Continuous Dynamic First Principles Models

J. D. Hedengren T. F. Edgar The University of Texas at Austin

Introduction

- Objectives:
 - Test ISAT with a variety of nonlinear models.
 - Create a forum to share chemical and mechanical first principles models.
- Please contribute your well documented model by e-mailing: john@che.utexas.edu

Summary

<u>ID</u>	Description	<u>Type</u>	<u>Inputs:</u> <u>States</u>
1	CSTR with Jacket Dynamics (A->B)	ODE	1:2
3	CSTR with Jacket Dynamics (A->B->C)	ODE	1:3
4	2 CSTRs in Series (A->B)	ODE	2:6
5	2 CSTRs in Series with Jacket Dyn (A->B)	ODE	1:4
6	Inverted Pendulum	ODE	1:2
8	Distillation Column (Constant Relative Volatility)	ODE	1:32
11	Cruise Control	ODE	1:1
12	Cruise Control (with Disturbance)	ODE	1:1
13	Distillation Column with Wilson Eq and P _{sat} /P constant	ODE	1:32
14	Distillation Column with Wilson Equation	DAE	1:64
18	Distillation Column with Enthalpy Equation	DAE	2:125

Model 1: CSTR

Henson, M.A. and Seborg, D.E., Feedback Linearizing Control, Chap. 4 of Nonlinear Process Control, Edited by Hensen, M.A. and Seborg, D.E., Prentice Hall (1997)

Model 3: CSTR

M. J. Tenny and J. B. Rawlings. Closed-loop behavior of nonlinear model predictive control. Texas-Wisconsin Modeling and Control Consortium Report TWMCC-2002-03.

Model 4: Dual CSTR

Hahn, J. and T.F. Edgar, An improved method for nonlinear model reduction using balancing of empirical gramians, Computers and Chemical Engineering, 26, pp. 1379-1397, (2002)

Model 5: Dual CSTR

Henson, M.A. and Seborg, D.E., Feedback Linearizing Control, Chap. 4 of Nonlinear Process Control, Edited by Hensen, M.A. and Seborg, D.E., Prentice Hall (1997)

Model 6: Inverted Pendulum

John Hauser and Hinke Osinga. On the geometry of optimal control: the inverted pendulum example. In Proceedings of the American Control Conference, pages 1721-1726, Washington, DC, 2001.

Model 8: Binary Distillation

Hahn, J. and T.F. Edgar, An improved method for nonlinear model reduction using balancing of empirical gramians, Computers and Chemical Engineering, 26, pp. 1379-1397, (2002)

Model 11: Cruise Control

Source: http://www.engin.umich.edu/group/ctm/examples/cruise/cc.html Date: July 2003

Model 12: Cruise Control

Created by: John D. Hedengren Date: July 2003

Model 13: Binary Distillation

Created by: John D. Hedengren Date: July 2003

Model 14: Binary Distillation

Created by: John D. Hedengren Date: July 2003

Model 18: Binary Distillation

Diehl, M., "Real-Time Optimization for Large Scale Nonlinear Processes", PhD thesis, University of Heidelberg, 2001.

M. Diehl, I. Uslu, S. Schwarzkopf, F. Allgöwer, H.G. Bock, R. Findeisen, E.D. Gilles, A. Kienle, J.P. Schlöder, and E. Stein: Real-Time Optimization for Large Scale Processes: Nonlinear Model Predictive Control of a High Purity Distillation Column In Groetschel, Krumke, Rambau (eds.): Online Optimization of Large Scale Systems: State of the Art, Springer, 2001.