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ABSTRACT

A constrained model predictive controller is implemented on
a simulated Type I diabetic patient. A Kalman Filter is used
to estimate the blood glucose concentration based on a
subcutaneous glucose measurement. The model predictive
controller returns blood glucose to normoglycemic ranges
when subjected to a meal disturbance. The settling time is
similar to that of a non-diabetic.

1. MOTIVATION

Diabetes Mellitus refers to the condition in which the
pancreas produces insufficient insulin to control the blood
glucose level in a person. Type I diabetes occurs when the
pancreas produces no effective insulin whatsoever, thus
leading to hyperglycemia, the situation when the blood
glucose level rises much higher than 135mg/dL for
prolonged periods of time. Hypoglycemia refers to the
situation when the blood sugar level falls below values of
60mg/dL. Both situations can be deleterious to the
individual’s health. Hyperglycemia leads to blindness,
kidney failure, and other complications on a long-term basis.
The effects of hypoglycemia are more critical on a short
time basis, leading to loss of consciousness and coma within
a few hours if not treated (Guyton, 1996).

Treatment consists of daily injections or continuous
infusions of insulin to maintain blood glucose levels
between critical values. The Diabetes Control and
Complications Trial (DCCT, 1993) established the
importance of intensive glycemic control in Type I diabetics
for prevention of long-term complications due to
hyperglycemia but care must also be taken to prevent
hypoglycemia. Thus tight control of blood sugar levels is
desirable and is achieved by taking glucose readings 4 times
a day, and adjusting insulin dosage to meal intake and
exercise activity. An insulin pump is designed to deliver
insulin to the patient at a continuous rate, and is preferred
over the injection route, as it reduces the risk of overdose
and hypoglycemia and more accurately simulates the normal
pancreas.

The resting range of blood glucose falls between 70-
100mg/dL, and is the target range for a controller regulating
blood glucose level. The aim of the controller design then is
to curb the hyperglycemic trajectory to as short a time as
possible, to eliminate hypoglycemia below 60mg/dL and to
return to and maintain normoglycemic levels within 3 hours.
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2. BACKGROUND

Insulin therapy has traditionally been divided into two major
routes of application: intravenous and subcutaneous.
Bellazzi et al. (2001) discuss a number of applications
involving subcutaneous diabetic therapy, while Parker et al.
(2001) present a review of intravenous methods of therapy.

The major impediment to closed-loop control of blood
glucose has been the development of a reliable sensor that
functions for a significant length of time. Glucose sensors
under development take measurements from the
subcutaneous layer. Intravascular insertion is more accurate
but infection at this site is more likely (Armour et al., 1990).
The relationship between blood glucose and subcutaneous
glucose concentrations have been modeled by many workers
by a first-order lag term minus the rate of utilization of .
glucose by the subcutaneous tissue (Freeland et al., 1999;
Schmidtke et al., 1998; Sorenson, 1985).

Parker et al. (1999, 2001) designed and implemented
several model predictive controllers (MPC) on a simulated
19-state nonlinear model of a diabetic patient. It was
assumed that arterial blood glucose measurements were
available, and that insulin was delivered intravenously.

Many models have been suggested in literature
describing the human-glucose insulin system. Of these the
Bergman et al. (1981) model presents a minimal model
using 3 equations to describe the dynamics of the system as
simply as possible. Fisher (1991) uses this model to develop
3 open-loop controllers based on optimization techniques.

In this work the Bergman model is used to develop
controllers to regulate the system based on the subcutaneous
glucose measurement, since we anticipate that these sensors
are most likely to receive FDA approval in the near future.

3. BERGMAN “MINIMAL MODEL”

The Bergman minimal model consists of 3 differential
equations. Fisher (1991) developed the following modified
form for a type I diabetic by omitting the insulin secretion
term and inserting an insulin infusion term in equation (3).

dG

Cr==RG-X(G+Gy)+D() )
dx

X _PX+PRI 2
ar T @
%:—n(1+1b)+U(t)/V1 3)

where the states are blood plasma glucose concentration (G,
mg/dl) above basal value, a species proportional to insulin in
the remote compartment (X, mU/L), and plasma insulin
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concentration (/, mU/L) above basal value. The inputs are
the meal glucose disturbance (D(t), mg/dL/min) and the
manipulated insulin infusion rate (U(t) mU/min). The
parameter values are

G, = 81 mg/dL (4.5 mmol/L), basal glucose conc.

I, = 15 mU/L, basal insulin concentration

Vi=12L

n = 5/54 min’'
Since most glucose measurements are obtained via the
subcutaneous layer, the model was augmented with a 4th
equation relating subcutaneous glucose concentrations to the
blood glucose concentration. Subcutaneous values are then
used to estimate and control the blood glucose value. The
4th equation models a first-order lag of 5 minutes between
blood glucose concentration and subcutaneous glucose with
the tissue rate of utilization (R,,, mg/dL/min) accounting for
the steady state difference betweeen the two. This equation
is given by: _

ST Ry, @
where G, is the glucose concentration in the subcutaneous or
peripherous layer (mg/dL.).

Meal Disturbance Models
Fisher (1991). The meal disturbance function is:

D(t)= Aexp(-0.05t) )
where t is in minutes, D (1) is in mg/dL/min.

Lehmann and Deutsch (1992). The rate of glucose
absorption via the gut wall is

RGaps =K gabngur : 6)

where RG 4, is the rate of glucose absorption via the gut wall
(mg/min). G,, is the amount (mg) of glucose in the gut
following ingestion of a meal and is defined by the
following differential equation:

dG
gut - RG

dt empt ~ K

gabsG gut )

RG .y is the rate of gastric emptying which is described by a
trapezoidal function, saturating at V,,,,, the maximal rate of
gastric emptying. K, is the rate constant for glucose
absorption from the gut and is given the value of Ihh.
Incorporating this oral disturbance into equation (1) gives:

D(t)=RG_, 1V, . (8)

4. ESTIMATION-BASED MODEL PREDICTIVE
CONTROL

In model predictive control (MPC), the value of the

estimated state output (blood glucose) is predicted P sample

times into the future, based on model of the process. The

objective is to minimize the square of the deviations of the
model-predicted output from the desired setpoint trajectory,
by adjusting M future control (insulin infusion) moves:

P M

J =2 (resi = Frs)? + AY Aufiig &)

i=1 i=1

where J is the objective function, k is the sample time
index, A is the weighting on the manipulated input, Au is the
manipulated input increment, r is the blood glucose setpoint,
and ¥ is the predicted blood glucose concentration.

The first control move in the sequence is implemented,
and at the next step the optimization is repeated.

A clear advantage of MPC is that the control
algorithm can explicitly enforce constraints. Physiological
constraints are necessary in the diabetic system,
encompassing the limits of hyperglycemia/hypoglycemia.
The following constraints were imposed.

0< u £100mU/min (10)
60mg/dL < ¥ < 180mg/dL 11
-16.7mU/min £ Au £ 16.7mU/min (12)

Limits on u were chosen to maintain insulin concentrations
below 100mU/L. The value of Au was chosen to ensure that
changes in delivery rate are within the capabilities of the
pump mechanism (Parker et al., 1999).

The Bergman parameters P, P,, and P; for a. Type I
diabetic were obtained using a least squares algorithm to fit
the blood glucose and subcutaneous glucose concentrations
of the Sorenson (19™ state nonlinear model) plant for step
changes in input to give:

P, = 0.028735 min™'

P; = 5.035x10°mU/L
Values of steady state blood and subcutaneous glucose
concentrations (G, and G,,) were obtained from the
Sorenson steady state data ( the 7™ and 8™ state respectively)
to be 81.3 mg/dL, and 77.6 mg/dL.

This model is discretized with a sample time of 5 minutes

in the form:

P, = 0.028344 min’!

Xg41 =(I>xk + Fuk + Fddk 13)
diyy =dg +wy (14
Vi1 = Cxpqy +vg (15)

The term v, is the noise on the output measurement, while w;
is the noise on the input disturbance d,, (glucose meal) to the
system, which is then augmented as a state to the 4 state
model to give the following state space system:

8.67x100  -3.52x107 -4.67x107 0 4.67
0 8.68x107 2.19x10% 0. 0
=] o 0 6.200x107 0 0

5.62x1070 —1.32x10% -1.28x1072 3.39x107! 1.71
0 0 0 0 1
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-6.90x10° 0
5.05x10° 0
r“=| 334x10" o c=b o o 1 o
~1.46x10> 0 D =[0 0]
1

0

These state space matrices are then used in the Kalman
Filter-based MPC strategy to improve disturbance rejection.

Only the 4™ state is measured, so state estimation is
used to determine the best estimate of the current state
vector, which is used as the initial condition for the future
predictions. The Kalman Filter (KF) used is of the following
form:

aa . asra a
Xik—1 = @ OX gy + Ty (16)
i = X + L(yg = CU35py) a7
where )Acmlnrepresents the estimate at time step m, given

measurements up to time step n, yi is the actual measured
value with 1% standard deviation in Gaussian distribution
sensor noise (v), and L is the steady-state Kalman Filter
gain. Superscript a indicates that the disturbance is modeled
as an additive input and is augmented into the state space
matrices as a fifth state. Q/R is used as a tuning parameter,
" where Q is the variance of noise on the disturbance, and R is
_ the variance of noise on the output measurement, a high Q/R
ratio infers that noise on disturbance is high, but the estimate
is aggressive, while a low ratio indicates a slower smoother
estimate. The actual values used vary from 0.01 — 0.10.

The goals are to reduce the hyperglycemic trajectory to
as short a time as possible, to avoid hypoglycemia below 60
mg/dL and to return to and maintain normoglycemic levels
within 3 hours.

5. RESULTS

5.1 Perfect Model

The controller’s action was demonstrated on the perfect
model, with Fisher’s disturbance at t = 100 minutes. The
controller was tuned to values of P=10, M=1, to achieve the
results displayed in Figure I. Higher values of M cause more
aggressive control action resulting in oscillatory behavior. A
relatively high prediction horizon is desirable so as to predict
a hypoglycemic trend, and curb insulin delivery. However
too long a prediction horizon produces sluggish reaction to
the rising blood glucose levels. The Kalman Filter also
shows excellent tracking of the actual blood glucose,
although only the subcutaneous is measured.

Plant-Model Mismatch

In order to simulate a Type I diabetic patient, use of a higher
order model is desirable to more accurately describe the
interactions and responses of the glucose-insulin
mechanisms of the body. The Sorenson (1985) model, used
here to simulate the patient, consists of 22 states describing
glucose, insulin and glucagon concentrations in various
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regions of the body, with three of the equations representing
a fully functioning pancreas. For the Type I Diabetic
simulation, the three pancreatic equations are removed, and
a term representing intravenous insulin infusion is
introduced. The model used by the estimator/controller
remains the low-order model used previously. It should be
noted that Parker et al. (1999, 2000, 2001) have also used
the Sorenson model to represent a Type 1 diabetic.

In Fig 2, Fisher’s meal disturbance is implemented at t =
100 minutes, and the resulting trajectory with the response
of the MPC strategy plotted. It is demonstrated that the
MPC ably handles the 50g meal disturbance, with blood



glucose rising to 95mg/dL. maximum within half an hour,
decreasing to 75mg/dL minimum and thus is kept safely
within normoglycemic ranges. The blood glucose
concentration then returns to setpoint levels within 3 hours
in time for the next meal. The Kalman Filter estimate of the
blood glucose matches the true value closely, deviating
slightly during the rise in blood glucose after the 50g meal
disturbance. Q/R tuning parameter was adjusted to a value of
0.01 to obtain the desired response, P and M the prediction
and control horizons, were tuned to values of 10 and 1
respectively.

The subcutaneous measurement is also displayed in Fig.
2b, and shows quite good correlation with the blood glucose
measurement trajectory displayed above. The maximum
insulin infusion rate reaches just above 40 mU/min. The
response to the Lehmann meal disturbance at t=100 minutes
is shown in Fig. 3. Tuning parameters used were Q/R
ratio=0.11, P=5, M=1. The maximum levels are similar to
Fisher’s disturbance, but the glucose levels approach
65mg/dL. This however does not reach the hypoglycemic
value of 60 mg/dL. The trajectory of the subcutaneous
measurement continues to show good correlation with the
blood glucose values, as with the previous form of the
disturbance.

Because of utilization of glucose in the subcutaneous
tissue, the subcutaneous glucose concentration falls 2-3
mg/dl below that of the blood glucose value. However the
general rise and fall of the blood glucose trajectory is
matched quite closely by a corresponding pattern in the
subcutaneous trajectory. Since both trajectories are kept out
of the critical bounds, subcutaneous measurements are thus
adequate for controlling blood glucose. On the lower bound
approaching hypoglycemia, a downward trend in
subcutaneous measurements would be anticipated by the
MPC strategy and corrected before the blood glucose
trajectory reaches the hypoglycemic bound. On the upper
bound, where the blood glucose would perhaps reach the
hyperglycemic bound first, the time element is not as
critical, as long as normoglycemia can be resumed in a
couple of hours. Thus the use of subcutaneous measurements
has proven effective in controlling blood glucose level in
this simulation study.

6.CONCLUSIONS and FUTURE WORK

These simulations of a Type I Diabetic indicate that blood
glucose levels can be adequately controlled using state
estimation based on saturation measurements and Model
Prediction Control. Performance would be improved by use
of a dynamic Kalman Filter, and our current effort involves
subcutaneous rather than intravenous insulin delivery, as
well as the use of infrequent blood glucose measurements to
update the Kalman Filter estimates. The Sorenson model
does not realistically capture the extremes of the blood
glucose deviations, especially into hyperglycemia, in periods
of food consumption, or during nocturnal periods. Future

studies will include a more realistic simulation of a Type I
Diabetic patient.
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