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Introduction 
 
Another area of applicability for the ISAT algorithm lies in storage and retrieval of the optimal control.  
Real-time control presents many unique challenges.  When large, non-linear first principles models are 
used to predict optimal control, the controller computational cycle time can be undesirably slow.  Storage 
and retrieval of the optimal control is desirable since the same control problem is repeatedly solved with 
different initial conditions.  In this case the initial conditions are the values of the current states of the 
model (x0), the previous optimal control values (u-1

*), and any adjustable parameters in the model or 
objective function ().  If all of the state values are not exactly measured, state estimation must be used to 
estimate the remaining states.  For deterministic control algorithms, the same set of initial conditions will 
always produce the same set of outcomes.  In this case the outcomes are the optimal control values (u0

*).  In 
block diagram form, the predictive variables or current states enter the system and leave as a set of 
outcomes or optimal control values.  The block represents the control algorithm that determines the optimal 
control values.  There is no limitation on the type of control algorithm that is used to calculate the optimal 
control values, only that the same set of initial conditions produces the same set of optimal control values. 
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The block diagram is equivalent to the following equation form. 
 
u0

* = f(x0, u-1
*, ) 

 
Sensitivity information may also be available from the control algorithm.  The sensitivity matrix reveals the 
amount that the optimal control values change with a small perturbation in the initial conditions.  In storage 
and retrieval of the optimal control it is desirable for the estimated values of u0

* to be within some error 
tolerance (tol) of the calculated u0

*. 
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Costs associated with the storage and retrieval of optimal inputs include configuration costs, CPU time 
costs, and storage costs.  Overall, storage and retrieval of the optimal inputs may be desirable if the 
following conditions exist. 
 

 Retrieval time is much faster than the control algorithm 
 The control algorithm is deterministic 
 Real time constraints make the control algorithm infeasible 
 The CPU time to generate the database of optimal controls is small compared with retrieval 

savings 
 Storage costs are small 

 
Control algorithms based on large, non-linear first principles models meet these qualifications.  In situ 
adaptive tabulation (ISAT) provides the fast retrieval time, compact storage of optimal controls, and 
database generation in regions of the state space accessed by the controller. 
 
The ISAT Record 
 
The basic unit of the ISAT database is the record.  For optimal control storage and retrieval an ISAT record 
consists of the initial conditions, the optimal control values, a sensitivity matrix, and an ellipsoid of 



accuracy (EOA).  The initial conditions and optimal control values are from a previous optimal control 
evaluation.  If the control algorithm includes a sensitivity calculation, then the sensitivity matrix was 
created at the same instance.  If it does not include a sensitivity calculation then the sensitivity is 
statistically estimated.  Details about the statistical approximation of the sensitivity are given in a 
subsequent section.  Finally, the EOA is a matrix used to approximate the amount of error in the estimated 
optimal controls.  A distinguishing feature of ISAT over other storage and retrieval methods is that the 
EOA maintains automatic error control.  Details about the initialization and modification of the EOA are 
also given in a subsequent section.  The elements accessed and stem are additional elements for database 
administration.  Accessed records the number of times a record is used for retrieval.  Stem is a FORTRAN 
pointer to the binary tree. 
 

Elements of an ISAT Record Alias Data Type 
initial conditions start m  
optimal control values finish n  
sensitivity sensitivity nxm  
ellipsoid of accuracy eoa mxm  
accessed accessed integer 
stem stem pointer  

 
Searching the Records with Binary Trees 
 
When accessing the database, the only piece of information that is known is a query vector of initial 
conditions.  Ideally, the closest record would be obtained by minimizing a measure of closeness.  In this 
case the measure of closeness is the 1-norm given by the difference between the query vector and the stored 
start vector. 

 = |startquery – startstored|    
 
Searching the ISAT records sequentially would require O(N) operations to completely search the database 
and find the closest record.  A more efficient search structure is the binary tree.  A balanced binary tree 
requires O(log2(N)) operations for locating a record.  
 

Elements of a Binary Tree Node Data Type 
v m  
a   
lt pointer 
gt pointer
leaf (when pointing to a record) pointer 

 
Each node of a binary tree can either be a leaf or branch.  The leaves of the binary tree are individual 
records of the ISAT database.  A branch, on the other hand, points to two other nodes.  All branches divide 
until a leaf terminates the line. 
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In the above figure, node1 and node2 are the elements of the binary tree.  Each element consists of a cutting 
plane, defined by v and a, that describe a division between two records.  The node2 cutting plane is defined 
by the following two equations. 
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The pointers lt and gt direct the search to the appropriate successive node.  When   astartv query   the 

pointer lt (less than) is chosen.  Likewise, when    astartv query   the pointer gt (greater than) is selected.  

In this case both of the pointers are to leaves, and the search terminates by selecting one of the records. 
 
One of the drawbacks to binary tree searching is that the closest record is not always selected.  To 
overcome this deficiency, multiple binary trees are used to increase the probability of finding the closest 
record.  The records are equally divided among the binary trees to maintain a balance in search times.  
Once all of the binary trees are searched, a sequential search is performed to determine the closest record 
among the ones the binary trees selected.  By adjusting the number of binary trees, an effective compromise 
is reached between the accuracy of the sequential search and the speed of the binary tree search. 
 
Once a close record is located, ISAT performs one of three scenarios.  These scenarios include retrieval, 
growth, and addition.  Each of these is described in more detail below. 
 
ISAT Retrieval 
 
The automatic error control decides if retrieval is appropriate.  The error control is accomplished with the 
ellipsoid of accuracy (EOA) with a center being the stored start.  Another point, startquery is within the EOA 
if (startquery – startstored)

T eoa (startquery – startstored)   tol
2.  If the query point is within the EOA then finish 

is estimated with a linear approximation. 
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If (startquery – startstored)

T eoa (startquery – startstored) > tol
2 then the point startquery is outside of the EOA and 

a retrieval cannot be performed.  Even though the query point is not inside the EOA, the linear 
approximation may still be within the error tolerance for finish.  The next step of the algorithm is to check 
the actual error.  
 
ISAT Growth 
 
In order to check the actual error, an original function calculation must be performed (finish = f(start)).  If 
|finish – finishest| > tol the EOA should not be expanded.  Instead a new record should be added to the ISAT 
database.  The growth step should be skipped and the algorithm jumps ahead to the ISAT addition phase. 
 
If |finish – finishest|   tol the EOA can be expanded to include startquery.  This new region is a minimum 
volume ellipsoid that includes the new point, startquery, and the original EOA.  The growth algorithm 
involves six steps.  Each of the steps is described first in mathematical terms and subsequently with a two 
dimensional graphical example.   
 
Step 1: Definition of the EOA and growth point 
 
The EOA is defined by the following equation. 
 
(start – startstored)

T eoa (start – startstored) = tol
2 



 
To make the mathematics more compact and readable, the center point of the coordinates is aligned with 
the center of the ellipse. 
 
x = start – startstored 
 
xquery = startquery – startstored 

 
Mx = eoa 
 
c2 = tol

2 
 
With these substitutions, the EOA equation becomes xT Mx x = c2 and the growth point becomes xquery. 
 
A two dimension example includes a symmetric ellipse with a center point at startstored and a growth point 
at startquery. 
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The axes are shifted to align the center point of the ellipse with the origin.  The growth point startquery 
becomes xq after the translation and the EOA is defined in terms of x. 
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Step 2: Transform the coordinates to map the EOA to a unit hypersphere 
 
In this step a matrix Tyx is computed to map the original x-coordinates onto a new y-coordinate system that 
transforms the EOA into a unit hypersphere.  A unit hypersphere is simply a higher-dimensional 
generalization of the three-dimensional sphere with radius of one.  The matrix Tyx maps all points in x into 



the y coordinates with the relation y = Tyx x.  Likewise, the inverse of Tyx (or Txy) maps y into the x 
coordinates with x = Tyx

-1 y = Txy y.  The first subscript letter of T refers to the transformed coordinate 
system while the second subscript letter refers to the original coordinates. 
 
A Schur decomposition gives Mx = Qx x Qx

T with Qx being a unitary matrix (Qx
T = Qx

-1).  The square root 
of the diagonal matrix x is computed by taking the square root of the individual elements along the 
diagonal.  The transformation matrix becomes Tyx = c-1 x

1/2 Qx
T. 

 
It will now be shown that the coordinate transform does, in fact, transform the EOA to a unit hypersphere 
in the new coordinate system.  First, the inverse of Tyx is found to be 
 
Tyx

-1 = Txy = c Qx x
-1/2 

 
Making the substitution Txy y = x in the EOA equation xT Mx x = c2 gives 
 
(c Qx x

-1/2 y)T Mx  (c Qx x
-1/2 y) = c2 

 
Rearranging and substituting Mx = Qx x Qx

T gives 
 
c2 (yT x

-1/2 Qx
T) Qx x Qx

T
  (Qx x

-1/2 y) = c2 
 
The c2 term cancels and Qx

T
  Qx = I since Qx is a unitary matrix.  This leaves  

 
yTx

-1/2 x x
-1/2 y = 1 

 
Finally, since x

-1/2 x x
-1/2 = I the EOA in transformed space becomes a unit hypersphere. 

 
yTI y = 1 
 
Returning to the two dimensional example, the y-axes are shown relative to the x-axes.  In the y-axes 
reference frame, the ellipse becomes a unit circle centered at the origin. 
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Step 3: Map the growth point to the transformed coordinates 
 
The same transformation matrix Tyx is used to transform the growth point to the new coordinates. 
 
yq = Tyx xq 

 
The magnitude and normalized direction of the vector yq are important for subsequent calculations.  The 
magnitude is the 2-norm of the vector. 
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The normalized direction is simply the vector divided by the magnitude. 
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Graphically, the growth point is translated to the new y reference frame.  The magnitude is the distance 
between yq and the origin.  The normalized vector yn has a unit length and points in the direction of yq. 
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Step 4: Align one of the y-axes with the direction of the growth point 
 
One of the y-axes must be aligned with the direction of the growth point.  This is accomplished by 
computing an orthonormal basis to yn.  An orthonormal basis is produced by first subtracting the outer 
product of yn from the identity matrix of appropriate dimension. 
 
R = I - yn yn

T 

 
A Schur decomposition of R gives 
 
R = QR R QR

T 

 
The diagonal matrix R is equal to the identity matrix except that one of the diagonal elements is zero.  This 
diagonal element corresponds to the axis that is aligned with yq in the z coordinate system.  The 
transformation matrix is the transpose of the unitary matrix from the Schur decomposition. 
 
Tzy = QR

T 
 
A new coordinate system is defined by z = Tzy y.  Transforming the y coordinates to the z coordinates the 
EOA becomes 
 
(Tyz z)TI (Tyz z) = 1 
 
Rearranging gives 
 
zTTyz

T Tyz z = 1 
 
Since Tyz has the special property of a unitary matrix that Tyz

T Tyz = I, the EOA is also a unit hypersphere in 
the z coordinates. 



 
zTI  z = 1 
 
Graphically, the axes are rotated so that one axis aligns with the growth point.  This rotation is important so 
that the ellipse can be expanded along the aligned axis. 
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Step 5: Grow the hypersphere into an ellipsoid that reaches the growth point 
 
The half length of the axis, aligned with yq, is expanded by modifying the appropriate element of the 
identity matrix.  This is the same element that corresponds to the zero diagonal element of R.  In this case, 
the first diagonal element is shown as the appropriate selection.  The half length of the ith axis of an 
ellipsoid zT M z = c2 is (c2/i)

1/2 where i is the ith eigenvalue of M.  In order to stretch the hypersphere into 
an ellipsoid that includes zq, the half length is lengthened to the magnitude of zq.  Since the magnitude of zq 
is equal to that of yq, the matrix element is set to ||yq||2

-2. 
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The grown EOA is zT Mz z = 1.  Graphically, the circle is expanded into an ellipse that reaches the growth 
point.  This is a minimum area expansion of a symmetric ellipse. 
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Step 6: Transform the expanded ellipsoid back to the original coordinate system 



 
The grown EOA is transformed back to the original coordinate system with inverse transformation 
matrices.  The z coordinates are a function of the x coordinates according to 
 
z = Tzy y =  Tzy Tyx x 
 
Substituting for z in the EOA equation and multiplying both sides of the equation by c2 reverts back to the x 
coordinates and recovers the form of the original EOA.  This is the minimum volume ellipsoid that includes 
the original ellipsoid and the growth point. 
 
xT Mx

expanded x = c2 

 
with 
 
Mx

expanded = c2 (Tyx
T Tzy

T Mz Tzy Tyx) 
 
Graphically, when the ellipse is transformed back to the original coordinates, xq is on the ellipse perimeter.  
In addition, the ellipse is a symmetric minimum area expansion that includes the growth point and the 
original ellipse. 
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ISAT Addition 
 
When |finish – finishest| > tol the EOA should not be expanded.  Instead a new record should be added to the 
ISAT database.  The core elements of an ISAT record are start, finish, sensitivity, and eoa.  Each of these 
elements is discussed in the subsequent sections. 
 
ISAT record element: start 
 
The vector start is the query point that is not eligible for retrieval or growth.  This addition point becomes 
the center of the symmetric EOA. 
 
start = startquery 
 
ISAT record element: finish 
 
The vector finish comes from a function evaluation (finish = f(startquery)).  There is no speed up with ISAT 
growth or ISAT addition since a function evaluation is required.  ISAT growth and addition are part of the 
database building phase.  The real advantage of ISAT occurs when retrievals greatly outnumber growths 
and additions. The vector finish is stored to provide an estimate for retrievals.  In addition, finish is used to 
test a start vector to determine if it should be a growth point or addition point. 



 
ISAT record element: sensitivity 
 
Sensitivity information may also be optionally available from the function evaluation.  The sensitivity 
matrix reveals the amount that finish changes with a small perturbation in start. 
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When the sensitivity is not available from the function evaluation a statistical approximation can be made.  
At least m, where m is the dimension of the vector start, function evaluations are required to calculate an 
accurate sensitivity.  The function evaluations can be obtained by sorting through a database of previous 
results or by generating new results.  When sorting through a database of previous results, care should be 
taken to select records that are close to startquery otherwise the sensitivity may not be locally accurate.  
When new results option is selected, m linearly independent vectors of start should be generated around 
startquery.  Performing a function evaluation m times for all of the start vectors can be a cpu time intensive 
step. 
 
Once the m function evaluations are completed, the sensitivity can be estimated through multivariate linear 
regression.  Each of the start and corresponding finish vectors are first subtracted from startquery and 
finishquery. 
 
 start = startquery – start 
 
 finish = f(startquery) – finish  = finishquery – finish 
 
The linear regression model includes a residual vector, resid, as an indication of how much each record 
deviates from the linear model.  A large residual indicates that a perturbation of start does not fit in with the 
linear model.  This could indicate that the perturbation of start should be reduced to generate locally linear 
solutions to finish. 
 
 finish = sensitivity  start + resid 

 
The vectors are assembled into matrices X and Y. 
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An estimate of the sensitivity is calculated by standard matrix multiplications. 
 
sensitivity = Y XT (X XT)-1 

 
ISAT record element: eoa 
 
An initial estimate of the EOA should be conservative for good error control.  A conservative estimate is 
derived by calculating an approximate EOA for a zero-order function estimation.  ISAT normally uses a 



first-order approximation for estimating finish.  The higher order terms have been truncated from this 
approximation. 
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By assuming a zero-order function estimation, the first-order term becomes an approximation to the 
truncation error. 
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Recall that the equation for the EOA is given by xT Mx x = 2.  Here, A is the sensitivity and x = startquery - 
startstored.  Substituting trunc for the error term in this equation gives an approximation for the zero-order 
EOA. 
 
xT Mx x = 2 = trunc

T
 trunc = (A x)T (A x) = xT (AT A) x 

 
Mx

zero-order = AT A 
 
Sometimes the zero-order approximation produces an EOA with a large principle axis because of a low 
sensitivity in a particular direction.  To remedy this problem, the singular values of A are adjusted to be at 
least tol

2 / 2.  To accomplish this, a singular value decomposition of A is performed to give U  VT.  Any 
diagonal elements below tol

2 / 2 are raised to that value.  The corrected matrix is reconstructed from the 
new diagonal matrix of singular values. 
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ISAT record placement in the binary tree 
 
Once all of the ISAT record elements are computed, the record is added to the binary tree.  The growth of 
the binary tree involves the creation of a new node.  In this case, the record added to the tree is record3.  
Supposing that record3 is closer to record2, the tree is grown on the right branch with the creation of node2.  
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The new node2 is defined by the following equations. 
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As a final step, the appropriate pointers are defined by lt pointing to record2 and gt pointing to record3. 
 
Example Problem 
 
A simple academic problem is considered to show the applicability of ISAT to storage and retrieval of 
optimal control.  A perfectly mixed, adiabatic CSTR has an exothermic reaction of compound A 
transformed into compound B. 
 

Tc

CA 
T

Cooling Jacket

Feed (compound A)

Product (A and B)

A B
Reaction

 
 
Temperature control of the reactor is a challenge due to the highly exothermic reaction (Hrxn = 50,000 
J/mol).  The temperature of the fluid in the jacket surrounding the CSTR is manipulated to control the 
temperature of the reactor fluid.  The dynamics of the reactor are described by a set of ODEs generated 
from a mole balance on A and an energy balance on the reactor. 
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Variable Description Nominal Value 
Tc Temperature of the cooling jacket fluid 300 K 
CA Concentration of A in the reactor 0.877 mol/m3 

T Temperature of the reactor fluid 325 K 
q Feed volumetric flow rate 100 m3/min 
V Reactor volume 100 m3

 Density of A and B 1000 kg/m3 

Cp Heat capacity of A and B 0.239 J/kg-K 
Hrxn Heat of reaction 5e4 J/mol 
E/R Activation energy divided by the 

universal gas constant 
8750 K 

k0 Frequency factor 7.2e10 1/min 
UA Overall heat transfer coefficient 

multiplied by the contact area 
5e4 J/min-K 

Cf Feed concentration of A 1 mol/m3

Tf Feed temperature 350 K 
 
At a constant cooling temperature of 305 K, the reactor temperature spikes continuously as the reactor goes 
through cycles of concentration buildup followed by moments of intense reaction. 
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The unsteady response of the reactor with a constant cooling jacket temperature suggests that unsteady 
control may be necessary when pushing the reactor to the stability limit.  A sequential direct single 
shooting approach to dynamic optimization is used as the control algorithm.  The N-step finite-horizon 
NMPC problem formulation is given by the following. 
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In this problem formulation,  (the cost function) is quadratic in x (states) and u (manipulated variables) 
and therefore strictly convex.  The source of nonlinearity comes from the model function F(xk,uk) that is 
solved by integrating the ODE model.  With a constant reactor temperature set point, the first optimal 
control step u0

* is a unique function of the current concentration and temperature of the reactor.  The 
optimal cooling jacket temperature (u0

*) to drive the reactor temperature to 320 K was calculated for reactor 
concentrations between 0 and 1 mol/m3 and reactor temperatures between 310 and 330 K.   
 



 
Even though the model is highly nonlinear, the optimal control surface is surprisingly linear with respect to 
the state initial conditions.  With clipping of the ISAT predicted value to meet the control constraints, only 
one record is required to store all of the optimal control solutions. 
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Conclusions 
 
Slow computational cycle time can degrade the performance of controllers based on large, non-linear first 
principles models.  Storage and retrieval of the optimal control is desirable since the same control problem 
is repeatedly solved with different initial conditions.  ISAT is a storage and retrieval method to store the 
optimal control values as a function of the initial conditions.  These initial conditions include any adjustable 
parameter that influences the optimal control values.  ISAT stores the optimal control values in linear 
ellipsoid regions with a strategy to control the amount of permissible error.  Once the permissible error is 
exceeded, a new linear region is added to the ISAT database.  In this manner, a complete mapping of the 
optimal control surface can be obtained for future retrieval.  An example problem involving the 
temperature control of a CSTR demonstrates the capability of ISAT to compactly store the optimal control 
value as a function of the initial conditions.  In this case only one ISAT record was required to store all of 
the optimal control solutions. 


