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Abstract Measurement technology is advancing in the oil and gas industry. Factors
such as wireless transmitters, reduced cost of measurement technology, and increased
regulations that require active monitoring tend to increase the number of available
measurements. There is a clear opportunity to distill the recent flood of measure-
ments into relevant and actionable information. Common methods to do this include
a filtered bias update, Implicit Dynamic Feedback, Kalman Filtering, and Moving
Horizon Estimation. The purpose of these techniques is to validate measurements
and align imperfect mathematical models to the actual process. Additionally, they
can determine a best-estimate of the current state of the process and any potential
disturbances. These methods allow potential improvements in earlier detection of
disturbances, process equipment faults, and improved state estimates for optimiza-
tion and control.
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1 Introduction

Over the past 10 years many sectors of the oil and gas industry have seen a dramatic
increase in the number and quality of available measurements. To capture the benefits
of increased available measurements, the information must be distilled into relevant
and actionable information [53,31]. This paper reviews the current industrial practice
for estimation in the oil and gas refining, chemicals, exploration, and production sec-
tors and provides guidance on model accuracy requirements for satisfactory control
performance.

One opportunity is the increase in the available bandwidth to monitor the drilling
process with along string and down-hole measurements to monitor pressure, vibra-
tion, temperature, and orientation. New technology has been deployed to drastically
increase the data transmission rate to the Bottom Hole Assembly (BHA) or along the
drill string. Mud pulsing was previously the most common form of communication
in which 3-45 bits per second could be transmitted from the BHA to the surface mon-
itoring system via a series of pressure waves through the inner pipe. In addition to
providing a communication pathway, the pumped mud removes tailings and cools the
drill bit. As the depth of drilling increases, the attenuation of mud pulses increases
and mud pulse data is frequently unavailable. Recently, wire-in-pipe technology has
increased this rate by approximately 10,000 times (see Figure 1) [28,35].
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Fig. 1 Best available data transmission rates in drill strings [22,19]. The recent increase in throughput and
bi-directional communication has created a new opportunity for better utilizing the information. Without
interpretation, the increased data does not necessarily lead to increased understanding or value.

This increase in information allows two-way communication and presents op-
portunities for improved monitoring and control of directional, managed pressure,
and under-balanced drilling [48,49,36]. Similar improvements in measurement tech-
nologies are occurring in other parts of the oil and gas industry. This paper reviews
estimation techniques to garner the most useful data possible. These include a filtered
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bias update, Implicit Dynamic Feedback, Kalman Filtering, and Moving Horizon Es-
timation [3].

Moving Horizon Estimation (MHE) is an optimization approach that aligns pro-
cess models with available measurements to determine a best estimate of the current
state of the process and any potential disturbances. This presents the opportunity
for earlier detection of disturbances such as gas influx into the bore-hole, process
equipment faults, and improved state estimates for process automation. Explicit ap-
proaches commonly used in current practice, such as measured variable bias updat-
ing and Kalman filters, are compared to MHE approaches. Formerly, the downside to
MHE approaches was the increased computational load required to solve the prob-
lem and the difficulty to obtain optimal tuning. This paper discusses techniques to
overcome both of these obstacles to enable fast and reliable solutions that are tuned
to optimally utilize measurement information in model predictive applications.

1.1 Time-Scales of Process Monitoring

Measurements of slow or fast processes pose unique challenges. The slow fouling of
a heat exchanger [52] or the fast build-up of hydrates [15] are two examples of pro-
cesses with different process time constants. With fouling or plugging as one of the
top loss categories industry-wide, there are many opportunities for utilizing measure-
ment technology to monitor the short or long term effects of these disturbances [23].
In particular, deep-sea pipeline monitoring poses a challenge due to the remote en-
vironment, intermittent weather incidents, and gradual fatigue factors [6]. There is a
need for improved monitoring of existing and new projects to give insight into the
conditions that lead to failure. Analytical models utilize the data to monitor and con-
trol the operational integrity for flow assurance and riser integrity [9].

1.1.1 Frequency of Optimization Updates

Before discussing techniques for measurements, it is informative to review the corre-
sponding optimization applications. Optimization can occur after a model is synchro-
nized to available process measurements or inputs. Process optimization is used in the
oil and gas industry at various phases of the process lifecycle. As shown in Figure 2,
optimization of process design occurs once at the beginning of the lifecycle [12]. This
may include sizing of vessels, valves, etc. Optimization is also used to guide flow of
products with Supply Chain Optimization. This may occur on a weekly to monthly
basis [46,37]. Dynamic optimization is concerned with long time periods as well and
covers processes such as defouling, turn-around operations, and production schedul-
ing. On an hourly basis, Real-Time Optimization (RTO) with large-scale steady state
models [24] is used to determine new targets for plant-wide operations [8]. On the
second to minute time-scales, the steady-state conditions from the RTO application
are passed to Model Predictive Control (MPC) applications that dynamically drive
the process to new target values [55,20]. Recent work involves passing not only the
new target values but also the economics from the RTO applications to the MPC ap-
plications as well [43,10]. Ensemble methods increase the reliability of the control
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methods, much like redundant sensors or physical equipment increase the reliability
of operations by making the system less sensitive to a single failure [54].
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Fig. 2 Time-scales of optimization technologies applied in oil and gas industry.

1.1.2 Frequency of Model and Measurement Alignment

Just as optimization is applied at varying time-scales, measurement reconciliation is
performed at varying time-scales that are analogous to the optimization approaches
(see Figure 3).
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Fig. 3 Time-scales of measurement reconciliation applied in the oil and gas industry.

A sufficiently accurate model is required to optimize the design or control a pro-
cess. During the lifecycle of a facility, modeling is typically conducted during the
design and start-up of a new process. Data from other related processes are typi-
cally used to generate an initial process model which is then refined after the process
unit comes online. Supply chain reconciliation seeks to align a model to the avail-
able inventories, capacities, and constraints [25]. Dynamic data reconciliation is used
for large-scale dynamic models over long time horizons [27,29,1,56,38]. It is used
in conjunction with dynamic optimization to align the model parameters with dy-
namic data [50]. For RTO applications, a precursor step is to adjust fouling factors,
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tray efficiencies, and other parameters with parameter estimation [8]. This parameter
estimation may include single or multiple steady-state snapshots or the process mea-
surements. One restriction is that the process must be at steady-state for the param-
eter estimation. Finally, MHE is a multi-variable approach for optimal measurement
reconciliation in a dynamic model [42]. MHE applications are typically performed
on a time-scale faster than that of the process time constant of interest. It typically
executes in the range of seconds to minutes and can be used to provide state and
parameter updates to MPC applications.

1.2 Overview

This paper is a review of strategies to incorporate measurements in optimization and
monitoring applications. The mathematical models used in these applications have
unmeasured or unmodeled disturbances that cause the model predictions to drift from
actual values. This realignment of model and measurement can occur with a variety
of techniques ranging from simplified to complex. When the application provides
information in real-time, the results must be returned within a specified cycle time.
Details on efficient implementation of the techniques are also presented in this paper
with two motivating applications.

The focus of this paper is on measurement reconciliation for fast time processes
in the range of seconds to minutes. New and established techniques are discussed
that improve the information extraction from measurements to allow a fundamental
understanding of a process.

2 Numerical Solution with Dynamic Models

The approach taken in this paper uses a simultaneous solution method as opposed to
a sequential method to solve the model equations and objective function [45,47]. The
general model form consists of nonlinear differential and algebraic equations (DAEs)
in open equation format as shown in Equation 1.

0 = f
(

∂x
∂ t ,x,u,d

)
0 = g(y,x,u,d)
0≤ h(x,u,d)

(1)

The optimizer calculates future states in the horizon that are uniquely specified by
the initial state x0, a given sequence of inputs u = (u0,u1,. . . ,un−1), and a calculated
set of disturbances d = (d0,d1,. . . ,dn−1). In Figure 4, u and d are shown as discrete
values over the horizon. Variables calculated from differential and algebraic equa-
tions are continuous over the time horizon. The solution of the open equation system
is accomplished by converting the differential terms to algebraic equations with or-
thogonal collocation on finite elements [7], also known as direct transcription [11].
Order reduction may assist in understanding the most important states that dominate
the system dynamics [16], but, the full system can typically be solved directly.
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Fig. 4 Dynamic equations are discretized over a time horizon and solved simultaneously.

The solution of the estimation problem is solved with an implicit solution tech-
nique such as large-scale NLP solvers [27,2]. Other methods include the direct shoot-
ing approaches [21] or the explicit solution [40,17] for simplified problems. The dif-
ference between competing implicit solution techniques is how the state equations
are satisfied. Direct single or multiple shooting solves the state equations to a conver-
gence tolerance for every iteration. Using orthogonal collocation on finite elements,
the state equations are only satisfied at a converged solution. This generally leads
to a more efficient solution, especially for large-scale problems with many decision
variables [14].

3 Review of Current Strategies

Advanced Process Control (APC) has produced significant benefits in the oil and gas
industry, especially in refining and chemicals and more limited in exploration and
production [39,58]. Simpler control applications such as PID controllers are often
preferred in most single-input, single-output controllers. Measurement reconciliation
also ranges from simple to complex [51]. Simple techniques include filtered bias up-
dates or Implicit Dynamic Feedback (IDF). More complex strategies include Kalman
filtering and MHE. Each of these techniques are discussed below.

3.1 Filtered Bias Update

A predominant approach for measurement feedback into many of the popular APC
commercial packages continues to be a filtered bias update [39]. Adding an output
constant or integrating disturbance introduces insignificant computational overhead
and is easy to tune. In the case of a constant disturbance, an additive model bias b is
updated at iteration n with a filter α as shown in Equation 2

bn = α (zn− yn)+(1−α)bn−1, 0≤ α ≤ 1 (2)
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Table 1 Filtered Bias Update Trade-offs

Strengths of the Filtered Bias Update

Incorporated with many popular APC commercial packages
Single tuning parameter, α , that balances noise rejection with measurement tracking speed
Insignificant computational overhead

Drawbacks of the Filtered Bias Update

No capability to estimate parameters or unmeasured disturbances
No consideration of multivariable effects
Offset is present for integrating disturbances
Physical constraints may be violated

In this case, the difference between the measured state zn and the predicted model yn
is used to update the offset of a controlled variable initial condition. With a weak filter
with α near 1, almost all of the measurement value is accepted for updating the model
predicted value. Strong filters that accept less of the measured value may cause the
corresponding APC application to respond slowly to unmodeled disturbances. The
value of α is typically chosen to balance noise rejection with speed of reaction. The
strengths and drawbacks of the filtered bias update are summarized in Table 1.

In order for the bias to be updated, certain qualifications may also be set to de-
tect bad measurements. These qualifications are commonly upper and lower validity
limits as well as a rate of change validity limit. The validity limits are applied to ei-
ther the raw measurement or the raw bias. If any of the validity limits are violated,
the measurement is rejected and the bias value remains constant. Rate of change va-
lidity limits are frequently set too restrictively for process upset conditions such as
shutdown or startup, necessitating the need for operator intervention or automatic
application switching to manual control.

3.2 Implicit Dynamic Feedback

Implicit Dynamic Feedback (IDF) estimates unmeasured disturbances related to the
predictions of the measured state variables. IDFpairs a single measurement with a
single unmeasured disturbance variable. The analogy to control is the Single Input,
Single Output (SISO) controllers such as the ubiquitous PID controller. In the case
of IDF, the unmeasured disturbance variable is adjusted to align the model with a
process measurement. IDFconsists of two equations that can be solved simultane-
ously with the control problem over a preceding horizon interval. The IDFequations
are similar to a proportional integral (PI) controller. The IDF input is the difference
between the measured state z and model state y. This is similar to the PI controller
with a setpoint (SP = z) and process variable (PV = y). The output is an unmeasured
disturbance variable d of the model and is analogous to the PI controller as the ma-
nipulated variable. This disturbance variable is adjusted proportionally to the current
and integrated measurement errors, as shown in Equation 3a. However, Equation 3a
is not implemented in practice because of the integral term. To overcome this, the
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Fig. 5 IDFhorizon with simultaneous estimation and dynamic optimization.

Table 2 Implicit Dynamic Feedback Trade-offs

Strengths of IDF

Only two differential equations are required to implement IDF
Similar tuning to a PID controller
Two intuitive parameters trade-off speed versus stability

Drawbacks of IDF

Restricted to one-to-one pairing of a measurement to an unmeasured disturbance
Potential wind-up of the integral term
One step estimation horizon gives parameter values that may not project into the future for predictive applications (e.g. MPC)
Physical constraints cannot be enforced

integral term ’I’ is differentiated and the IDFequations are solved as two separate
expressions (see Equation 3b).

d = Kc (z− y)+
Kc

τI

T∫
t=0

(z− y)dt (3a)

d = Kc (z− y)+
Kc

τI
I,

∂ I
∂ t

= (z− y) (3b)

The tuning parameters for IDFare Kc and τI , the same as a PI controller. Using
a large value of τI and small Kc has the effect of heavily filtering the error term
for feedback. In this case the algorithm will take longer to match the plant. Using
these tuning parameters and knowing the quality and types of measurements enables
trading off of speed of tracking the process versus stability concerns. The advantages
and disadvantages of IDFare listed in Table 2.

IDFhas been successfully used for many years to provide on-line estimation mea-
surement biases, catalyst activities, kinetic parameter adjustment factors and heat
transfer coefficients. However, IDFis limited to a past horizon length of one, pairing
of only one measurement to one disturbance, and the inability to handle constraints.
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3.3 Kalman Filter

With a Kalman filter, sequential measurements are used to obtain the state of the sys-
tem with a linear model. To obtain this model, Jacobian information from Equation
1 are rearranged into the discrete state space form (see Equation 4) where A, B, C are
constant matrices, u is the manipulated variable vector, x is the state vector, y is the
vector of model outputs. In this case, the subscript n refers to the time step at which
the model is computed.

xn+1 = Axn +Bun (4a)

yn =Cxn (4b)

The horizon of measurements is combined mathematically to generate the sys-
tem’s state at the current time with the Kalman filter as shown in Equation 5. The
Kalman filter is divided into 4 subsets of equations. In Equation 5a the states x̄ and co-
variance P̄ are predicted in the absence of new measurement information. In the next
step (see Equation 5b), the predictions are compared to the measured values. The in-
novation δ̃ and innovation covariance S are the comparison of the model predictions
to the measured reality. The innovation covariance S and covariance prediction P̄ are
then used to calculate the Kalman gain K in Equation 5c. As a final step, the new state
and covariance estimates are computed in Equation 5d. The Kalman gain relates the
fraction of the innovation δ̃ and state prediction x̄ that are used to construct the new
state estimate xn. Similarly, the Kalman gain relates the predicted covariance predic-
tion to the new covariance prediction. Note that the covariance update is independent
of the measurement values zn and the time evolution is only a function of constant
matrices.

x̄ = Axn−1 +Bun
P̄ = APn−1AT +Q (5a)

δ̃ = zn−Cx̄
S =CP̄CT +R

(5b)

K = P̄CT S−1 (5c)

xn = x̄+Kδ̃

Pn = (I−KC) P̄
(5d)

The Kalman filter is optimal for unconstrained, linear systems subject to known
normally distributed state and measurement noise [13]. The Extended Kalman Filter
(EKF) or Unscented Kalman Filter (UKF) are an attempt to extend these techniques
to nonlinear systems. A summary of the trade-offs related to the Kalman filter are
listed in Table 3.

EKF is able to predict the nonlinear state evolution by re-linearizing the model
at each time instant. Some effort has been made to incorporate constraints with EKF
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Table 3 Kalman Filter Trade-offs

Strengths of Kalman Filtering

Optimal estimator for linear systems without constraints
Solution approach is accomplished through matrix multiplications
Covariance estimate provides confidence interval for state estimate

Drawbacks of Kalman Filtering

Restricted to linearized model state updates
Physical constraints cannot be enforced
Can only estimate model states, not model parameters
Cannot utilize infrequent measurements or those with variable time delay
Occasional bad data may result in inaccurate state estimates

although the state augmentation strategy for parameter estimation is still a limita-
tion [57]. Kalman based techniques suffer from a number of limitations. For nonlin-
ear or constrained systems, optimization techniques such as MHE are better suited to
providing an estimate of the true system state.

3.4 Squared Error MHE

MHE outperforms the Extended Kalman Filter (EKF) in the presence of constraints [13].
Recent advances in computational capability and methods have improved the appli-
cation of MHE to fast [26] and large-scale industrial systems [41]. Just as APC has
demonstrated significant benefits by considering multivariate relationships [4], MHE
is better able to utilize measurements and deliver a more accurate description of the
current state of the process and disturbances [44].

By using an optimization framework, the model and measurement values are
aligned and present detailed information about the system dynamics. This optimiza-
tion framework uses a receding horizon of process measurements. MHE attempts
to optimally estimate the true state of the dynamic system, given a real-time stream
of measurements and a model of the physical process. Offset free estimation and
control is achieved by adding as many disturbance variables as the number of mea-
surements [30,34,33]. The MHE objective function is posed as a squared error mini-
mization to reconcile the model with measured values. The trade-offs for MHE with
a squared objective function are summarized in Table 4.

In a MHE form amenable to real-time solution, the unmeasured disturbance vari-
ables d are adjusted to match the continuous model to discrete measured values [41].

min
d

Φ =
∥∥∥ z−y

y

∥∥∥2

Qy
+
∥∥d− d̂

∥∥2
Qd

s.t. 0 = f (ẋ,x,u,d)
0 = g(z,x,u,d)
0≤ h(x,u,d)

(6)

In Equation 6, Φ is the objective function value, z is a vector of measurements at all
nodes in the horizon (z0,. . . ,zn)T , y is a vector of model values at the sampling times
(y0,. . . ,yn)T , Qy is the inverse of the measurement error covariance, f is a vector
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Table 4 Trade-offs for MHE with a Squared Error Objective

Strengths of MHE (Squared Error)

Least squares is an intuitive objective that is simple to implement
Model constraints can be added to model to improve the estimation accuracy
Optimal tuning has been established [32]

Drawbacks of MHE (Squared Error)

Poor rejection of outliers or infrequent bad values common with real data
Difficult to obtain good estimates of P0, Q, and R
Dense tuning matrices impractical for large-scale systems
Iterative optimization solution that may fail to converge in the required cycle time

of model equation residuals, x represents the model states, u is the vector of model
inputs, d is the vector of model parameters or unmeasured disturbances, d̂ is the
vector of prior unmeasured disturbances, Qd is a matrix for the weight on changes
of disturbance variables, g is an output function, and h is an inequality constraint
function.

A graphical representation of the MHE squared error reconciliation is shown in
Figure 6. The objective for this measured value is a quadratic function with the min-
imum target between the previous model and measured values.
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Fig. 6 Graphical representation of the squared error for a single measurement in the horizon.
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The full estimation problem allows violation of the state constraints [44]. State
equality constraints are relaxed and violations are penalized in the objective func-
tion. Without d the optimization problem found in Equation 6 does not allow state
transition error because the state equations are exactly satisfied at a converged solu-
tion [5]. This can be overcome by creating a discontinuous state y and disturbance d
with an additional equation y = x+d for each state subject to state noise. This allows
discontinuities in the y states while preserving the continuity of the x states. How-
ever, allowing state noise is undesirable when employing first principles models. For
material and energy balances, allowing state noise reduces the predictive potential
of the model. Instead, the only decision variables are selected as x0 and d instead of
(x0,. . . ,xn, p) as in the full MHE problem.

As the estimation horizon increases, the sensitivity of the solution at xn to x0
decreases. With a first-order approximation, the value of the final state xn sensitivity
decreases by e−

t
τ where τ is the approximate process time constant. For sufficiently

long time horizons, it is then only d that has a significant effect on the current model
state. Thus, it is generally unnecessary to estimate the initial states x0 as degrees of
freedom in the optimization problem.

3.5 `1-Norm MHE

A new form of MHE has been used in industry for a number of years that overcomes
some of the limitations of the squared error MHE approach [18]. The objective func-
tion in Equation 7 is implemented in a form that is amenable to numerical solutions
of large-scale models. The use of an absolute value function is avoided by instead
solving inequality constraints with slack variables. The slack variables and inequal-
ities create an objective function that is smooth and continuously differentiable as a
requirement for large-scale Nonlinear Programming (NLP) solvers.

min
d

Φ = wT
m (eU + eL)+wT

p (cU + cL)

s.t. 0 = f (ẋ,x,u, p,d)
0 = g(y,x,u,d)
0≤ h(x,u,d)

eU ≥ y− yU
eL ≥ yL− y
cU ≥ y− ŷ
cL ≥ ŷ− y
eU ,eL,cU ,cL ≥ 0

(7)

Here, Φ is the objective function value, z is a vector of measurements at all nodes in
the horizon (z0,. . . ,zn)T , y is a vector of model values at the sampling times (y0,. . . ,yn)T ,
ŷ is a vector of previous model values at the sampling times (ŷ0,. . . ,ŷn)T , wm is a vec-
tor of weights on the model values outside a measurement dead-band, wp is a vector
of weights to penalize deviation from the prior solution, f is a vector of model equa-
tion residuals, x represents the model states, u is the vector of model inputs, d is the
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vector of model parameters or unmeasured disturbances, g is an output function, h is
an inequality constraint function, eU and eL are slack variables to penalize model val-
ues above and below the measurement dead-band, and cU and cL are slack variables
to penalize model value changes above and below the previous values.

A graphical representation of the MHE `1-norm reconciliation is shown in Figure
7. Parameters are only adjusted if the measured value is more than the half of the
dead-band away from the previous model value. Otherwise, the model is not adjusted
because the measurement lies within the region of a flat objective function. In the
case of Figure 7, the optimal solution lies at the edge of the measurement dead-band.
This will always be the case for measurements that are more than half the dead-band
distance from the prior model value.
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Fig. 7 Graphical representation of the MHE `1-norm for a single measurement in the horizon.

The MHE `1-norm objective has a number of advantages and challenges com-
pared with other methods such as the Kalman filter or the MHE squared error. The
next section details the trade-offs between the different techniques.

3.5.1 MHE `1-Norm Advantages

An important MHE `1-norm advantage is less sensitivity to data outliers, noise, and
measurement drift [18]. This is important when dealing with industrial data where
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Table 5 Trade-offs for MHE with an `1-norm Objective

Strengths of MHE (`1-norm)

Low sensitivity to data occasional bad data
Linear objective function and sparse tuning techniques improve scaling to large-scale systems
Explicit measurement dead-band for improved noise rejection

Drawbacks of MHE (`1-norm)

Additional equality and inequality constraints and variables, leading to increased computation time
No optimal theory on best tuning parameters
Requires an iterative solver to reliably converge in a specified cycle time

instruments drift or fail. Gross-error detection can eliminate a majority of bad data.
With MHE `1-norm, any data that isn’t filtered by gross-error detection has less im-
pact on the parameter estimation and allows improved reliability of the solution. A
squared error objective is more sensitive and disproportionately weights values that
are far from the model predictions.

An additional advantage of the MHE `1-norm is that only linear equations are
added to the objective function. Without additional nonlinear expressions, the solu-
tion is generally easier for numerical solvers to find an optimal solution. In summary,
the MHE `1-norm optimization problem with measurement noise dead-band has a
number of advantages over the MHE squared error form of the objective function.
The trade-offs for MHE with an `1-norm objective function are summarized in Table
5.

3.5.2 MHE `1-Norm Challenges

The challenges with the MHE `1-norm optimization problem include increased com-
plexity and size. Although the MHE `1-norm uses only linear expressions in for-
mulating an objective function, there are additional slack variables and inequality
expressions, which increases the size of the optimization problem.

Many of the MHE `1-norm challenges are due to the increased complexity in the
solution techniques. Commercial and academic software has been developed to meet
this challenge. The software used to generate the results in this paper is the APMoni-
tor Modeling Language [18]. Filtered bias updating, Kalman filtering, IDF, and MHE
are implemented in this web-services platform through MATLAB or Python.

4 Managed Pressure Drilling Flow Estimation

As an example application, consider the problem of determining the flow of mud
through the return annulus of a drilling pipe. In the return line, there is typically a
flow paddle that rotates proportional to the flow rate. This flow paddle measurement
is not very accurate so additional information such as pit tank level can be used to
infer the return flow. Additionally, in Managed Pressure Drilling (MPD), a choke
valve is adjusted to maintain well pressure as shown in Figure 8.
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Fig. 8 Schematic of Managed Pressure Drilling.

The flow, pressure, and level measurements have noise, creating random fluctua-
tions around the true values. The flow through the choke valve can also be estimated
from the valve position and differential pressure across the valve (see Equation 8).

τ
∂q
∂ t

+q =Cv f (l)

√(
∆Pv

gs

)
(8)

For this example, the installed characteristic of the choke valve is assumed to be
linear ( f (l) = l) and the valve is fast acting (τ = 1 sec). Both the state and measure-
ment noise are normally distributed with mean values of zero (see Figure 9). State
noise has a standard deviation σq = 0.1 and measurement noise has a standard devi-
ation σr = 1.0.

The Kalman filter updates the state estimates by operating in two phases: predict
and update. In the prediction phase, the calculated flow is modified according to the
equation that relates flow q to the lift function f (l) and the differential pressure,
∆Pv. For Kalman filters, the equation must first be linearized. With Extended Kalman
filters, the nonlinear equations are re-linearized about the current state estimate. The
other parameters, including τ , Cv, and gs, are constants for a particular valve and
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Fig. 9 Noise distributions of state and measurement noise. These distributions are used to optimally tune
the estimators.

fluid. For systems with multiple measurements, the covariance is used to tune the
Kalman filter. In this case with one measurement, the variance is used instead. This
information is essential for optimizing the update phase; yet state and measurement
covariance information can be difficult to obtain. The results of the Kalman filter with
the upper and lower 95% confidence intervals are shown in Figure 10.

In the update phase, a measurement of the flow is taken from the transmitter.
Because of the noise, this measurement has some uncertainty. The calculated vari-
ance from the predict phase determines how much the new measurement affects the
updated prediction. If the model prediction drifts away from the real flow, the mea-
surements from the flow transmitter should pull the flow estimate back towards the
real flow but not disturb it to the point of introducing all of the noise from the mea-
surement.

This model update could also employ other measurements such as mud pump
speed, choke pressure, or supply tank level to infer the flow rate across the valve.
For this simple example, only the valve position and flow measurements are used
to predict the flow with a linear, first-order correlation. Each of the five techniques
discussed in this paper are compared over the same data set as shown in Figure 11.

The filtered bias update and IDFhave been tuned to give equivalent responses.
After an initialization period, they also align exactly with the Kalman filter results
because the Kalman gain becomes constant after the estimate of the covariance matrix
Pn also converges to a constant value. The first four methods including filtered bias
update, IDF, the Kalman filter, and the squared error MHE (with one horizon step) can
be tuned to give equivalent results for this single measurement case. Table 6 shows
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Fig. 10 The Kalman filter uses two phases, predict and update, to obtain an estimate of the true flow.
During the predict phase, the model calculates an updated flow due to the latest reported model inputs.
During the update phase, part of the flow measurement is used to update the state, inversely proportional
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Fig. 11 Actual, measured, and estimated flows for filtered bias update, IDF, the Kalman filter, squared
error MHE, and `1-norm MHE.

the tuning values that make each of the estimators equivalent for this example case
and in general.

In addition to signal loss, real data often contains bad data such as outliers, drift,
and noise. Outliers do not typically fit a standard normal distribution but are instead
drastic deviations from normal variation in the data. Outlier detection and removal
is typically accomplished by setting rate of change limits, upper validity limits, and
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Table 6 Estimator Configuration Values

Estimation Method Example Tuning Equivalent Tuning for One Measurement

Filtered Bias Update α = 0.0951 Set α equal to the Kalman Gain K
IDF Kc = 0.0951e−10,τI = 1e−10 Set Kc

τI
equal to the Kalman Gain as Kc→ 0

Kalman Filter P0 = 0.5,Q = 0.01,R = 1.0 Set P0 =P∞ for equivalency to other methods
during initialization

Squared Error MHE Horizon = 50, Qy = 100, Qd = 10 For linear systems with quadratic objective
MHE reduces to Kalman Filter [42]

`1-Norm MHE Horizon = 50 The `1-norm MHE does not have equivalent
tuning correlations to the other methods

lower validity limits. This gross error detection eliminates many, but not all, of the
data outliers. The effect of data outliers is shown in Figure 12 with the introduction
of an outlier at cycle 50, drift starting at cycle 100, and increased noise starting at
cycle 150.
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Fig. 12 Outlier effect on the filtered bias update, IDF, the Kalman filter, squared error MHE, and `1-norm
MHE. The `1-norm MHE is least sensitive to brief periods of bad data.

The results with bad data with an outlier, drift, and noise clearly indicate that all
state estimates, except the `1-norm MHE, are significantly affected by the bad data
points. The insensitivity to bad data is a key advantage of the `1-norm MHE approach.

5 Estimation for Control Relevant Models

One important function of estimation methods is to improve the predictive qualities
of a model prior to forward prediction methods such as MPC. Process gains and
time constants are often used to characterize the relationship between a manipulated
variable (MV) and associated controlled variable (CV) in control applications. An is-
sue that occasionally arises in linear MPC applications is that the process conditions
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change and the model is no longer sufficiently predictive for satisfactory control per-
formance. A simplified MPC application is developed in this section to test the limits
of process/model mismatch in quantifying controller performance with varying com-
binations of process gains and dynamics.

In this MPC application, a first order linear process (τdx/dt =−x+K u) with a
gain (K) of 1.0 and process time constant (τ) of 1.0 sec is controlled. The control
horizon is set to 4.0 sec with a time discretization of 0.5 sec. The MPC controller
minimizes the deviation of the CV from a target value of 5.0, starting from an initial
condition of 0.0. The model gain and time constant are changed to incorrect values
and the MPC performance is simulated over 20 control cycles. With a 0.5 sec cycle
time, there is a total of 10 sec simulated control time. The absolute value of the
deviation from the target set point (5.0) is recorded for each combination of K and
τ values with a range of mismatch of 0.2 to 5.0 for each. Figures 13 and 14 show
the control performance over the range of mismatched models applied in the MPC
controller.
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Fig. 13 Contour plot of the control objective with varying mismatch of the process gain and time constant.

If the model is used in a model predictive controller, a model gain that is lower
than the actual process gain may cause controller oscillation and instability. A model
gain that is higher than the actual process may cause sluggish control. Likewise, a
model response (time constant) that is slower (higher time constant) than the actual
process time constant tends to cause controller instability. On the other hand, a model
response (time constant) that is faster (lower time constant) than the actual process
tends to cause sluggish controller response. The combination of a low gain and high
time constant leads to the highest objective function (poor performance and instabil-
ity). On the other hand, a high gain and low time constant lead to sluggish control,
but the controller is generally able to asymptotically drive the process to the correct
set point.
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Fig. 14 Mismatch with too low model gain and too high time constant favor controller instability.

6 Concluding Remarks

There is a recent increase in data availability in the oil and gas industry due to ad-
vances in technology, improved networking, and regulatory requirements that require
additional monitoring. When measurements are viewed individually they provide in-
sight into the true state of the process, but do not offer a holistic view of the process.
When combined with a process model, the data provides an increased understand-
ing of unmeasured disturbances or unmeasured states. This alignment of measure-
ments and model predictions is accomplished with a variety of techniques ranging
from a simple bias update to large-scale optimization approaches. Two optimization
approaches discussed in this paper include MHE with `1-norm and squared errors.
Efficient solution of the MHE approach is important for solving large-scale prob-
lems of industrial significance. Simultaneous solution of the objective function and
model equations is an efficient approach to solving large-scale models for data rec-
onciliation. In many cases, the objective in state and parameter estimation is to ob-
tain a model that is sufficiently accurate for predictive control applications. Model
mismatch with a gain that is too low or time constant that is too high may lead to
unsatisfactory control performance.
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