trol constraints are imposed by physical limitations of the
hardware or safety consicerations. Usually these con-
straints can be representecd by a system of nonlinear in-
equalities:

H(x,u)<0, &)

where H:R"*" — R”, For the closed-loop system, these
state and control constraints take the form of parametrized
state constraints:

h(x,ry=H(x,U(x,r})<0. &)

In general, it is difficult to handle these constraints directly
in the context of Lyapunov-based designs so that for all set
points r € 8, U(x, r) provides acceptable operation of the
closed-loop system.

To see why this is so, consider first the ohvious
l.yapunov-function-based approach to constraint enforce-
ment. Make the following additional assumption: (e) for
eachr € 5, q(r) >t and

x eT(ry= h(x,r)<0. (7)

Then M(r) is a safety domain for the ecuilibrium x, (). In-
deed, if x{0) cT1(1), then the trajectory of the closed-loop
system satisfies the constraint: 2(x(),r) < Gfor all £. Clearly,
it is advantageous to find the largestg(r ythat causes assump-
tion (&) to be satisfied. Then [1{r) is the largest set provided
by a given V that is safc under the constraints.
Unfortunately, in many applications, even the maximal
set[1{#) may be fairly small. This creates problems for the
transient operation of the closed-loop system caused by
large set-point changes. To be more specific, let the de-
sired reference command r,{t) change at a time instant
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t =01irom a value r, to the value r; and let (¢} = r, for r > 0.
Suppose, furthermore, that the system is initially at the
equilibriumx(0) = x, (), ACx, (1), 1) < 0. Ifjr, — r|is large, it
is likely that x(0) ¢ I[1(r; ); then the application of the feed-
back controller U(x, ;) may not result in the safe operation
of the closed-loop system,

Our approach addresses such limitations of Lyapunov-
function designs by modifying how changes in the reference
commands are generated. For simplicity, let us suppose for
the present that r,(#}is a step change from r, tor, as described
in the preceding paragraph. Later, it will become apparent
that the reference governor functions weil for more general
reference commands. The idea is to replace the actual refer-
ence command v, by r(t) = r,, which is as close as possible to
r,(0) = r, but satisfies x(0) e T1{r, ). The latter inclusion guar-
antees safety if r(£) = », for all t =0, but the trajectory will not
converge to the desired equilibrium x, (). Hence, an attempt
to modify the reference command r{  }is made at the next sam-
pling instant 7, where we again seck a reference command

What is new is the emphasis on

implementation of a reference governor

in the context of general
Lyapunov-based designs for

continuous-time nonlinear systems.

value r, that is as close as possible to r,(T) = r,, subject to the
constraint that x(7") e [1(r,). Since the reference command,
r(1),is kept constant in the intervals0 < t < Tand T < + < 2T,
the Lyapunov theory applies in each interval. The procedure
is continued on subsequent intervals kT < ¥ < (& +1)T, where
kis aninteger. Since x(t) e [1(r, ) for allt € [T, (k + 1)T), itfol-
lows that the constraint, h(x(£), r(¢)) = 0, is satisfied for all
t 0. Fig. 2 illustrates this process of modifying the reference
command from r,(f}to r( ) as required to meet the pointwise-
intime constraints.

The explicit process by which the r, are determined is
computationally straightforward. We want r(#) to move to-
ward r,(t) =r, from its current value. This requirement is
implemented by setting, for k=01, ...,

dit) =0

Z

Bl c

ity

ANNA\N

Figure 3. Notation for the EAMSD.
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Be=t + A (r(RT) —r ),

g &
where r, =r, and A, solves the optimization problem of maxi-
mizing A subject tod < A <landx(kT) eT1(r,_; + A(r -5 )
Equivalently, &, solves the problem:

maximize A subject to

0< k<1 Fx(RT) 1, + M (RT) =1 D0, (o)

where

Fle, r)=V(x,r)-q(r). (10)
Since A is a scalar, the optimization problem can be solved
quickly by a search procedurc.

A theoretical justification of the control scheme is given
in [20]. In addition to assumptions (a)-(e), three more are
required. While technical in character, they are intuitively
reasonable, Roughly speaking, they
have the following objectives: (f) re-
stricts r so that T{x(kT),
h_ + Mr(RTY -7, ))is defined for all
A e[0]]; (g) establishes in a precise
way the required smoothness of the
functions f, ¥, and ¢; {(h) implies there
is a decrease in F for each reference
governor time step. Specifically, the
assumptions are: (f) 5 is compact and
convex, (g) f(x, r)and V(x, r)are con-
tinuously differentiable on R" ™, and
q(r)is continuous on S; (h) ior every fixed r € S5, V{x, r)sat-
isfies a LaSalle-like condition in [20] on 11(r). The
verification of conditions (f)-(h) for the EAMSD is discussed
later. There, as in most practical situations, the conditions
occur naturally as a consequence of constructing a V(x, r)
that satisfies assumptions {(a)-(e).

Under assumptions (a)-(h), the reference governor is
guaranteed [20] to behave nicely. It is not necessary to as-
sume that x(0) = x,(r.) or that r,(t) = r, for all t 2 0. Suppose

that r,(¢) € S for f >0 and that

xMeX= rlEJS M(ry. an

Choose an r; so that x(0) e I1(r_,). Then, from the above ar-
guments and (9), it follows that the r, belong te S and are well
defined. Moreover, x(t) eTI{r,) for t e [RT,(R+1)T], k 2 0.
Thus, the constraints A(x(t), r(#)) <0,F =0, are satisfied.
Suppose further that there is a 7 >0 such that r,(f)=# € S
for all ¢ = £, Then [20] shows that the r, have a finite settling
time (there is an integer & =0 such that r(¢)=r for all
t kT andx(t) — x,(r,}as t — oo,

Note that the condition (11} does not depend on # and
that the set X may be quitelarge. Thus, by choosing r | so that
x(0) e I(r.)), itis possible to extend significantly the range of
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initial conditions that may be

handled. There are several 045 '
practical ways for finding r ,. It
is only necessary that r, €S 041
and F(x(), r,)<0. One ap-
0.35 |-

proach is to choose a finite grid
oﬂf points F; e S, j e J,such that
X=U, ,NFcX approxi- 0.3
mates X. Then, for x((0) € X, r |
can be found by evaluating

< 025
F(x(0),7) for jel until | 2
F(x(0),7)<0. Another ap- % )
| 0.2 "
proach is to apply an iterative | © Stable Equilibria
procedure for the minimization 015

of F(x(), r) for r € S. In gen-
eral, it is not necessary to ob-
tain the minimum; the iterative 041
process is terminated when
Flx(0), N <0

The general idea of the
control algorithm is not new 0 . .

0.05

Unstable Equilibria

1 1 1 ! 1

and, in fact, underlies much 0 0.001
of the research on reference

0.002 0.003 0004 0005 0006 0.007 0008

0.008 0.01
dmax dO

’

d Position (m)

governors (see, e.g., [9]-[15])
and, more generally, the use
of positively invariant sets for constraint satisfaction
(see, e.g., [21] for an extensive literature review). See also
[22], which exploits nested families of .yapunov func-
tions to develop control laws for robots moving in an oh-
stacle-restricted space. What is new is the emphasis on
implementation of a reference governor in the context of
general Lyapunov-based designs for continuous-time
nonlinear systems.

Model for the EAMSD
Fig. 3 illustrates the basic features of the EAMSD. Idealized
equations of motion are

o i)

m(z, —d0)'

iy =-Ran-San+
m m (12)

where mis the mass, &is the spring constant, ¢ is the damp-
ing constant, i(f) is the current in the electromagnet coil,
d(t) is the position of the mass, z, is the distance hetween
the electromagnet and the mass wheni =0, and ¢ is a cur-
rent-to-force censtant. Experimental measurements lead to
a somewhat different form for the last term. Specifically, in
MKS and ampere units,

.. i P
kR, ¢ L0 iy

m(d, -x)"’ a3

where « =45 %107, f =192, y=199, ¢=00659, k=3894,
z, = 00086, d, =00102, and m =154,

February 2000

Figure 4. Equilibria positions.

Reformulating the equations of motion into the form (1)
gives

. Xy 0
X
["J: k c + & 1* )

X, —_—X, =X, ¥
: m 1 m 2 m(dn _xl) (14)
where d = x,, d = x,, and the control input isu =",
The control is constrained to be nonnegative,
u(ry =0 15

This is a pointwise-in-time control constraint that ren-
ders the system underactuated in a physical sense. Spe-
cifically, the control can pull the mass closer to the
electromagnet coil, but it cannot push the mass away
fromthe clectromagnet coil. The maximal current is also
limited, thereby leading to another pointwise-in-time
control constraint,
a() S tt = (o) (16)
Collisions of the mass with the fixed electromagnet
must be avoided. Thus, &(f) < z,. In fact, it may be wise to
provide a margin of safety or limit peak swings of tran-
sient responses. For this reason, we introduce d,,, < z,

max

and require

d([) < dlilax ° (1 7)
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Open-Loop Equilibria
For constant u, the equilibria are obtained by equating the
right-hand side of (14) to zero. For x, =d,,, x, =0, and
u(t) =u, this gives

kdﬂq(dﬂ - dm,)Y — fD =i
o (18)

The resulting relationship between d,, and i is shown in Fig.
4. The maximum current allowed by the relationship is
i" =03631. Denote the corresponding values of i# and d by
u =" =01430 and d =00034. For 0 < i < ', there are
two equilibria for d: 0 < &, (1) < d and d & (1) < d,; for
a =u', there is one equilibrium value: d=d. Thus, for
. 2 U, the set of constraint-admissible steady slate dis-
placements, d, , is the interval [0, 4, ]. Let a,,, be deter-
mined hy dfq(u“m) =d,,.. Thenforu,, <u,,, <u,thesetof
steady-state comstraint-admissible displacements is the un-
ion of two disjoint intervals, [0,d,, (¢, )] U [do (e )s o
for 0 < u,,,, <, itis the interval [0, &, (u,... ).

To investigate local stability of constraint-admissible equi-

libria, welinearize (14) atx, = d,,,x, =0,andu =& and obtain

y 0 1 0
[Qﬂ: %ﬁ+ﬂff4figg,_£[&ﬂ+ o 1
8%, m omd-d,)"  m %] |m(d, -d,)

(19)

The necessily of dealing with multiple
modes of the membrane is essential to a
successful design of an experimental
control scheme for this more complex

application.

Since ¢ >0, we understand that the necessary and suffi-
cient condition for an equilibrium point to be locally as-
ymptotically stable is that the stiffness coefficient, X, is
positive:

K:k Y u

——— >0
m m(d, —dmﬁ)ﬁl (20)

[t is easy to confirm that constraint-admissible equilibria
are stable for( < d,, < d and unstable for d" = d,y & -

To summarize, we have demonstrated that foru . >u,,
the set of constraint-admissible open-oop equilibria splits
into two intervals; a stable interval and an unstable interval.
If the control current constaint is tight (< u'), these in-

tervals are disconnected.

max
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Implementation of the
Reference Governor
We now apply the ideas discussed under “Basic Control Al-
gorithms” to the EAMSD. The main steps are the choice of
U(x, r)and V(x, r}, application of the constraint conditions
to the determination of ¢(r), verification of assumptions
(a)-(h), and definition of the control equations,

We choose U(x, r)so that it stahilizes the equilibria and

linearizes the resulting closed-loop system:

Ulx, ry=07'(dy - x,)" (kr—c,x,). @n
Then (2) becomes
. . k c+a,
=X, X,=—— — . ”
Xy 2 ! m(xl r) m Xy 22)

a mass-spring damper whose equilibrium state is
x,(r)y={r,0). While the controller allows an increase in sys-
tem damping, it is “low gain” in the sense that the natural fre-
quency of the open-loop system is not increased by
feedback.

For simplicity, we consider first the case where ¢, =0and
f.ax 18 significantly larger than i, This eliminates constraint
(16). Constraint {15) together with (21) requires r 20, a con-
dition that is satisfied by choosing 5 so that it contains no
negative elements. The remaining constraint, (17), gives
hx,r)=h(x,r})=x -d,,. From
h(x,(r),r} =0, it follows that con-
straint-admissible set points must sat-
isfy r < d_,.. Thus, S <[0.d,,,]

A mnatural choice for V(x, r) is the
“energy” of the system (22) relative to

x, (r)

k
V(x,r)= ?xf + E(x, - @

Since V =—(¢ + ¢,)x%, it follows that assumptions (a)-(d)
are satisfied.

Ta find the most effective ¢ r) that satisfies (€), we maxi-
mize g{r) subject to condition (7). This optimization prob-
lem has a simple geometric interpretation: [1{r) touches the
set {x:i(x,r) 20}, but there is no x eTI(r) such that
h(x,r)>0. Thus,

g(r)= mrm V{x,r) subject to /2 (x,r) =0. 1)
It follows that

«0=§mm~0%

Fehruary 2000



Clearly, (e) is satisfied if r is restricted so thatg(r) > (. This is
where assumption (f} comes in; S must be a closed interval,
chosen so that it excludes r = d_,,. The obvious choice for §
is§ =[0,d,,, —e]wheree >0, Since (f) and (g) are now satis-
fied, it remains to verify (h). This condition [20] requires that
for all constant r € S, the solutions of (22), starting in the set
o< Vix,r)<g(r), V(x, ry =0} immediately leave the
set. The property is easily confirmed.

To complete the statement of the control law, it is neces-
sary to solve the A-optimization problem (9), Normally, the
solution must be cbtained by an iterative procedure. How-
ever, inthis case, F(x, r}islinear inrand thereis

wherey, € 5,. To achieve this objective, it is only necessary,
for somep, € 5\, to invent a constraint-admissible bridging
controller, I/,(x), that causes the state of the resuiting
closed-loop system to move from initial states in a neighbor-
hood, N, of x,(p,) to states in X,. The overall control strat-
egy consists of the following steps: (1) apply the reference
governor on S, with r,(f) = p, and continue its operation un-
til there is an integer &, such that x(kT) € N; (2) starting at
t =R/T, apply the bridging controller and increase { until
thereis a k, suchthat x(#,1) € X,; and (3) starting at ¢ = k1",
apply the reference governor on S, with r, determined by

aformulafor L:if F(x(RT),r,(RT)) <1 theni =1;

x 107

otherwise,
A= (kT =1, D RT) =1 )Y 26)
where

1/ . s M
gl =B
[)(X) 2( nax xl kxz ((mz\x xl) (27)

Paosition (m)

Wheni, . <i andc, # 0, the derivation of the
control equations becomes more complex. Then,
all three of the constraints (15)-(17) become ac-
tive and A(x, r) has three compenents. Each of
them is handled separately in the manner de-
scribed in the preceding paragraphs. Let the re-
sulting occurrences of g and A be denoted by ¢'(r)

Position,
...... Constraint

L

and X', { =123. Then, g(P=min{g" ().¢°(", ¢}
and A=min{}' A24*1. Note that while g(r) is no lon-
ger differentiable, it satisfies assumption () he-

10 15

Time (s)

cause it is continuous. Similarly, the recquirement
on S becomes more complex. For exarmple, if

Figure 5. Bridging controller with reference governor.
8

¢, =01t follows that the set of constraint-admissi-

x 1078
8

ble set points is £, E, where E, =[0, d,, (i1, )]
and E, =[d! (.. ).d,...]. Since the two intervals
aredisjointed and S c E,UE, is convex, S is given 7r
by either 5 =00, d:,,(unmx) -g] or Dby
S, =[d? () + &, d,,, —&]. Thus, the reference 51
governor cannot achieve transfers between all 51
equilibria determined by r € §,US,. T

£ 4r
A Control Scheme for 2
Disconnected Equilibria € S
We now discuss, in general terms, “bridging 5
strategies” that allow automatic set-point trans-
fers between disconnected sets such as S, and S, 1
in the preceding paragraph.

Suppose reference governors have been de- Orocomrrson-noon

signed for each of the two intervals and r_, is de-

—— Measured Pasition b
""" Commanded Position

. . o . — S L L 1 I : i
termined by x(0) € 1(r,), as described in “Basic 0 1 2 9 4 5 a 7
Control Algorithms.” Let X, and X, denote the Time (s)
corresponding sets defined by (11). Supposc we
want to move from a state x(0) € X, to X,(r;) Figure 6. Position response without reference goveraor.
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Here, U{x,d)is given by (21) with ¢, =-20 < — ¢,

0.8 T T

0.7

061

05¢

041

Gurrent (A)

0.3

0.2

0.1}f

The parameter § is a small positive number that
guarantees that the motions generated by U/,
move away from x(0) € V. Note that L/ p(x) =20
whenx, > 0. Thus, (28) automatically imposes the
constraints (15) and (16). The constraint
x,(8) £ d,,, is confirmed directly by simulations.
For x(0) € V, it was also confirmed that x(0) even-
tually enters I1(00075) c X,. Figure 5 illustrates
the result. At ¢ = 75, the reference governor for S,
is engaged with r,(t) =p, =00075, and it brings
x(f) to the corresponding equilibrium (p,,0).
Note that position constraint x, (1) < 0008 is satis-
fied for all ¢.

Time (s)

Experimental Results
Ancillary equipment associated with the EAMSD
consisted of an Intel-based computer with a

Figure 7. Curreni response without reference governor.

DSPACE controller board, a differential-trans-
former position sensor, and a current amplifier.

x107°

Position data were sampled at a 1-kHz rate. The

mass velocity was estimated using a finite-differ-
ence filter based on the bilinear transform and
approximating the transfer function
G(s) = s(1s + 1) Abreak frequency of 20 Hz pro-
vided accurate velocity data with a dynamic lag

— Measured Position
— — Reference Governor
----- Position Censtraint

Position {m)

negligible compared to the system response
times. Controller code was generated from a
Simulink block diagram and cmex file using the
Real-Time Workshop in MATLAB, The inherent
damping in the mass-spring damper is very small,
$0 extra damping was added by setting ¢, =3.

. Since the maximum amplifier current exceeds
i" hy a wide margin, constraint (16) is inactive,
even though ¢, # 0. Thus, A is given by (26) and r,,
by (8). Each full computation of r, takes approxi-
mately 100 us. It is implicit in the description of

Time (s}

7 the reference governor that r, is computed instan-
tancously from x(kT). Practically, this assump-

Figure 8. Position response with reference governor, d.

nkx

x(k,1) eI(v_ )y and r, () =1, Clearly, this strategy leads to
the set point 7, and then, as t — o, x(1) = x,(r,).

Fig. 5 illustrates the simulated response of a bridging
controller for the EAMSD. It destabilizes motions for initial
conditions in a neighborhood N of x ,(0) =0, leads them into
X,, and satisfies the current constraints. The controller is
defined by

U = min{l/{x,8), ...} whenx, >0

=0 whenx, <. (28)
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= 0.0050.

tion is met if T >> 107, In fact, it was possible te
operate the system successfully with 7" =10, the
basic sampling period of the interface.

Figs. 6-9 illustrate some of the experimental re-
sults. In both cases considered, the reference
command of position moves from r, =0 (an open-loop stable
equilibrium) to r, =00051 {(an open-loop unstable equilib-
rium). Figs. 6 and 7 show the position and current responses
for the controller (21) with no reference governor. The sys-
tem is lightly damped, resulting in a large overshoot in hoth
position and current. In fact, the peak value in the position
(1) is almost 00077, which is very close to the mass-magnet

collision limit z;, = 0.0086. Figs. 8 and 9 show the responses

with the reference governor and the position constraint
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d,.. =00056, which is 10% larger than the set -

point. The peak position almost reaches but does 05 T ' ' ' ' '

not exceed the constraint. The output of the refer- 0.45+ .

ence governor has a sizable jump at the time of

change in the set-point command, but then in- 0AF )

creases smoothly for about 10 s until it reaches 0.35} i

the set-point command. This delay is small com-

pared with the overall settling time; however, the 0.3r

minimum distance between the mass and the § 0.25f i

magnet is increased from 00009 to 00031 Itisin- | 5

teresting to note that in Fig. 9, the peak current is S 0.2r .

less than 046 A, Thus, the position constraint has 0.015k |

also produced an appreciable reduction of the

peak current. o1f E
005+ -

Conclusion

This article has described a conceptually sim- 00 1I 2I :IJ, ¢I1 l5 EI; 7

ple and practical approach to a difficult class Time (s)

of problems: set-point control of nonlinear

systems that are subject to hard constraints Figewe 9. Current response with reference governor, d,,. = 0.0056.

on state and control variables. it exploits a

family of Lyapunov functions parametrized by the set
points and constructed to meet an intuitively sensible
requirement: for each set-point-determined equilibrium
state, the Lyapunov function defines a constraint-admis-
sible domain of attraction, This property is the basis for
a finite settling-time reference ¢fovernor that filters the
set-point commands and generates constraint-admissi-
ble motions, Online implementation of the governor is
straightforward, requiring at most the solution of sev-
eral nonlinear root-finding problems in a single variable.

The approaches taken in the prior literature have several
advantages over our [yapunov function approach. Since
they are based on maximal constraint-admissible invariant
sets, the resulting reference governors respond more rap-
idly and function over the larger set of initial conditions.
Further, for discrete-time linear systems, it is often possible
to obtain explicit representations for the invariant sets,
thus avoiding the problem of finding an appropriate family
of Lyapunov functions. However, they also have disadvan-
tages: the theory is more complex, and it does not apply to
continuous-time nonlinear systems.

The purpose of the article has been to describe the de-
tails of the approach and illustrate their application using
an interesting example, the EAMSD. Laboratory experi-
ments demonstrate the effectiveness of the resulting refer-
ence governor. From their success with this and another
example application, the authors believe that the described
methodology has much to offer.

The EAMSD is a prototype problem for a more complex
system, an electrostatically actuated membrane, The neces-
sity of dealing with multiple modes of the membranc is es-
sential to successful design of an experimental control
scheme for this more complex application; this design will
be pursued in our future work.
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