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Abstract

Model predictive control (MPC) relies on real-time optimiza-
tion to determine open-loop control profiles and state estimates
given process measurements. When the underlying process
model is nonlinear, the MPC system exhibits unique behav-
ior not seen in linear MPC. In this article, we highlight some of
the characteristics of nonlinear models in the context of closed-
loop performance. We examine the effects of disturbance mod-
els on closed-loop performance and show necessary conditions
for how and where steady states of the closed-loop system may
be found. We demonstrate these conditions on a simple exam-
ple to show that the input disturbance model can lead to failure
of the control system, and that linear MPC is inadequate for
controlling this class of systems.

Additionally, due to nonconvexity, the optimization problems
solved in nonlinear MPC may have local optima. These local
minima may lead to undesirable performance, particularly in
the state estimator. We study the existence of these optima in
the regulator and estimator and examine their potential effects
on the performance of the closed-loop system. To avoid un-
wanted local minima, we advocate the use of constraints in the
estimator and regulator formulations and show how a shorter
prediction horizon in the regulator leads to better control pro-
files for some nonlinear models.

1 Introduction

Over the last twenty years, linear model predictive control has developed into a
popular and effective advanced control strategy. Among its strengths are its ability
to handle constraints naturally within its framework and the relative simplicity
of obtaining a linear model as a basis for the controller design. Unfortunately,
linear models often do not adequately describe the dynamics of the process to be
controlled except near the point at which the model was identified. This fact causes
difficulties for processes with multiple operating points, such as those requiring grade
transitions or set point changes based on economic criteria. Also, for plants in which
nonzero mean unmodeled disturbances occur, the system may be shifted to a region
in which the linear model is no longer valid.

For these reasons, the models used as the basis for control and estimation must be
nonlinear to capture the behavior of the plant accurately in all its probable operating
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regimes. Nonlinearities are common in chemical processes. They may arise from
kinetics, for instance in the relationship between reaction rate and temperature in
the Arrhenius equation or from higher-order reactions. Nonlinear equations are also
found in thermodynamics, especially those involving phase equilibria for nonideal
solutions. Because of the common occurrence of nonlinear behavior in even simple
systems, nonlinearity is expected in the majority of chemical processes.

Nonlinear model predictive control is gaining popularity in the industrial com-
munity. The formulations for these controllers vary widely, and almost the only
common principle is to retain nonlinearities in the process model. Recently, Qin
and Badgwell [14] reviewed the use of commercial MPC software in industry. In
their survey, they list nearly one hundred nonlinear MPC applications, spanning
several engineering disciplines. However, the number of reported nonlinear MPC
applications is far fewer than those of linear MPC, mainly because the linear MPC
problem is simpler and provides adequate performance on problems with simple
control performance specifications.

Two major obstacles toward implementing a nonlinear (rather than linear) MPC
controller are in the identification of suitable nonlinear models and design of compu-
tationally tractable online algorithms. In recent years, researchers have attempted
to address both of these problems. Nonlinear models can be identified in myriad
ways. The empirial approaches range from high order polynomials and neural net-
works to piecewise linear models. Deterministic models are also available from first
principles in many cases, and, if desired, these models can be reduced to a lower
dimensional space. See [13, 7] for an overview of nonlinear model identification.

Several researchers have made recent contributions toward obtaining computa-
tionally viable methods for computing local solutions to nonlinear control problems
in real-time. The primary tool for solving the nonlinear programs associated with
MPC is successive quadratic programming. It has been shown that tailoring this
approach to the structure of the MPC problem yields an efficient framework for
solving these problems on-line [5, 23, 1]. In this paper, we solve the optimization
problems for all three components of the MPC controller successfully within each
sampling time, delivering real-time performance.

While the behavior of the closed-loop linear MPC system is well-studied, the
behavior of the corresponding nonlinear system is not well characterized. In this
paper, we investigate some of the features that are unique to nonlinear MPC. We
consider the nonlinear model predictive control problem with moving horizon state
estimation and a nonlinear steady-state target calculation. We focus on the aspects
of the resulting closed-loop system that are specific to nonlinear models. One such
issue is the effect of choosing integrating disturbance models to account for unmea-
sured nonzero mean disturbances. We demonstrate that the choice of disturbance
models is crucial for a certain class of nonlinearity, and illustrate our findings with
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two simple examples. We compare our findings to the results of linear MPC on the
same system.

The second part of this paper concentrates on the appearance of local minima
in the optimization problems in the MPC framework. Due to nonconvexity of the
nonlinear process model constraints, multiple optima may be present for the reg-
ulator, estimator, and target calculation problems. We present examples of such
local minima for the regulator and estimator problems and comment on their im-
pact on closed-loop performance. We also motivate methods for avoiding undesired
local minima by constraining the optimization problems. Also, in the case of the
regulator problem, we show that an unnecessarily long prediction horizon may lead
to local minima that are not globally optimal.

The remainder of this paper is organized as follows. In Section 2, we present
the framework for the nonlinear MPC closed-loop system. Section 3 highlights the
behavior and potential pitfalls associated with choosing an integrating disturbance
model. Section 4 investigates the effects of finding local minima of the nonlinear
control and estimation problems of Section 2. We summarize our results and outline
points of possible future investigation in Section 5.

2 Formulation

For the purposes of this paper, we consider a control system composed of three
parts. The first part, the MPC regulator, is responsible for finding the best control
profile given steady-state targets for the states and inputs. In some formulations,
the regulator may instead be used to track a dynamic output trajectory. The second
part, the state estimator, determines an approximate current state of the system,
knowing the history of injected inputs and measured outputs. The state estimator
is also used to estimate the integrating disturbance state. The final part is the
steady-state target calculation, which adjusts the state and input targets to account
for the integrated disturbance.

We begin by introducing the discrete time model

xk+1 = F (xk, uk + Xupk, wk, tk) (1)

in which the index k represents the current sampling time, xk is the state of the
system, uk is the input, wk is the stochastic noise variable, and tk is the time. We
assume that wk is normally distributed and has a zero mean. In our formulation, we
enforce a zero-order hold (constant value between sampling times) on the uk and wk.
The term Xupk is the integrated input disturbance. In cases of plant/model mis-
match or nonzero mean disturbances, this term is nonzero; however, in the nominal
case in which the plant and model are identical, this term vanishes.
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The discrete time model can be identified directly, or, more often, is the result
of integrating a first-principles DAE model. In linear MPC, the function F is linear
with respect to its arguments. In our study, however, F is any twice continuously
differentiable function.

The outputs of the system are modeled as

yk = g(xk, tk) + Xypk + vk (2)

in which yk is the measurement at time k and vk is a stochastic Gaussian zero-mean
noise term. Again, g is assumed twice continuously differentiable. The term Xypk

is the integrating output disturbance. The integrating disturbance evolves as

pk+1 = pk + ξk (3)

in which ξk is a normally distributed zero-mean vector.

2.1 Regulation

To solve the regulation problem, we first assume that the stochastic variables wk,
vk, and ξk take on their mean values. Since these means are zero, we note by (3)
that the forecast of the integrating disturbance term pk is constant at each sampling
time. Suppose that the system is currently at time j.

Consider the following formulation of this N -step finite-horizon MPC problem:

min
x,u

Γ(x̃j+N ) +
j+N−1∑

k=j

L(x̃k, ũk) (4a)

subject to:
xk+1 = F (xk, uk + Xupk, 0, tk) (4b)
Duk ≤ d, Gxk ≤ g (4c)

in which x0 is the current state estimate and x and u denote the sequences of vectors
representing states and inputs, respectively; that is,

x = (xj+1, xj+2, . . . , xj+N ),
u = (uj , uj+1, . . . , uj+N−1).

We define the deviation variables

x̃k = xk − xt,j , ũk = uk − ut,j (5)
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in which the values xt,j and ut,j are the steady-state targets for the states and
inputs at time j. The inequality constraints on the inputs and states may not
yield a feasible solution for all problems, and for this reason, we may consider soft
constraints on the states; see [23] for more details.

The stage cost that we consider here is

L(x̃k, ũk) = x̃T
k Qx̃k + ũT

k Rũk + (ũk − ũk−1)T S(ũk − ũk−1) (6)

in which Q is positive semidefinite, and one of R and S is positive definite and the
other is positive semidefinite.

We use the terminal penalty

Γ(x̃j+N ) = x̃T
j+NPx̃j+N (7)

in which P is the solution to the discrete-time linear quadratic regulator problem for
the linearized system at the current state and input targets [4]. For the case in which
S is nonzero in (6), the terminal penalty is on the augmented state [x̃j+N ; ũj+N−1].

The terminal state xj+N is usually required to be inside some invariant region
of the state target [8, 19]. Enforcing such a constraint is unnatural and impractical,
however, as it is difficult to determine how long a horizon length N is required such
that the terminal point may reach this set [6]. In practice, the horizon length is
often chosen to be suitably long such that the terminal state xN lies within the
invariant region without explicitly constraining the state [25].

It is straightforward to test whether xN satisfies the required properties of the
invariant region; namely that a linear control law stabilizes the system after time
N . We perform the following check:

Define
ũj+N = Kx̃j+N . (8)

in which K is the optimal gain associated with the penalty P in (7). Provided ũj+N

does not lie on an active constraint, we calculate x̃j+N+1 using (4b). If this new
state does not violate any state constraints, we calculate the terminal stage cost
decrease ratio

α =
Γ(x̃j+N )− Γ(x̃j+N+1)
L(x̃j+N , ũj+N )

. (9)

For linear systems, α will be exactly one. For nonlinear systems, any positive α
value is acceptable. In cases in which this ratio is negative, or when constraints
are active on the final inputs or states, the horizon length is not long enough. By
satisfying the positivity of α, we are guaranteed nominal closed-loop stability.

The value of xj comes from the state estimator. The first input uj of the optimal
input trajectory that results from the optimization problem (4) is injected into the
plant.
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2.2 Estimation

The control system obtains measurements from the plant at each sampling time.
The goal of the state estimator is to determine the optimal approximation to the
state evolution based on current and past inputs and measurements. The extended
Kalman filter (EKF) is a popular industrial choice for nonlinear models. Moving
horizon estimation (MHE) has emerged as an alternative to the EKF [18, 8]. In re-
cent work, moving horizon estimation has been shown to possess superior estimation
properties compared to the EKF [24]. We consider the moving horizon estimation
problem at time index j of

min
ρ,ρp,x,p,w,v,ξ

Γe(ρ, ρp) +
j∑

k=j−Ne

Le(wk, vk, ξk) (10a)

subject to:
xj−Ne = x̄j−Ne + ρ (10b)
pj−Ne = p̄j−Ne + ρp (10c)
xk+1 = F (xk, uk + Xupk, wk, tk) (10d)
pk+1 = pk + ξk (10e)
yk = g(xk, tk) + Xypk + vk (10f)
Hxk ≤ h, Swk ≤ s, Γvk ≤ γ (10g)

in which the current output is denoted as yj . The a priori estimate x̄j−Ne is given
in this formulation. The current state estimate xj is the desired result that is used
as the given initial state in the regulator. Also, the current integrated disturbance
pj is estimated and used in the target calculation.

The estimator stage cost is defined as

Le(wk, vk, ξk) = wT
k Qwwk + vT

k Rvvk + ξT
k Qξξk (11)

in which the penalty matrices Qw, Rv, and Qξ are the inverse of the covariances of
w, v, and ξ, respectively.

A few strengths of the MHE formulation are that constraints are incorporated
into the framework, the resulting estimates are optimal and the method possesses
excellent stability properties [17]. In the full-information problem, the horizon length
Ne increases at each sampling time, tending toward infinity. In MHE, however,
Ne grows to a specified horizon length NT , at which point x̄0 and Γe(ρ, ρp) are
updated to reflect previous estimates of x1. By selecting the arrival cost penalties
appropriately, MHE approximates the full-information problem.
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The arrival cost is approximated as

Γe(ρ, ρp) =
[

ρ
ρp

]T

Pe,k

[
ρ
ρp

]
+ pT

e,k

[
ρ
ρp

]
(12)

in which the penalty matrices Pe,k and pe,k and the a priori estimate x̄j−Ne are
updated according to the nonlinear smoothing covariance update given in [24], which
is based on approximating the nonlinear system as a linear time-varying system. The
smoothing update is based on the corresponding work of Rao et al. [16] for linear
time invariant systems.

The initial values for the penalty matrices are

Pe,0 =
[
Π0 0
0 Πp,0

]
, pe,0 =

[
0
0

]
(13)

in which Π0 represents the inverse of the initial covariance of the a priori state
estimate and Πp,0 is the inverse of the initial covariance of the a priori disturbance
estimate. These matrices are not changed until the estimation horizon length reaches
NT , at which point the updating strategy is initialized.

2.3 Target Calculation

The goal of the target calculation is to find a steady state of the model that yields an
output at the set point unless no such steady state exists. In circumstances where
no steady-state targets can be found corresponding to the set point, we require the
output target to be the closest output to the set point for which a steady state
exists. If there are multiple steady-state inputs and states that satisfy the set point
condition, then the state and input targets are selected as those that are nearest the
previous input targets. At each time instant j, a new target must be calculated to
account for the integrated disturbnce pj . We formulate these notions as the following
optimization problem, based on the linear case of Rao and Rawlings [15]:

min
xt,j ,ut,j ,η

1
2
ηT Q̄η + q̄T η +

1
2

(ut,j − ut,j−1)
T R̄ (ut,j − ut,j−1) (14a)

subject to:
xt,j = F (xt,j , ut,j + Xupj , 0, tj) (14b)
g(xt,j , tj) + Xypj − η ≤ yset ≤ g(xt,j , tj) + Xypj + η (14c)
Dut,j ≤ d, Hxt,j ≤ h, η ≥ 0. (14d)

In this nonlinear program, the variable η is a relaxation of the requirement that
the state and input targets send the output to the set point when the set point is
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not feasible. Infeasibility of the set point occurs due to constraints or the dynamics
of the nonlinear system. The vector ut,j−1 is the input target from the previous
sampling time. In general, q̄ is chosen to be relatively large and strictly positive,
and both Q̄ and R̄ are positive definite.

By shifting the state and input targets, the target calculation accounts for mod-
elling error and adjusts the model to remove offset from the closed-loop system. In
nonlinear MPC, it is possible that (14) does not have a solution. This problem may
occur due to large disturbances or difficult constraints, such as tight bounds on the
inputs. Infeasible target problems can also arise from large mismatch between plant
and model. While relatively rare, failure of the target calculation is a serious issue
that requires further study.

3 Disturbance Models

Integrating disturbances, as described earlier, are useful for removing offset in the
output caused by unmodeled nonzero mean disturbances and plant/model mis-
match. Provided the appropriate number of integrating disturbances have been
added, the addition of integrating disturbances either removes offset or does not al-
low the closed-loop system to reach a stable operating point (see [12, 11] for details
on the linear MPC case).

The effects of adding integrating disturbances are specific to the application, and
determining where to add the integrating disturbance term for nonlinear models is
an open question. The distribution of the integrating disturbance term among the
inputs and outputs in nonlinear model predictive control is important since it may
determine whether the closed-loop system reaches its target.

For cases of plant/model mismatch in linear MPC, Muske and Badgwell [11] rec-
ommend the input disturbance model. This choice is also justified by Shinskey [20],
who notes that pure output disturbances are unlikely to occur in industry, but rather
enter a system upstream of a dominant time constant, and usually at the manip-
ulated variables. Morari and Lee [10] further note that DMC, which uses output
disturbance models, does not quickly reject slow disturbances. Despite the prepon-
derance of literature advocating input disturbance models for linear MPC, a study
of the steady-state behavior of the plant is necessary before choosing a disturbance
model for nonlinear MPC. We begin by examining the effects of disturbance models
on two different systems.

Example 3.1 Consider a solar collector plant in which a fluid is used to absorb
focussed solar energy along 790 meters of specially designed pipe [22, 21]. The fluid
is circulated to a heat exchanger, where the energy is removed, and the cooled fluid is
recirculated 790 meters back to the collector. The process is regulated by a pump that
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Figure 1: Schematic of solar collector

controls the flow rate of fluid through the system. A schematic of the solar collector
is presented in Figure 1. Since the system is constructed to harness the sun’s energy,
the outlet temperature after the collector must be relatively high for the process to
operate properly. In the case of this example, the desired outlet temperature is 543
K. Cloud cover, changes in ambient temperature, and other local weather effects act
as unmeasured disturbances to the system, and must be rejected.

The system is modeled by discretizing the collector and recycle loop spatially
along their respective lengths. For ease of modeling, the temperatures at these spatial
discretization points are states in the model, and are located close enough to each
other physically that to a good approximation

∂T

∂z
≈ Ti − Ti−1

∆z

in which T is the temperature at location z at which state i is measured. In this
example, the temperatures along the length of the collector are modeled as the first
twenty states, the next state models the temperature in the exchanger, and the final
twenty states represent the temperature along the length of the recycle tube. The
governing equations for this system are

Ṫi = αi(F )(Ti−1 − Ti) + βi(Tamb,i − Ti) + γi (15)

for i = 1, 2, . . . , 41. For the case of i = 1, Ti−1 = T41. In this equation, the
αi(F ) term represents the energy entering location i of the system from the previous
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Parameter Collector Exchanger Recycle
(1 ≤ i ≤ 20) (i = 21) (22 ≤ i ≤ 41)

αi(F ) (s−1) (8.22× 10−3kg−1) F 1.0 (8.22× 10−3kg−1) F
βi (s−1) 1.19× 10−3 -5.0 0
γi (K/s) 5.41× 10−1 0 0

Tamb,i (K) 303.15 375.15 ——–

Table 1: Parameters for the solar collector model for Example 3.1.

location and leaves the current location by mass transport. In most cases, this term
will depend on the mass flowrate F ; however in the heat exchanger, we assume the
exchange is fast enough that it does not depend on the flowrate of the circulating
fluid. The term with βi governs the energy exchanged between the system and the
surroundings, such as the outside air for the collector, or the water in the heat
exchanger. The γi term is the energy that enters the system from solar radiation.
The values of the parameters for this model are listed in Table 1. Note that the input
parameter F is included in αi(F ) for all states but the heat exchanger. Therefore,
the αi(F ) terms are the source of nonlinearity in the system, since it multiplies the
input with the states. Without disturbances, the steady-state input for the plant is
5.7 kg/s.

We examine the solar collector in Example 3.1 during an unmeasured 40% de-
crease in the solar power input (γi). Since this disturbance is unmodeled, an in-
tegrating disturbance model is added. We investigate the performance of the pure
input disturbance model (Xu = 0.02, Xy = 0) and pure output disturbance model
(Xu = 0, Xy = 1) cases. We have chosen the relative scaling of Xu and Xy for
input and output disturbance models such that the magnitudes of the integrating
disturbances for both cases are similar. By maintaining the same penalties in the
estimator, this disturbance tuning yields a fair comparison between disturbance
models. The system has the following tunings for the regulator:

Q = I41, R = 0, S = 1× 10−6.

The input F is constrained to be between 0.8 and 8 kg/s. The system is sampled
once per minute, and the prediction horizon is ten minutes. The estimator matrices
are

Qw = 0, Rv = 1× 106, Π0 = (1× 106)I41,

Qξ = 1, Πp,0 = 1.
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Figure 2: Disturbance model input performance for solar collector in Example 3.1

The system has forty-one states, and the output is the temperature at the outlet of
the collector, which is the twentieth state.

The disturbance to the system occurs after five minutes, and since the solar input
is unmeasured, the model and process no longer agree. The inputs and outputs of the
system for the input and output disturbance models for both linear and nonlinear
MPC are shown in Figures 2 and 3. The model for linear MPC is obtained by
linearizing the model about the original set point. We choose this linearization
point because the process is originally stable at this point and the disturbance is
unmeasured; it would be impossible to linearize the system at the final target since
it is not known in advance.

It is evident from Figure 3 that the input disturbance model handles the sudden
decrease in solar power more effectively than the output disturbance model for both
linear and nonlinear models. In fact, the output disturbance model for the linear
model does not steer the system to the set point within the observed time frame. The
input disturbance models for linear and nonlinear MPC are nearly identical for this
example. One reason the input disturbance model is better is that the modelled
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F 100 L/min CAf 1 mol/L
V 100 L E1/R 8750 K
k1 7.2× 1010 min−1 E2/R (plant) 9700 K
k2 5.2× 1010 min−1 E2/R (model) 9750 K

Table 2: Parameters for the CSTR Model for Example 3.2.

disturbance directly affects the states of the system, just as the true disturbance
does. The output disturbance model, on the other hand, does not directly impact
the states. Rather, it tries to find a new input and state target such that the
original dynamics yield a system that accounts for the difference in observed and
predicted outputs. In general, the input disturbance model is expected to perform
better on systems with disturbances that alter the evolution of the states. We could
conclude from this study that the input disturbance model is a better choice for
mismodeled systems. However, such a conclusion would be premature, as we show
in the following example.

Example 3.2 Consider a continuously stirred tank reactor (CSTR) in which the
irreversible reactions A → B → C are taking place. The feed stream to the reac-
tor is pure species A, and the maximum conversion to product B is desired. The
concentration of the product B is measured and the process is regulated by adjusting
the temperature of the reactor directly by a cascaded control system. The system is
governed by the equations

ĊA =
F

V
(CAf − CA)− k1CAe−E1/RT (16)

ĊB = k1CAe−E1/RT − k2CBe−E2/RT − F

V
CB (17)

in which the concentrations CA and CB are the state variables and the temperature
T is the manipulated variable. The values of the plant and model parameters are
listed in Table 2.

In Example 3.2, the plant and the model do not agree since the activation energy
in the plant is slightly lower than its model counterpart. This mismatch is realistic
due to the difficulty in identifying accurate activation energies from experiments.
In fact, the modeling error is relatively small; Figure 4 shows the locus of steady
states for the model and the plant. These curves are similar in nature, with the
exception that the maximum yield predicted by the model is higher than that of
the plant. The model yield of species B is 0.670 mol/L, while the plant can achieve
only 0.654 mol/L.
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Figure 4: Locus of steady states of CSTR in Example 3.2

We now investigate the consequences of this small modelling discrepancy on
closed-loop performance. We wish to operate the plant at its point of maximum
yield. Therefore, the output set point in the target calculation is defined as the
maximum yield of the model. Consider an MPC regulator with the penalty matrices

Q =
[
0 0
0 400

]
, R = 2, S = 0.

a sampling time of 0.05 minutes, and a prediction horizon of 3 minutes. The esti-
mator is tuned using

Qw = 0, Rv = 1× 106, Π0 =
[
1× 106 0

0 1× 106

]
,

Qξ = 1, Πp,0 = 1× 106,

and we begin by deciding what values of Xu and Xy to use. In the case of a pure input
disturbance model, Xu = 1 and Xy = 0. For the output disturbance model Xu = 0
and Xy = 1. The closed-loop simulations for both cases are shown in Figures 5
and 6 for linear MPC and Figures 7 and 8 for nonlinear MPC. In these figures, the
dashed lines represent the target values, while the solid lines represent the actual
inputs and outputs of the plant. The linear model is obtained by linearizing the
model at the original desired state and input targets.
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Figure 5: Closed-loop performance of input disturbance model on CSTR in Exam-
ple 3.2 under linear MPC
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The performance of linear MPC on this example is poor. The closed-loop system
with the input disturbance model converts the reactant completely to the unwanted
product C. The output disturbance model cannot determine an output target that
recovers any appreciable yield of product B. Linear MPC is inappropriate for this
system.

From examining Figures 7 and 8, it is clear that the output disturbance model
in nonlinear MPC performs quite well on this example, bringing the closed-loop
system to a steady-state value. The yield of the product B is not the maximum
yield of the plant, but it is close. The output target has shifted down from its
original unreachable value to a lower value that can be attained by the plant.

In the case of the input disturbance model, as with linear MPC, the system
cannot be stabilized. While the input tracks the input target almost exactly, the
target itself diverges. As a result, the reactor converts the reactant A completely to
the undesired product C by increasing the temperature.

In this example, it is evident that an input disturbance model is not sufficient to
control the system with plant/model mismatch. The effects of disturbance models on
the MPC system must be explored to explain the cause of this phenomenon. Figure 9
is a graphical representation of the steady-state effects of adding an integrating
disturbance to a system. The curves in the figure are the loci of steady states for
the model and the plant. In this example, our aim is to maximize the output, so the
target always resides at the maximum of the model curve. The input disturbance
model, since it adds a bias term to the input, shifts the steady-state curve of the
model horizontally in the figure. Similarly, the output disturbance model may adjust
the model curve only in the vertical direction. For a closed-loop steady state to
occur, the model curve, the target, and the plant curve must all meet at one point.
When the set point and the model do not cross, the output target shifts to the
steady state of the model nearest the set point. In this example, the desired steady
state is at the maximum point of the model, so the target and model move together,
intersecting only at this point. It is obvious that this intersection point cannot
lie on the plant curve solely by moving horizontally, which explains why the input
disturbance model cannot stabilize Example 3.2. On the other hand, when the
model curve is allowed to move down to intersect the plant at the maximum of
the model, as happens with the output disturbance model, the system can reach a
steady state. Finally, we note that the value of the steady state reached by using a
pure output disturbance model is predicted by finding the output value of the plant
at which the input value of the model attains its maximum output.

The ill effects of using an input disturbance model in this example are due to
two factors. First, the plant has a maximum value for the steady-state output, and
second, when an infeasible set point is specified, the target calculation is incapable of
finding an attainable output target. A possible solution to this problem, while still
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using an input disturbance model, is to not specify that the process operate at the
maximum value, but rather choose an appropriately conservative operating point
that is known to be a steady state. The location of such an operating point may not
be available a priori, and is a limiting weakness of the input disturbance model. In
general, the steady-state behavior as shown in Figure 9 dictates whether closed-loop
stability is possible; whether the closed-loop system is actually stabilized, however,
is determined by the combined dynamics of the estimator, regulator, and target
calculation.

4 Local Minima

Because the model equations are nonlinear, the equality constraints in the optimiza-
tion problems of the estimator, regulator, and target calculation may be noncovex,
yielding local minima that are not globally optimal. This phenomenon is not ob-
served with linear models because the linear constraints that represent the process
dynamics are always convex. The local optima of the nonlinear programs may be
undesirable due to physical considerations, or they may be unacceptable from a
performance standpoint. Finding the appropriate locally optimal solution can of-
ten be achieved through appropriate initial guesses to the optimizer and the use of
realistic constraints. We begin by discussing how local optima arise in the NMPC
framework.

In related work, we describe the appearance of local minima for an exothermic
stirred tank reactor [23]. In that example, the local minima arise from varying the
initial guesses to the optimization algorithm by adding noise to the initial guess for
the inputs. At least seven local minima exist in the regulator optimization problem
for the simple reactor example, all of which asymptotically reach the state and input
targets. However, all but the globally optimal solution cause the process to ignite,
converting nearly all the reactant to product at a high temperature.

Local minima are possible in the regulator, estimator, and target calculation
problems when using nonlinear process models. The different solutions that result
from a nonlinear problem are a function of the initial guess to the optimization
algorithm. For NMPC strategies that rely on solutions from previous sample times
to initialize the optimization problems, local solutions can appear in the regulator
when the current state estimates are not close enough to the predicted states from
the previous time step. This disagreement between the open-loop prediction of the
regulator and the state estimate based on plant data can result from plant/model
mismatch, inaccurate state estimates, unmeasured disturbances, or even system
noise. In general, an educated guess for the initial starting point may often yield the
global solution to the nonlinear program, but there are no guarantees. Occasionally,
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additional steps can be taken to prevent convergence to an undesired local solution.
We present the following example to illustrate how local minima arise and how to
avoid such solutions in a nonlinear MPC regulator.

Example 4.1 An electromagnetically actuated mass spring damper system is gov-
erned by the equations

ṗ = v

v̇ = − k

m
p− c

m
v +

α

m

C

(d0 − p)γ

where the states p and v represent position and velocity, respectively, and the input
C is a function of the current applied to the coil (see [9]). The physical parameters
of this model are: α = 4.5 × 10−5, γ = 1.99, c = 0.6590, k = 38.94, d0 = 0.0102,
and m = 1.54. We apply the constraint 0 ≤ C ≤ 3 to the input.

The goal is to steer the system such that it is at rest (v = 0) at the position
p = .0074. The corresponding steady-state input for this position is C = .0532. The
initial state of the system is p0 = 0, v0 = .012.

In Example 4.1, we use the initial guess to the optimizer as described in [23].
The regulator has a sampling time of .01 and the following cost function weighting
matrices:

Q =
[
1 0
0 1

]
, R = 1, S = 0.

We begin by examining the case in which the prediction horizon for the regulator
is 200 time steps, or 2 time units. The initial guess to the optimizer and the resulting
open-loop optimal control profile is shown in Figure 10, and the evolution of the
position state is displayed in Figure 11. The locally optimal input profile oscillates
once before settling; we show later that this sequence of inputs is not globally
optimal. Even though the initial guess is relatively good, the global solution to this
regulation problem cannot be found as currently formulated.

We now concentrate on ways to force the system to the globally optimal profiles.
In the same figures, we present the effects of using a shorter prediction horizon of
100 time steps. The periodic behavior of the input profile is not present with the
shorter horizon because the horizon length is not long enough to complete a full
period. This result runs counter to the commonly held belief that increasing the
prediction horizon length can only improve controller performance. Here, a long
prediction horizon can lead to one – or several – periods before approaching the set
point. Because we use a terminal penalty to approximate the infinite horizon cost
to go, decreasing the prediction horizon does not prevent the controller from having
an accurate forecast of the infinite horizon cost. The shorter prediction horizon does
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prevent the controller from approaching the steady state by a path with unnecessary
periodic behavior.

We also present the results of using the original horizon length of 200 time steps
but constraining the velocity of the system to be nonnegative. These results are also
in Figures 10 and 11. Note that this case also removes the periodic result and that
the additional constraint, although in the formulation, is not active at the optimal
solution. Even though the constraint is present in the formulation, the resulting
solution is unconstrained. This behavior is a key difference between the use of
linear and nonlinear models. In linear MPC, if the control trajectory changes when
a constraint is added, then that constraint must be active at the solution. However,
constraints in the nonlinear MPC problem may change the optimal solution, but
need not be active at the solution if a new local minimum to the cost function is
found. This behavior is one of the main differences between linear and nonlinear
MPC.

The value of the cost function for the locally optimal solution with a horizon
length of 200 time steps is 0.21985, while the cost function values for both the
shorter horizon solution and the constrained result are 0.21463. Based solely on the
value of the cost function, both these solutions are better than the solution found
by the nominal formulation of N=200 without constraints. In the closed-loop sense,
the locally optimal solutions are nearly equivalent since they both achieve the main
goal of the controller – namely to stabilize the system at its set point. However, in
cases in which the local optima take unwanted excursions, for instance via ignition,
constraints should be placed on the regulator to prevent poor performance.

In practice, it may not be possible or practical to apply a constraint in the
regulator. For instance, in the above example, the constraint is not added out of
consideration for the true dynamics of the process, and if a disturbance were to occur,
this constraint may prevent the controller from properly stabilizing the system.
On the other hand, shortening the prediction horizon in the regulator is a generic
solution that is applicable regardless of the process. For instance, the unwanted
local minima in the CSTR system studied in [23] can be removed by sufficiently
shortening the prediction horizon, while applying a constraint is not successful on
all initial guesses. If a longer horizon is desired for performance reasons, then the
result for the shorter horizon as described above can be extrapolated by a linear
control law and used as an initial guess for the full horizon problem.

For the estimation problem, we revisit the batch gas reactor presented in [24].

Example 4.2 An isothermal gas-phase reactor is charged with an initial amount
of A and B, and the species are allowed to react according to the reversible reaction
2A 
 B. The goal is to reconstruct the partial pressure of each species in the reactor
during the reaction based on measurements of the total pressure of the vessel as the
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reaction proceeds. The system is modeled by

ẋ1 = −2k1x
2
1 + 2k2x2, ẋ2 = k1x

2
1 − k2x2 (18)

in which k1 = 0.16 min−1 atm−1, k2 = 0.0064 min−1. The measured output is the
total pressure described by

y = x1 + x2. (19)

We study the estimation problem presented in Example 4.2 with the initial
conditions

x0 =
[

PA PB

]T =
[

3 1
]T

, x̄0 =
[

0.1 4.5
]T

.

The estimator is tuned as

Qw =
[
1× 105 0

0 100

]
, Rv = 100, and Π0 =

[
1 0
0 1

]
.

Note that we do not require tunings on the integrating disturbance – we are using
a perfect model, so no integrators are added.

The sampling time of the system is six seconds and the estimation horizon is
20 sampling times. We examine the results of the state estimator after twenty
output measurements are taken, i.e. at 114 seconds, in Figure 12. Without state
constraints, the optimal estimate of the partial pressure of species B is negative.
Applying the constraint that the partial pressures must each be positive yields a
new optimal estimate for which the constraint is not active. This constrained es-
timate is clearly better, since the estimated states converge to the true states of
the system. The cost function of the constrained estimator is 19.76, compared to
the unconstrained value of 40.35. We present the output values associated with the
constrained and unconstrained estimator in Figure 13. The constrained estimate
fits the data well, while the unconstrained estimate fits the data in a way that does
not adequately represent the true dynamics of the system. It is clear that enforc-
ing physical constraints in the estimation problem plays a crucial role in yielding
accurate state estimates.

The effects of undesirable local minima in state estimation can be more severe
to the closed-loop behavior of an MPC system [2] when compared to local minima
in the regulator. One reason the estimator is more important is that both the
target calculation and regulator rely on the results of the state estimator for good
performance, while locally optimal behavior in the regulator does not affect the
state estimates or steady-state targets. The stabilizing properties of local minima
in the regulator were mentioned by Chen and Allgöwer [3]. These properties were
proven in the context of stabilizing suboptimal control by Scokaert et al. [19]. We
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note that in the case of the regulator, the effect of local minima is to stabilize the
system at set point, but to do so in an inefficient way. This behavior contrasts
with the role of local minima in the estimation problem, since local minima do not
necessarily converge to the true states of the system, as is evident in Example 4.2.
It is possible that local minima in the estimator can lead to failure of the closed-loop
system. We can conclude that local optima in the state estimation problem are an
important concern for closed-loop operation when employing a nonlinear model. We
show that through the application of physically motivated constraints, we can easily
avoid these unwanted local minima for our examples.

5 Conclusions

Nonlinear models have significant advantages over linear models for control and
estimation. At the same time, they also present new problems that must be ad-
dressed to guarantee their usefulness. This paper demonstrates both the features
and caveats of nonlinear models in MPC, and presents simple and effective methods
for analyzing and avoiding these difficulties.

In this paper, we show that the choice of disturbance models is an important
issue for nonlinear plants. The choice of disturbance model can determine whether
a system can be stabilized. In general, the input disturbance model is appropriate
for cases of plant/model mismatch, although it is ineffective for a specific class of
systems. We further demonstrate poor performance of linear MPC on this class of
system. A future direction of research is to investigate a class of disturbance models
in which the integrating term is added to model parameters. For instance, in the
case of the solar collector, the disturbance is anticipated to come from the solar
input, so adding the integrating disturbance to the solar input term is a natural
choice.

We also investigate the occurence and role of local minima in the nonlinear reg-
ulator and estimator problems. While using linear models always results in convex
optimization problems, regardless of horizon length, nonlinear models can introduce
nonconvexities into these mathematical programs. In the case of the regulator, long
prediction horizons can lead to locally optimal periodic solutions that can be re-
moved by using a shorter prediction horizon. Also, constraints can be used to steer
a system towards a more favorable local optimum. For the estimator, applying phys-
ical constraints to the system may avoid undesired local optima. Although in both
cases, the constraints are not active at the solution, they aid the optimizer in finding
worthwhile optimal solutions that may not be found otherwise. We recommend that
even if a constraint is not expected to be encountered by the physical system, for
instance negative absolute temperatures, it should be included in the controller and
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estimator formulations to avoid unwanted local minima.
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