
Storage and Retrieval of Optimal Control
J. D. Hedengren and T. F. Edgar
The University of Texas at Austin

Introduction

Another area of applicability for the ISAT algorithm lies in storage and retrieval of the optimal control.
Real-time control presents many unique challenges. When large, non-linear first principles models are
used to predict optimal control, the controller computational cycle time can be undesirably slow. Storage
and retrieval of the optimal control is desirable since the same control problem is repeatedly solved with
different initial conditions. In this case the initial conditions are the values of the current states of the
model (x0), the previous optimal control values (u-1

*), and any adjustable parameters in the model or
objective function (). If all of the state values are not exactly measured, state estimation must be used to
estimate the remaining states. For deterministic control algorithms, the same set of initial conditions will
always produce the same set of outcomes. In this case the outcomes are the optimal control values (u0

*). In
block diagram form, the predictive variables or current states enter the system and leave as a set of
outcomes or optimal control values. The block represents the control algorithm that determines the optimal
control values. There is no limitation on the type of control algorithm that is used to calculate the optimal
control values, only that the same set of initial conditions produces the same set of optimal control values.

x0 u-1
*  u0

*Control
algorithm

The block diagram is equivalent to the following equation form.

u0

* = f(x0, u-1
*, )

Sensitivity information may also be available from the control algorithm. The sensitivity matrix reveals the
amount that the optimal control values change with a small perturbation in the initial conditions. In storage
and retrieval of the optimal control it is desirable for the estimated values of u0

* to be within some error
tolerance (tol) of the calculated u0

*.

tolestuu  *
0

*
0

Costs associated with the storage and retrieval of optimal inputs include configuration costs, CPU time
costs, and storage costs. Overall, storage and retrieval of the optimal inputs may be desirable if the
following conditions exist.

 Retrieval time is much faster than the control algorithm
 The control algorithm is deterministic
 Real time constraints make the control algorithm infeasible
 The CPU time to generate the database of optimal controls is small compared with retrieval

savings
 Storage costs are small

Control algorithms based on large, non-linear first principles models meet these qualifications. In situ
adaptive tabulation (ISAT) provides the fast retrieval time, compact storage of optimal controls, and
database generation in regions of the state space accessed by the controller.

The ISAT Record

The basic unit of the ISAT database is the record. For optimal control storage and retrieval an ISAT record
consists of the initial conditions, the optimal control values, a sensitivity matrix, and an ellipsoid of

accuracy (EOA). The initial conditions and optimal control values are from a previous optimal control
evaluation. If the control algorithm includes a sensitivity calculation, then the sensitivity matrix was
created at the same instance. If it does not include a sensitivity calculation then the sensitivity is
statistically estimated. Details about the statistical approximation of the sensitivity are given in a
subsequent section. Finally, the EOA is a matrix used to approximate the amount of error in the estimated
optimal controls. A distinguishing feature of ISAT over other storage and retrieval methods is that the
EOA maintains automatic error control. Details about the initialization and modification of the EOA are
also given in a subsequent section. The elements accessed and stem are additional elements for database
administration. Accessed records the number of times a record is used for retrieval. Stem is a FORTRAN
pointer to the binary tree.

Elements of an ISAT Record Alias Data Type
initial conditions start m
optimal control values finish n
sensitivity sensitivity nxm
ellipsoid of accuracy eoa mxm
accessed accessed integer
stem stem pointer

Searching the Records with Binary Trees

When accessing the database, the only piece of information that is known is a query vector of initial
conditions. Ideally, the closest record would be obtained by minimizing a measure of closeness. In this
case the measure of closeness is the 1-norm given by the difference between the query vector and the stored
start vector.

 = |startquery – startstored|

Searching the ISAT records sequentially would require O(N) operations to completely search the database
and find the closest record. A more efficient search structure is the binary tree. A balanced binary tree
requires O(log2(N)) operations for locating a record.

Elements of a Binary Tree Node Data Type
v m
a 
lt pointer
gt pointer
leaf (when pointing to a record) pointer

Each node of a binary tree can either be a leaf or branch. The leaves of the binary tree are individual
records of the ISAT database. A branch, on the other hand, points to two other nodes. All branches divide
until a leaf terminates the line.

record3

record2record1

node1

node2

In the above figure, node1 and node2 are the elements of the binary tree. Each element consists of a cutting
plane, defined by v and a, that describe a division between two records. The node2 cutting plane is defined
by the following two equations.

12 startstartv 







 


2

12 startstart
va T

The pointers lt and gt direct the search to the appropriate successive node. When   astartv query  the

pointer lt (less than) is chosen. Likewise, when   astartv query  the pointer gt (greater than) is selected.

In this case both of the pointers are to leaves, and the search terminates by selecting one of the records.

One of the drawbacks to binary tree searching is that the closest record is not always selected. To
overcome this deficiency, multiple binary trees are used to increase the probability of finding the closest
record. The records are equally divided among the binary trees to maintain a balance in search times.
Once all of the binary trees are searched, a sequential search is performed to determine the closest record
among the ones the binary trees selected. By adjusting the number of binary trees, an effective compromise
is reached between the accuracy of the sequential search and the speed of the binary tree search.

Once a close record is located, ISAT performs one of three scenarios. These scenarios include retrieval,
growth, and addition. Each of these is described in more detail below.

ISAT Retrieval

The automatic error control decides if retrieval is appropriate. The error control is accomplished with the
ellipsoid of accuracy (EOA) with a center being the stored start. Another point, startquery is within the EOA
if (startquery – startstored)

T eoa (startquery – startstored)  tol
2. If the query point is within the EOA then finish

is estimated with a linear approximation.

 storedquery
stored

stored
storedest startstart

start

finish
finishfinish 






If (startquery – startstored)

T eoa (startquery – startstored) > tol
2 then the point startquery is outside of the EOA and

a retrieval cannot be performed. Even though the query point is not inside the EOA, the linear
approximation may still be within the error tolerance for finish. The next step of the algorithm is to check
the actual error.

ISAT Growth

In order to check the actual error, an original function calculation must be performed (finish = f(start)). If
|finish – finishest| > tol the EOA should not be expanded. Instead a new record should be added to the ISAT
database. The growth step should be skipped and the algorithm jumps ahead to the ISAT addition phase.

If |finish – finishest|  tol the EOA can be expanded to include startquery. This new region is a minimum
volume ellipsoid that includes the new point, startquery, and the original EOA. The growth algorithm
involves six steps. Each of the steps is described first in mathematical terms and subsequently with a two
dimensional graphical example.

Step 1: Definition of the EOA and growth point

The EOA is defined by the following equation.

(start – startstored)

T eoa (start – startstored) = tol
2

To make the mathematics more compact and readable, the center point of the coordinates is aligned with
the center of the ellipse.

x = start – startstored

xquery = startquery – startstored

Mx = eoa

c2 = tol

2

With these substitutions, the EOA equation becomes xT Mx x = c2 and the growth point becomes xquery.

A two dimension example includes a symmetric ellipse with a center point at startstored and a growth point
at startquery.

startstored

startquery

EOA
x1

x2

(0,0)

The axes are shifted to align the center point of the ellipse with the origin. The growth point startquery
becomes xq after the translation and the EOA is defined in terms of x.

(0,0)

xq

xT Mx x = c2

x1

x2

Step 2: Transform the coordinates to map the EOA to a unit hypersphere

In this step a matrix Tyx is computed to map the original x-coordinates onto a new y-coordinate system that
transforms the EOA into a unit hypersphere. A unit hypersphere is simply a higher-dimensional
generalization of the three-dimensional sphere with radius of one. The matrix Tyx maps all points in x into

the y coordinates with the relation y = Tyx x. Likewise, the inverse of Tyx (or Txy) maps y into the x
coordinates with x = Tyx

-1 y = Txy y. The first subscript letter of T refers to the transformed coordinate
system while the second subscript letter refers to the original coordinates.

A Schur decomposition gives Mx = Qx x Qx

T with Qx being a unitary matrix (Qx
T = Qx

-1). The square root
of the diagonal matrix x is computed by taking the square root of the individual elements along the
diagonal. The transformation matrix becomes Tyx = c-1 x

1/2 Qx
T.

It will now be shown that the coordinate transform does, in fact, transform the EOA to a unit hypersphere
in the new coordinate system. First, the inverse of Tyx is found to be

Tyx

-1 = Txy = c Qx x
-1/2

Making the substitution Txy y = x in the EOA equation xT Mx x = c2 gives

(c Qx x

-1/2 y)T Mx (c Qx x
-1/2 y) = c2

Rearranging and substituting Mx = Qx x Qx

T gives

c2 (yT x

-1/2 Qx
T) Qx x Qx

T
 (Qx x

-1/2 y) = c2

The c2 term cancels and Qx

T
 Qx = I since Qx is a unitary matrix. This leaves

yTx

-1/2 x x
-1/2 y = 1

Finally, since x

-1/2 x x
-1/2 = I the EOA in transformed space becomes a unit hypersphere.

yTI y = 1

Returning to the two dimensional example, the y-axes are shown relative to the x-axes. In the y-axes
reference frame, the ellipse becomes a unit circle centered at the origin.

xq

x1

x2

y1

y2

y1

y2

1

1

Step 3: Map the growth point to the transformed coordinates

The same transformation matrix Tyx is used to transform the growth point to the new coordinates.

yq = Tyx xq

The magnitude and normalized direction of the vector yq are important for subsequent calculations. The
magnitude is the 2-norm of the vector.

 
2qq yymag 

The normalized direction is simply the vector divided by the magnitude.

2q

q
n

y

y
y 

Graphically, the growth point is translated to the new y reference frame. The magnitude is the distance
between yq and the origin. The normalized vector yn has a unit length and points in the direction of yq.

yq

y1

y2

yn

||yq||2

Step 4: Align one of the y-axes with the direction of the growth point

One of the y-axes must be aligned with the direction of the growth point. This is accomplished by
computing an orthonormal basis to yn. An orthonormal basis is produced by first subtracting the outer
product of yn from the identity matrix of appropriate dimension.

R = I - yn yn

T

A Schur decomposition of R gives

R = QR R QR

T

The diagonal matrix R is equal to the identity matrix except that one of the diagonal elements is zero. This
diagonal element corresponds to the axis that is aligned with yq in the z coordinate system. The
transformation matrix is the transpose of the unitary matrix from the Schur decomposition.

Tzy = QR

T

A new coordinate system is defined by z = Tzy y. Transforming the y coordinates to the z coordinates the
EOA becomes

(Tyz z)TI (Tyz z) = 1

Rearranging gives

zTTyz

T Tyz z = 1

Since Tyz has the special property of a unitary matrix that Tyz

T Tyz = I, the EOA is also a unit hypersphere in
the z coordinates.

zTI z = 1

Graphically, the axes are rotated so that one axis aligns with the growth point. This rotation is important so
that the ellipse can be expanded along the aligned axis.

yq

y1

y2

z2

z1

z1

z2

zq

Step 5: Grow the hypersphere into an ellipsoid that reaches the growth point

The half length of the axis, aligned with yq, is expanded by modifying the appropriate element of the
identity matrix. This is the same element that corresponds to the zero diagonal element of R. In this case,
the first diagonal element is shown as the appropriate selection. The half length of the ith axis of an
ellipsoid zT M z = c2 is (c2/i)

1/2 where i is the ith eigenvalue of M. In order to stretch the hypersphere into
an ellipsoid that includes zq, the half length is lengthened to the magnitude of zq. Since the magnitude of zq
is equal to that of yq, the matrix element is set to ||yq||2

-2.

























100

0

010

002

2







q

z

y

M

The grown EOA is zT Mz z = 1. Graphically, the circle is expanded into an ellipse that reaches the growth
point. This is a minimum area expansion of a symmetric ellipse.

z1

z2

zq

Step 6: Transform the expanded ellipsoid back to the original coordinate system

The grown EOA is transformed back to the original coordinate system with inverse transformation
matrices. The z coordinates are a function of the x coordinates according to

z = Tzy y = Tzy Tyx x

Substituting for z in the EOA equation and multiplying both sides of the equation by c2 reverts back to the x
coordinates and recovers the form of the original EOA. This is the minimum volume ellipsoid that includes
the original ellipsoid and the growth point.

xT Mx

expanded x = c2

with

Mx

expanded = c2 (Tyx
T Tzy

T Mz Tzy Tyx)

Graphically, when the ellipse is transformed back to the original coordinates, xq is on the ellipse perimeter.
In addition, the ellipse is a symmetric minimum area expansion that includes the growth point and the
original ellipse.

xq

x1

x2

ISAT Addition

When |finish – finishest| > tol the EOA should not be expanded. Instead a new record should be added to the
ISAT database. The core elements of an ISAT record are start, finish, sensitivity, and eoa. Each of these
elements is discussed in the subsequent sections.

ISAT record element: start

The vector start is the query point that is not eligible for retrieval or growth. This addition point becomes
the center of the symmetric EOA.

start = startquery

ISAT record element: finish

The vector finish comes from a function evaluation (finish = f(startquery)). There is no speed up with ISAT
growth or ISAT addition since a function evaluation is required. ISAT growth and addition are part of the
database building phase. The real advantage of ISAT occurs when retrievals greatly outnumber growths
and additions. The vector finish is stored to provide an estimate for retrievals. In addition, finish is used to
test a start vector to determine if it should be a growth point or addition point.

ISAT record element: sensitivity

Sensitivity information may also be optionally available from the function evaluation. The sensitivity
matrix reveals the amount that finish changes with a small perturbation in start.

start

finish
ysensitivit






When the sensitivity is not available from the function evaluation a statistical approximation can be made.
At least m, where m is the dimension of the vector start, function evaluations are required to calculate an
accurate sensitivity. The function evaluations can be obtained by sorting through a database of previous
results or by generating new results. When sorting through a database of previous results, care should be
taken to select records that are close to startquery otherwise the sensitivity may not be locally accurate.
When new results option is selected, m linearly independent vectors of start should be generated around
startquery. Performing a function evaluation m times for all of the start vectors can be a cpu time intensive
step.

Once the m function evaluations are completed, the sensitivity can be estimated through multivariate linear
regression. Each of the start and corresponding finish vectors are first subtracted from startquery and
finishquery.

 start = startquery – start

 finish = f(startquery) – finish = finishquery – finish

The linear regression model includes a residual vector, resid, as an indication of how much each record
deviates from the linear model. A large residual indicates that a perturbation of start does not fit in with the
linear model. This could indicate that the perturbation of start should be reduced to generate locally linear
solutions to finish.

 finish = sensitivity  start + resid

The vectors are assembled into matrices X and Y.

T

mstart

start

X




















 

1

T

mfinish

finish

Y




















 

1

An estimate of the sensitivity is calculated by standard matrix multiplications.

sensitivity = Y XT (X XT)-1

ISAT record element: eoa

An initial estimate of the EOA should be conservative for good error control. A conservative estimate is
derived by calculating an approximate EOA for a zero-order function estimation. ISAT normally uses a

first-order approximation for estimating finish. The higher order terms have been truncated from this
approximation.

 storedquery
stored

stored
storedest startstart

start

finish
finishfinish 






By assuming a zero-order function estimation, the first-order term becomes an approximation to the
truncation error.

storedest finishfinish 

  xAstartstart
start

finish
storedquery

stored

stored
trunc 






Recall that the equation for the EOA is given by xT Mx x = 2. Here, A is the sensitivity and x = startquery -
startstored. Substituting trunc for the error term in this equation gives an approximation for the zero-order
EOA.

xT Mx x = 2 = trunc

T
 trunc = (A x)T (A x) = xT (AT A) x

Mx

zero-order = AT A

Sometimes the zero-order approximation produces an EOA with a large principle axis because of a low
sensitivity in a particular direction. To remedy this problem, the singular values of A are adjusted to be at
least tol

2 / 2. To accomplish this, a singular value decomposition of A is performed to give U  VT. Any
diagonal elements below tol

2 / 2 are raised to that value. The corrected matrix is reconstructed from the
new diagonal matrix of singular values.

TVΣUA
~~

 

The corrected zero-order approximation of the EOA ensures that large principle axes are eliminated.


AAM Torderzero
x

~~~   

 
ISAT record placement in the binary tree 
 
Once all of the ISAT record elements are computed, the record is added to the binary tree.  The growth of 
the binary tree involves the creation of a new node.  In this case, the record added to the tree is record3.  
Supposing that record3 is closer to record2, the tree is grown on the right branch with the creation of node2.  
 

record1

record3record2

node1

node2record1 record2

node1

 
 
The new node2 is defined by the following equations. 
 

232 startstartv   










 


2
23

22

startstart
va T  

 
As a final step, the appropriate pointers are defined by lt pointing to record2 and gt pointing to record3. 
 
Example Problem 
 
A simple academic problem is considered to show the applicability of ISAT to storage and retrieval of 
optimal control.  A perfectly mixed, adiabatic CSTR has an exothermic reaction of compound A 
transformed into compound B. 
 

Tc

CA 
T

Cooling Jacket

Feed (compound A)

Product (A and B)

A B
Reaction

 
 
Temperature control of the reactor is a challenge due to the highly exothermic reaction (Hrxn = 50,000 
J/mol).  The temperature of the fluid in the jacket surrounding the CSTR is manipulated to control the 
temperature of the reactor fluid.  The dynamics of the reactor are described by a set of ODEs generated 
from a mole balance on A and an energy balance on the reactor. 
 

  







RT

E
CkCC

V

q

dt

dC
AAf

A exp0
 

   TT
CV

UA

RT

E
Ck

C

H
TT

V

q

dt

dT
c

p
A

p

rxn
f 




















exp0

 

 
 

Variable Description Nominal Value 
Tc Temperature of the cooling jacket fluid 300 K 
CA Concentration of A in the reactor 0.877 mol/m3 

T Temperature of the reactor fluid 325 K 
q Feed volumetric flow rate 100 m3/min 
V Reactor volume 100 m3

 Density of A and B 1000 kg/m3 

Cp Heat capacity of A and B 0.239 J/kg-K 
Hrxn Heat of reaction 5e4 J/mol 
E/R Activation energy divided by the 

universal gas constant 
8750 K 

k0 Frequency factor 7.2e10 1/min 
UA Overall heat transfer coefficient 

multiplied by the contact area 
5e4 J/min-K 

Cf Feed concentration of A 1 mol/m3

Tf Feed temperature 350 K 
 
At a constant cooling temperature of 305 K, the reactor temperature spikes continuously as the reactor goes 
through cycles of concentration buildup followed by moments of intense reaction. 
 



0 5 10 15
300

350

400

450

500

Time (min)

T
em

pe
ra

tu
re

 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time (min)

C
on

ce
nt

ra
tio

n 
of

 A
 (

m
ol

/m
3 )

 
 
The unsteady response of the reactor with a constant cooling jacket temperature suggests that unsteady 
control may be necessary when pushing the reactor to the stability limit.  A sequential direct single 
shooting approach to dynamic optimization is used as the control algorithm.  The N-step finite-horizon 
NMPC problem formulation is given by the following. 
 

dDuuxFxgivenxtsux kkkk
u

  ),,(,..),(min 10
 

 

 


 
N

k
kk

T
kkposetk

T
posetk

def

uuRuuxxQxxux
1

11intint )()()()(),(  

 

  





























280

320

1

1
0

10

00
dDRQ  

 
In this problem formulation,  (the cost function) is quadratic in x (states) and u (manipulated variables) 
and therefore strictly convex.  The source of nonlinearity comes from the model function F(xk,uk) that is 
solved by integrating the ODE model.  With a constant reactor temperature set point, the first optimal 
control step u0

* is a unique function of the current concentration and temperature of the reactor.  The 
optimal cooling jacket temperature (u0

*) to drive the reactor temperature to 320 K was calculated for reactor 
concentrations between 0 and 1 mol/m3 and reactor temperatures between 310 and 330 K.   
 



 
Even though the model is highly nonlinear, the optimal control surface is surprisingly linear with respect to 
the state initial conditions.  With clipping of the ISAT predicted value to meet the control constraints, only 
one record is required to store all of the optimal control solutions. 
 

Elements of the ISAT Record Alias Values 
initial conditions start 


















320

5.0

T

CA  

optimal control value finish    296* cT  

sensitivity sensitivity 
 1.42.6

**




















T

T

C

T c

A

c  

ellipsoid of accuracy eoa 










00

00
eoa  

   
Conclusions 
 
Slow computational cycle time can degrade the performance of controllers based on large, non-linear first 
principles models.  Storage and retrieval of the optimal control is desirable since the same control problem 
is repeatedly solved with different initial conditions.  ISAT is a storage and retrieval method to store the 
optimal control values as a function of the initial conditions.  These initial conditions include any adjustable 
parameter that influences the optimal control values.  ISAT stores the optimal control values in linear 
ellipsoid regions with a strategy to control the amount of permissible error.  Once the permissible error is 
exceeded, a new linear region is added to the ISAT database.  In this manner, a complete mapping of the 
optimal control surface can be obtained for future retrieval.  An example problem involving the 
temperature control of a CSTR demonstrates the capability of ISAT to compactly store the optimal control 
value as a function of the initial conditions.  In this case only one ISAT record was required to store all of 
the optimal control solutions. 


