ONLINE NMPC OF A LOOPING KITE USING
APPROXIMATE INFINITE HORIZON CLOSED LOOP
COSTING

Moritz Diehl * Lalo Magni ** Giuseppe De Nicolao**

* Interdisciplinary Center for Scientific Computing (IWR),
University of Heidelberg, Germany
** Dipartimento di Informatica e Sistemistica, University of
Pavia, Italy

Abstract: We consider a dual line kite that shall fly loops and address this periodic control
problem with a state-of-the-art NMPC scheme. The kite is described by a nonlinear
unstable ODE system, and the aim is to let the kite fly a periodic figure. Our approach
is based on the ‘infinite horizon closed loop costing” NMPC scheme to ensure nominal
stability. To be able to apply this scheme, we first determine a periodic LQR controller to
stabilize the kite locally in the periodic orbit. Then, we formulate a two-stage NMPC
optimal control problem penalizing deviations of the system state from the periodic
orbit, which also contains a state constraint that avoids that the kite collides with the
ground. To solve the optimal control problems reliably and in real-time, we apply the
newly developed “real-time iteration scheme” for fast online optimization in NMPC. The
optimization based NMPC leads to significantly improved performance compared to the
LQR controller, in particular as it respects state constraints. The NMPC closed loop also
shows considerable robustness against changes in the wind direction.

Keywords: periodic control, LQR, nonlinear control systems, predictive control, online

optimization, stability, numerical methods, optimal control

1. INTRODUCTION

Nonlinear model predictive control (NMPC) is a feed-
back control technique that is based on the real-time
optimization of a nonlinear dynamic process model on
a moving horizon that has attracted increasing atten-
tion over the past decade (Qin and Badgwell, 2001).
Important challenges that need to be addressed for
any NMPC application are stability of the closed loop
system and the numerical solution of the optimal con-
trol problems in real-time. In this paper we show how
state-of-the-art NMPC techniques addressing these
challenges can be applied to control a strongly unsta-
ble periodic system, namely a dual line kite that shall
fly loops. The aim of our automatic control is to make
the kite fly a figure that may be called a “lying eight”.
The corresponding orbit is not open loop stable, so

that feedback has to be applied. We assume the state
is fully accessible for control.

Since the natural setting of the problem is in contin-
uous time, the NMPC implementation proposed here
is developed for continuous-time systems. However,
it basically differs from the continuous time NMPC
algorithms for nonlinear systems previously published
in the literature, see e.g. (Mayne and Michalska, 1990;
Chen and Allgdwer, 1998). Continuous time methods
usually assume that the NMPC law is continuously
computed by solving at any time instant a difficult
optimization problem. This is impossible in practice,
as any implementation is performed in digital form
and requires a non-negligible computational time. The
NMPC setup proposed here is based on the method
proposed in (Magni et al., 2002), where a continuous



Fig. 1. A picture of the kite, and the unit vectors e; and
e; along longitudinal and transversal kite axis.

time locally stabilizing control law is first designed.
Then, a piecewise constant term computed via NMPC
is added to the control signal provided by the stabi-
lizing control law, in order to achieve some specific
goals, such as the minimization of a prescribed cost or
the enlargment of the output admissible set. In so do-
ing, it is assumed that the signal computed by NMPC
is piecewise constant and with a limited number of
free moves in the future. Nominal stability of the
overall system is preserved using the “infinite horizon
closed loop costing” scheme proposed in (De Nicolao
et al., 1998). In the usual setting of this scheme, the
optimization problems are solved up to a prespecified
accuracy during each sampling time so that a feedback
delay of one sampling time is introduced in the closed
loop.

In this paper, however, we avoid this feedback delay
by using the recently developed “real-time iteration”
scheme (Diehl et al., 2002b) for online optimization.
The algorithm is based on the direct multiple shoot-
ing approach to optimal control problems (Bock and
Plitt, 1984; Leineweber, 1999), but is characterized
by the following features: first, the scheme efficiently
initializes each new problem and performs only one
optimization iteration per optimization problem. Thus
it reduces sampling times to a minimum. Second, the
computations of each “real-time iteration” are divided
into a very short “feedback phase”, and a much longer
“preparation phase”, which uses the sampling time to
prepare the next feedback. Thus, each NMPC feed-
back is directly applied to the system, with a negligible
delay that is orders of magnitude shorter than the sam-
pling time. For details see e.g. (Diehl et al., 2002c).

The paper is organized as follows. In Section 2 we
derive the model equations for the kite model. The
periodic reference orbit is analysed in Section 3 and
we show how to design a stabilizing periodic linear
controller based on LQR techniques. In Section 4 we
finally describe the NMPC setup. Simulated closed
loop experiments are presented and briefly discussed

in Section 5. 2. KITE MODEL

The kite is held by two lines which allow to control
the lateral angle of the kite, see Fig. 1. By pulling
one line the kite will turn in the direction of the line
being pulled. In this paper we employ a kite model
that was originally developed in (Diehl, 2002; Diehl
et al., 2002a).

d - e; (transversal Kite axis)
A
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Fig. 2. The kite and its lines seen from the top, and
visualization of the lateral angle .

2.1 Kite Dynamics in Polar Coordinates

The movement of the kite at the sky can be modelled
by Newton’s law of motion and a suitable model
for the aerodynamic force. Let us introduce polar
coordinates 4, ¢, r so that the position p of the kite
relative to the kite pilot (in the origin) is given by:
p = (rsin(0) cos(¢), r sin(f) sin(¢), r cos(d)) with
the last component being the height of the kite over
the ground, and & being the angle that the Kite lines
form with the vertical. We introduce a local right
handed coordinate system with the basis vectors
€9, €4, er, €ach pointing in the direction where the
corresponding polar coordinate increases. Defining
the corresponding components of the total force F
acting on the kite, we can write Newton’s law of
motion for constant r in the form

6= f_ri + sin(8) cos(8) ¢, 1
_ F¢ ..
= rmsin(@) 2 cot(0) ¢, )

with m denoting the mass of the kite. The force con-
sists of two contributions, gravitational and aerody-
namic force, so that we obtain Fj = sin(0)mg + F3°"
and Fy = F3°, where g = 9.81 m s~ is the earth’s
gravitational acceleration. It remains to determine the
aerodynamic forces F3** and Fger.

2.2 Kite Orientation

To model the aerodynamic force we first determine
the kite’s orientation. We assume that the Kite’s
trailing edge is strongly pulled by the tail into the
direction of the effective wind at the kite. Under this
assumption the kite’s longitudinal axis is always in
line with the effective wind vector w, := w — p,
where w = (vy,0,0)T is the wind as seen from
the earth system, and p the kite velocity. If we
introduce a unit vector ¢; pointing from the front
towards the trailing edge of the kite (cf. Fig. 1), we
therefore assume that ¢; = ”z—” The transversal
axis of the kite can be described by a perpendicular
unit vector e; that is pointing from the right to
the left wing tip (as seen from the kite pilot, in
upright kite orientation). The orientation of e, can be
controlled, but it has to be orthogonal to ¢; (cf. Fig. 1),

et e =0. 3
However, the projection of e; onto the lines’ axis
(which is given by the vector e,.) is determined from
the length difference Al of the two lines, see Fig. 2. If

the distance between the two lines’ fixing points on
the Kite is d, then the vector from the right to the left



fixing point is d - e, and the projection of this vector
onto the lines’ axis should equal Al (being positive if
the left wing tip is farther away from the pilot), i.e.,
Al = de; - e,. Let us define the lateral angle ¢ to
be ) = arcsin (4!) . For simplicity, we assume that
we control this angle + directly. It determines the

orientation of e; which has to satisfy:

Al
ep-ep = o= sin(1)). 4
A third requirement that e; must satisfy and which
determines its sign is

(er x e¢) - ep > 0. (5)

This ensures that the kite is always in the same
orientation with respect to the lines. We will now
give an explicit form for the unit vector e; that
satisfies (3)—(5). Using the projection w,. of the
effective wind vector w, onto the tangent plane
spanned by eg and ey, we = we — e,(e, - we), We
can define the orthogonal unit vectors e; := ”1“’7]—”
and ex := e, X e, S0 that (e1,eq,e,) forms an
orthogonal right-handed coordinate basis. In this basis
the effective wind w, has no component in the e»
direction: w, = ||@e||e1 + (we - er)e,. The definition

es := e1(—costsinn) + ex(cos ) cosn) + e, sin
with 77 := arcsin (“’E'er tan(¢)) indeed satisfies (3)—

ll@el
(5), as can be verified by direct substitution. Therefore
we are now able to determine the orientation of the
kite depending on the control ¢ and the effective wind

we only.

2.3 Aerodynamic Lift and Drag

The two vectors ¢; x e; and e; are the directions of
aerodynamic lift and drag, respectively. To compute
the magnitudes Fr, and F of lift and drag we assume
that the lift and drag coefficients C1, and Cp are
constant, so that we have

1 1
F. = gpllwel?AC  and  Fi = Zpllwe || AC,

with p being the density of air, and A being the
characteristic area of the kite. Given the directions
and magnitudes of lift and drag, we can compute F'2¢*
as their sum, yielding F2¢* = Fj, (e; x e;) + Fpe; or,
in the local coordinate system

F;er = FL((el X et) . 69) + FD(el . 69)
Fger =FL.((e; x eg) - €¢) + Fp(e - €¢).

The system parameters that have been chosen for
the simulation model are listed e.g. in (Diehl, 2002;
Diehl et al., 2002a). Defining the system state x :=
(8, ¢,6,$)T and the control u := 1) we can summa-
rize the four system equations, i.e., (1)-(2) and the
trivial equations 22 = §, 2 = ¢, in the short form
z = f(z,u).

3. REFERENCE ORBIT AND LQR

Using the above system model, a periodic orbit was
determined that can be characterized as a “lying eight”
and which can be seen e.g. in Figure 3, asa (¢, 8)-plot.

The wind is assumed to blow in the direction of the
pr-axis ( = 90° and ¢ = 0°). The periodic solution
was computed using an off-line variant of the direct
multiple shooting method, MUSCOD-II (Leineweber,
1999), imposing periodicity conditions with period
T := 8 seconds and suitable state bounds and a
suitable objective function in order to yield a solution
that we considered to be a nice reference orbit. We
denote the periodic reference solution by z,.(t) and
u,(t). This solution is defined for all ¢ € (—o0, 00)
and satisfies the periodicity condition z,.(t + T) =
z,(¢) and u, (¢t + T) = u,(¢).

3.1 Open Loop Stability Analysis

Numerical simulations of the kite using the open
loop inputs w.(t) show that the kite crashes onto
the ground very quickly after small disturbances, cf.
Fig. 3. To analyse the asymptotic stability properties
of the open loop system along the periodic reference
orbit theoretically, let us consider the linearization of
the system along the orbit. An infinitesimal deviation
ox(t) = z(t) — z-(t) and du(t) = wu(t) — u.(t)
would satisfy the periodically time-varying linear
differential equation

5i(t) = A(H)5x(t) + B(t)su(b), ©)
with
AW = L0 ) and By =),

Based on the linear time variant periodic system
z(t) = A(t)z(t) we can compute its fundamental
solution and the sensitivity of the final state of each
period with respect to its initial value, which is called
the “monodromy matrix”. A numerical computation
of the monodromy matrix for the kite orbit and eigen-
value decomposition yields two Eigenvalues (“Floguet
multipliers”) that are greater than one, confirming the
observation that the system is unstable.

3.2 Design of a Periodic LQR Controller

In order to design a locally stabilizing controller
(which is needed if we want to apply the infinite
horizon closed loop costing NMPC scheme), we use
the classical LQR design technique, applied to the
periodic linear system (6). We introduce diagonal
weighting matrices

Q := diag(0.4, 1, s?, s2)§ and R := 33 é (7

To determine the optimal periodic LQR controller
that minimizes the objective [ 1 (z — z,(t))TQ(z —
zr(t)) + 2(u — u,(t))TR(u — u,(t))dt, we find
the symmetric periodic matrix solution P(t) for the
differential Riccati equation
—P=Q + ADTP() + P()A(t)
— P(t)B(t)R'B(t)T P(t)

by integrating the equation backwards for a
sufficiently long time, starting with the unit matrix as
final value. Once the periodic P(t) is determined, the
optimal LQR controller for (6) and (7) is given by
du(t) = —K(t)dz(t) with K(t) := R™'B(t)TP(t).
We finally define the linear periodic feedback for the
original system as
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Fig. 3. The linear periodic controller is able to stabilize
the system locally from slightly disturbed system
states (solid line), in contrast to the open loop
system (dotted), but lets the kite crash onto the

ground for a larger deviation (dash dotted).

uLQr (2, t) := up(t) — K(t)(z — 2,(t).  (8)
The linearly stabilized system (%) =
f(z(t), uqr(z(t),t)) is locally stable, as illustrated
in Figure 3.

4. NMPC CONTROLLER SETUP

The aim of the NMPC controller is to stabilize the
system in a larger region of attraction and to respect
certain bounds that the linear controller may violate,
and, furthermore, to lead to an improved performance
with respect to a user defined criterion. In our case,
the bounds arise because we want the closed loop
kite to respect a security distance to the ground
(@ = 90 deg). We achieve this by requiring that
h(z,u,t) := 76.5 deg — § > 0. The performance of
the controller is measured by the integral of a function
L(z(t),u(t),t), which is in our case the squared
deviation of the state z at time ¢ from the reference
orbit, )
Lia,ut) = 3 (@ = 2:(6) Q@ — 2. (1)).

We introduce a sampling interval § and give NMPC
feedback to the system only at the times ¢, := k -
4. At each sampling time ¢; the NMPC shall deliver
new controls w(t),t € [tx,tx+1] that depend on the
current system value z(t;), where the optimization is
based on a prediction of the future system behaviour.
Many NMPC schemes exist that guarantee nominal
stability, see e.g. (Allgower et al., 1999; De Nicolao
et al., 2000); they mainly differ in the way the optimal
control problems are formulated. Here, we work in the
framework of the infinite horizon closed loop costing
scheme (De Nicolao et al., 1998).

4.1 Infinite Horizon Closed Loop Costing

In the infinite horizon closed loop costing scheme we
express the control «(t) that is actually applied to the
plant at time ¢ € [t, tx+1] by the sum

u(t) = ULQR(.'L‘(t), t) +uv, Vte [tk, tk+1],
where the constant vector vy is determined by the
NMPC optimizer and implicitly depends on z(tg).
Note that v, = 0 yields the linearly controlled closed

loop. In the sequel we will use a bar to distinguish the
predicted system state and controls Z(¢) and @(t) from
the state and control vector of the real system.

Given the state xz(t;) of the “real” kite at time #y,
we formulate the following optimal control problem,
with control horizon T, = M § and prediction horizon
T, > T, (where T}, shall ideally be infinity).

tk—‘er
i [ Le@.a0.00  ©
9,8(-),Z(+) J g,

subject to
#(t) = f(z(t),a(t)), Vi€ [te, te + Tpl,
L(tr) = (tk),
u(t) = uLQr(Z(t),t) + 05, Vit € [ti,tiya],
(i=k,....,k+M—1),
u(t) = uLqr(Z(t), ), te[tk+Tc,tk+T]
0 < h(z(t),u(t),t), Yt € [tr,tr +Tp]. (10)

In the case that T, = oo and if the optimal control
problem has a solution for (o), stability of the closed
loop trajectory can be proved in a rigorous way (De
Nicolao et al., 1998; Magni et al., 2002).

4.2 Real-Time Optimization Scheme

We choose a sampling interval § = 1sand M = 8
sampling intervals as control horizon, T, = 8 s. As
the simulation of the periodic system over an infinite
horizon is impossible, we employ here a finite T, =
24 s, that we believe to be sufficiently long to deliver
a fair approximation to the infinite horizon cost. For
a theoretical discussion on how to truncate the series
expressing the Infinite Horizon cost associated with
the auxiliary linear control law without losing stability
see (Magni et al., 2001). Furthermore, to avoid a semi-
infinite optimization problem, the problem is changed
by imposing the inequality path constraints (10) only
at prespecified points in time, here chosen to be the
sampling times ¢; on the control horizon, as well as
start, center and end point of the prediction horizon.

The numerical solution of the optimization problems
is achieved by the recently developed real-time itera-
tion scheme (Diehl et al., 2002b; Diehl et al., 2002c)
that is based on ideas developed in (Bock et al., 2000).
This scheme is based on the direct multiple shooting
method (Bock and Plitt, 1984) that reformulates the
optimization problem as a finite dimensional nonlinear
programming problem with a special structure. We use
an efficient implementation of the scheme within the
optimal control package MUSCOD-II (Leineweber,
1999). One advantage of the scheme is that it nearly
completely avoids the feedback delay of one sampling
time present in most NMPC optimization schemes.

5. CLOSED LOOP EXPERIMENTS

In order to test the NMPC closed loop we have
performed several numerical experiments. Here, the
“real” Kite is simulated by a model that coincides with
the optimization model, but is subject to disturbances
of different type.
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Fig. 4. The NMPC controller is able to control the kite
even for the largely disturbed states at the bottom
(solid line), in contrast to the LQR controller
(dotted, cf. Fig. 3). For the disturbed state at the
top, the performance for the NMPC (solid line,
integrated costs 1.51) is better that that of the

LQR (dotted, costs 1.75), as expected.

5.1 Comparison with LQR

First, let us in Figure 4 compare the NMPC with the
periodic LQR. It can be seen that the NMPC is able to
respect the state constraint § < 76.5 deg even for the
scenario with the largely disturbed initial state at the
bottom (cf. Fig. 3), in contrast to the LQR. For another
scenario, where the system kite starts much too high
at the sky, both controllers are able to stabilize the
system. However, NMPC leads to a reduced objective
with the cost integral f0°° L(z(t), u(t), t)dt being 1.51
in contrast to 1.75 for the LQR. This difference can
be seen in form of a considerably faster convergence
towards the periodic orbit.

5.2 Strong Sidewind

In another scenario, the closed loop is tested against
model uncertainty: we consider a continuing distur-
bance resulting from a change in the wind direction.
The wind component in p,-direction, that is assumed
by the optimizer to be zero, is for the “real” kite set
to a value 3 m/s that is 50% of the nominal wind
Uy N pp direction. The NMPC closed loop results in
a considerably disturbed but stable periodic orbit, as
can be seen in Figure 5; the disturbed periodic orbit
is reached after a very short transient. This contrasts
sharply with the open loop and the LQR closed loop
response which both result in a crash after a short time.

6. CONCLUSIONS

We have presented a method to design a nonlinear
model predictive controller for periodic unstable sys-
tems, and have applied the method to a kite that shall
fly loops. The method is based on the “infinite horizon
closed loop costing” which requires a locally prestabi-
lizing feedback. This prestabilization is achieved by a
periodic LQR controller based on a system lineariza-
tion along the periodic orbit. The NMPC controller
uses an objective which only penalizes state devia-
tions and a state constraint is formulated to ensure

9%0 60 40 éO ' 0 —20 —46 —60 -80
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Fig. 5. Effect of model uncertainty in form of a strong
side wind with 50 % the nominal wind speed.
After a very short transient, the NMPC controlled
kite loops in a considerably disturbed periodic
orbit, but remains stable (solid line). The LQR
closed loop response results in a crash after two
periods (dotted), and the open loop crashes after

4 seconds (dash dotted).

that the kite does not crash onto the ground. The re-
sulting optimal control problems are solved in real-
time, once a second, by a state-of-the-art online opti-
mization algorithm, the “real-time iteration scheme”.
This numerical scheme avoids the large feedback de-
lay present in most optimization approaches to NMPC
and allows to reduce sampling times to a minimum.
The NMPC closed loop gives an excellent response
to strong disturbances. Furthermore, it shows good
robustness against model plant mismatch: in the pres-
ence of additional sidewind of 50% the nominal wind
velocity the periodic orbit changes shape, but remains
stable.

We want to mention here that the real-time iteration
NMPC scheme used for the computations in this paper
has also been successfully applied to a real pilot scale
distillation column described by a stiff differential-
algebraic equation model with 200 states, making
a sampling time of 20 seconds possible (Diehl et
al., 2003).
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