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Abstract

This work enables accelerated fluid recovery in oil and gas reservoirs by auto-
matically controlling fluid height and bottomhole pressure in wells. Several
literature studies show significant increase in recovered oil by determining a
target bottomhole pressure but rarely consider how to control to that value.
This work enables those benefits by maintaining bottomhole pressure or fluid
height. Moving Horizon Estimation (MHE) determines uncertain well param-
eters using only common surface measurements. A Model Predictive Con-
troller (MPC) adjusts the stroking speed of a sucker rod pump to maintain
fluid height. Pump boundary conditions are simulated with Mathematical
Programs with Complementarity Constraints (MPCCs) and a nonlinear pro-
gramming solver finds a solution in near real-time. A combined rod string,
well, and reservoir model simulate dynamic well conditions, and are formu-
lated for simultaneous optimization by large-scale solvers. MPC increases
cumulative oil production vs. conventional pump off control by maintaining
an optimal fluid level height.

Keywords: sucker rod pump, model predictive control, optimization,
reservoir modeling

1. Introduction

Sucker-rod pumping is a widely used artificial lift method for extraction
of oil and gas resources. In sucker-rod pumping, a pump at the bottom of the
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well is actuated by the linear up and down stroking of a surface unit via a rod
string. Sucker-rod artificial lift systems are often over-sized after partially
depleting the reservoir pressure. Pumping a well at a fluid production rate
that exceeds the reservoir’s maximum fluid influx leads to a condition called
pump-off. Pump-off leads to operating inefficiency and equipment damage.
Equipment stress occurs when the pump plunger strikes liquid standing in the
pump barrel during the down stroke. This condition is called fluid pound. To
prevent both inefficient fluid production and equipment damage many meth-
ods have been developed to detect pump-off and control the surface unit.
With few exceptions these methods are reactive controllers that either con-
trol motor speed or simply shutdown the unit for some predetermined time
interval. This work proposes an advanced control system that utilizes a novel
combination of sucker rod pump, well, and reservoir models. The system as
a whole has both slow and fast dynamics, similar to traditional chemical
processes. The mass balance of fluid in the annular space between the well
casing and production tubing has relatively fast dynamics. Changes to reser-
voir conditions and reservoir fluid influx, typically, are much slower. Pump
boundary conditions are formulated as Mathematical Programs with Com-
plementarity Constraints (MPCCs) to allow for simulation and optimization
using simultaneous methods with large-scale solvers. Moving horizon esti-
mation estimates uncertain parameters for control. An advanced controller
reduces equipment damage and maximizes fluid production.

1.1. Rod Pump Controller

Westerman [62] summarizes many traditional methods for detecting pump-
off using a variety of sensors to measure fluid level, flow, vibration, motor
current, and rod loading. Gibbs et al. [23] presents several methods for
detecting pump-off conditions using pump dynamometer cards. It is rec-
ommended that several methods be used simultaneously to assure proper
controller response. Pattern recognition is also used to diagnose pumping
conditions for control [54, 38, 50, 64]. Pattern recognition schemes require
training with data sets.

In addition to traditional pump-off controllers, recent work uses a variety
of methods to control/diagnose pumping performance with many reported
benefits. Ghareeb et al. [21] show significant production increases by using
an automatic pump controller that utilizes a downhole pressure sensing de-
vice and automatic control algorithm. Ahmed and Nabil [1] show that smart
rod-pump controllers can be used to accurately infer production rates and
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calculate bottomhole pressures in close agreement with traditional measure-
ment techniques. Ehimeakhe [18] develops an algorithm comprised of four
methods for accurately determining pump fillage from pump dynamometer
cards to allow for control of pumping units. A case study shows a propri-
etary algorithm that controls stroking speed to minimize equipment damage
and maximize production in horizontal well applications where slugging is
common [19]. Other methods optimize the production from unconventional
oil and gas wells using sucker-rod lift [44, 41]. Sanchez et al. [52] show signif-
icant benefits of automatically controlling rod-pump systems. These benefits
include energy savings, optimized production, expense reduction, and better
manpower utilization.

Often, producing oil fields are equipped with supervisory control and
data acquisition systems (SCADA) that collect data from individual wells
to a central database. These systems are often referred to as expert sys-
tems because the computer program diagnoses, recommends, and in some
cases, automatically implements the course of action that an expert in the
field of artificial lift would recommend [13, 38, 58, 57, 24, 40]. The goal of
these systems is often to do some or all of the following: recommend optimal
system design (such as equipment selection and sizing), implement pump-off
controls, and finally, predict equipment failure and maintenance resource al-
location. Expert systems are frequently a rule-based chain of logic leading to
a recommended course of action [13]. Artificial neural networks (ANN) and
genetic algorithms (GA) are also used in expert systems to diagnose pumping
conditions and determine pump configurations, respectively [38]. SCADA
systems include closed loop adjustments of manipulated variables, such as
strokes per minute (SPM) and injection rates. They also compute downhole
dynamometer cards to diagnose pumping conditions and recommend system
design [58]. Vazquez and Fernandes [57] perform computer optimization of a
system model using the wave equation to determine optimal SPM. Optimiza-
tion of motor rotations per minute throughout a single pump stroke is also
performed with the objective to maximize production subject to equipment
maximum loading constraints [45]. Application of automatic stroking speed
controllers is shown to maximize production [48].

The literature demonstrates that implementing automatic control systems
for sucker rod pumps is beneficial to production. Despite the development
of many first principles models for sucker rod pumping systems, they are
rarely used directly in rod pump controllers. The two applications the au-
thors are aware of are the following: 1) Vazquez and Fernandes [57] use a
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wave equation simulation to optimally set surface unit SPM , and 2) Pa lka
and Czyż [45] use a similar wave equation simulation to optimally determine
motor RPM throughout a single stroke to maximize SPM subject to max-
imum loading constraints. Both of these works use shooting methods with
sequential simulation. This work will expand the application of first princi-
ples modeling in rod pumping controllers by combining rod string, well, and
reservoir models, and by posing them in a form suitable for simultaneous
simulation and optimization by large-scale solvers.

1.2. Sucker Rod Pump and Well Modeling

To enable predictive analysis of rod pumping systems Gibbs [22], sim-
ulates the behavior of the rod string systems using the 1-D wave equation
with viscous damping. Surface unit kinematics and proposed pump boundary
conditions allow the simulation of various pumping conditions. The model is
solved using a finite difference solution method. Doty and Schmidt [16] im-
prove the simulation of sucker rod systems by including the effects of liquid
inertia and viscosity which they show to have a significant effect on pump
performance. Wang and Liu [61] show improved well modeling by including
viscous friction, tubing friction, liquid inertia, and plunger barrel friction.
This study will build on the model proposed by Gibbs [22]. Influx of reser-
voir fluids and height of fluid in the well annulus will be dynamically consid-
ered to simulate the changing production conditions over time. A summary
of the dynamics considered in this study is shown in Figure 1. Kinematic
equations describe the motion of the sucker rod pump at the surface as a
function of motor torque input. A wave equation describes the force and
position propagation through the sucker rod string. A material balance on
the annular fluid determines the annular fluid height. Finally, a material
balance reservoir model describes the influx of fluids into the wellbore from
the reservoir.

1.3. Reservoir Modeling for Well Control

This section reviews reservoir modeling with emphasis on well control.
Well control technologies are currently generating significant interest in the
oil and gas industry primarily because estimations demonstrate that they can
increase estimated ultimate recovery by 10-15% [31]. Further, as the speed
of computers and data acquisition systems continues to improve, the indus-
try is anticipating that control technologies will become a more integral part
of the life cycle optimization process of a well as explained in Jansen et al.
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[32]. To adopt an optimum production strategy, it is necessary to consider
a closed loop control process. Most conventional reservoir simulators use a
history-matching process to align model values with production data from a
real system [31]. The history matching process typically involves the manual
adjustment of model parameters over a period of years. Some drawbacks of
this approach include (1) manual adjustment of model parameters, (2) viola-
tion of system constraints, and (3) overfitting of real-time data [10]. To help
optimize reservoir performance under geologic uncertainties and incorporate
real-time parameter updating of changing reservoir parameters, the oil and
gas industry has placed an emphasis on exploring smart reservoir modeling.
Like history matching, smart reservoir modeling is a closed loop process.
However, it has the added benefit of (1) systematic updating using real-time
data, (2) the ability to minimize the effect of bad data, and (3) reduce un-
certainty [31]. Smart well modeling may also include additional constraints
and data cleansing. Grbovic et al. [25] recommend developing system models
that decrease dependence on historical data by including additional system
constraints. Deshpande et al. [14] show that model based data cleansing
methods significantly improves data quality. Udy et al. [56] reviewed prior
applications of reservoir modeling for well control. The benefits of combining
traditionally separate optimizations are highlighted. Brouwer and Jansen [11]
applied optimal well control to adjust downhole valve settings of horizontal
injector wells to optimize production. The results from his simulations sug-
gested the cumulative recovery could be improved by 20% by implementing
optimal control schemes. Sarma and Chen [53] implemented optimization
control strategies to control bottomhole pressures of reservoir models depict-
ing offshore wells. The optimal control algorithm increased NPV by 17%
over an 8 year simulation period. Simulations confirm that smart reservoir
modeling is superior to traditional methods. This study considers optimal
control schemes to control the fluid level in the annulus of a rod pumped well
while obeying certain constraints.

Literature studies show significant increases in ultimate oil recovery and
project NPV as a result of optimally controlling producing well bottomhole
pressure [12, 3, 27]. However, these researchers rarely consider how the well
bottomhole pressure will be maintained at optimal values. In rod pumped
wells, the bottomhole pressure is largely dictated by the height of the fluid
column in the well annulus [51]. This research demonstrates a Moving Hori-
zon Estimation (MHE) to determine fluid level from common measurements,
and presents several controllers for controlling annular fluid height. This re-
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search enables the benefits shown by others in simulation by demonstrating
automatic control of bottomhole pressure.

Figure 1: Summary of the rod string, well, and reservoir dynamics

1.4. Nomenclature

Symbol Description Value or Range Type

A drainage area 2 acres constant
Af cross sectional area of annular

fluid
ft2 constant

Ac cross sectional rod area 0.785 in2 constant
At cross sectional area of tubing in constant
API oil API 45 API constant
B combined viscous friction coef-

ficient
lb · ft · s constant

Bo formation volume factor 1.2 bbl
STB

constant
c total compressibility factor 0.000013 psi−1 constant
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CA drainage area shape factor 31.6 constant
Cinitial initial cost of rod pump $1, 000, 000 constant
Dc diameter of well casing 8 in constant
Dr diameter of sucker rod 1 in constant
Dt diameter of production tubing 2.5 in constant
E rod string modulus of elasticity 3.2 · 106 psi constant
ėmech,loss power to overcome frictional

losses
Kw state variable

Ecost cost of electricity $
Kwh

constant
f rod load lbf state variable

g gravity acceleration 32 ft
s2

constant
h reservoir thickness 8 ft constant
hf height of fluid in well annulus ft state variable or

controlled variable
J0 combined inertia of motor,

load, and gear train
lb · ft · s2 constant

k permeability 15 md constant
NPV net present value $ state variable
P average reservoir pressure psi state variable
Pbd(t) pump boundary condition pa-

rameter
parameter

Pi initial reservoir pressure 2078.4 psi constant

Po price of oil 60 $
bbl

constant
ppi pump intake pressure psi state variable
Pwf bottomhole flowing pressure psi state variable
Pwh well head pressure psi constant
pr reservoir pressure psi parameter
PI well productivity index bbl

day·psi parameter

r annual interest rate 12 % constant
R revenue $ state variable
rw wellbore radius 0.328 ft constant
S skin 0 constant
sa slack variable slack variable
sb slack variable slack variable
SPM stroking speed strokes

min
manipulated vari-
able
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Tnet net torque lb
ft

manipulated vari-
able

TV D true vertical depth ft constant
u(x, t) relative position of rod seg-

ment x at time t
in state variable

Vi original oil in place STB state variable
Vp cumulative volume produced STB state variable

Ẇmotor rate of work produced by mo-
tor

Kw state variable

Wf weight of fluid in production
tubing

lbf parameter

Wr weight of rod string lbm constant
X expenses $ state variable
αp pump boundary condition co-

efficient
0.0 parameter

α angular acceleration radians
s2

state variable
β pump boundary condition co-

efficient
1.0 parameter

γE Euler constant 1.78 constant
γ oil specific gravity 0.8 constant
µ viscosity 1.5 cp constant
ω angular velocity radians

s
state variable

ρw density of water at standard
conditions

lbm
ft3

constant

θ rotational angle radians state variable

2. Methods

This section describes the sucker rod, well, and reservoir models. Next,
this section describes economic considerations, and poses general formula-
tions of MHE and Model Predictive Control (MPC) problems.

2.1. Well and Rod String System

Figure 2a is a diagram of the well bottomhole assembly. Reservoir fluid
flows into the well bore through perforations in the well casing. Fluid ac-
cumulates in the annular space between the well casing and the production
tubing. Figure 2b shows a sucker rod pump surface unit adapted from Gibbs
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[22]. A prime mover reciprocates the rod string via a four bar linkage. The
rod string is connected to a positive displacement pump at the bottom of the
well. The pump lifts reservoir fluid to the well surface. When the surface unit
lifts the pump, reduced pressure causes fluid to flow into the bottom of the
pump assembly through a stationary one way valve (standing valve), filling
the pump barrel. When the surface unit lowers the pump, the fluid trapped
in the pump barrel is forced past another one way valve (traveling valve) into
the production tubing. The surface unit reciprocates the rod string and the
pump produces fluid each upstroke.

(a) Well assembly

Prime Mover
Stuffing 

Box

Load Sensor

Rod String

(b) Actuated surface unit

Figure 2: Pump and well diagrams

2.2. Surface Unit Equations of Motion

Equations 1 and 2 describe the vertical position of a conventional four
bar linkage sucker rod pump as a function of the prime mover angle, θ. L1

through L5 are unit dimensions indicated in Figure 2b from Gibbs [22]. The
same study simulates the polished rod motion assuming constant stroking
speed (SPM).

To improve upon Gibbs [22], kinematic equations that account for non-
constant SPM are developed for the crank arm. A simplified free body of
the crank arm for non-constant angular velocity is shown in Figure 3. Figure
3 has three torques that act on the crank armature. They are the torque
supplied by the motor (TM), A loading torque (TL), and a frictional torque
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(Tf ). The torque speed characteristics of the crank arm with constant angu-
lar acceleration can be described by the kinematic equations for rotational
motion, Equations 3 and 4. Using Figure 3 and assuming clockwise is posi-
tive, a torque balance taken at the center shaft of the crank arm (point c),
reduces to Equation 5.

u(0, θ(t)) = L3

[
arcsin

(
L1 sin θ(t)

h

)
+ arccos

(
h2 + L2

3 − L2
4

2L3h

)]
(1)

h =
√
L2

1 + L2
2 + 2L1L2 cos(θ(t)) (2)

Figure 3: Shows the free body diagram of the crank arm including an effective force
diagram and applied torque diagram

dθ

dt
= ω (3)

dω

dt
= α (4)
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∑
Mc = J0α = −Tf − TL + TM (5)

The frictional torque within a motor system can be modeled with Equation
6 referenced in Virgal and Kelemen [59] :

Tf = Bω (6)

Equation 6 is the viscous friction torque model that is commonly used
as a damping term in the modeling of electric motors [63]. To simplify the
analysis, the loading torque and motor torque in Equation 5 are lumped
into a parameter we will define as net torque (Tnet) where Tnet = TM − TL.
Further, the rotational inertia is assumed to be the combined inertia of the
motor, load, and gear train of the rod pump system. Combining Equations
3, 5, and 6 the torque balance equation reduces to Equation 7:

J0
dω

dt
= −Bω + Tnet (7)

Rearranging the equation so that it is in standard form, the equation be-
comes:

J0

B

dω

dt
= −ω +

1

B
Tnet (8)

which reduces to a standard form for a first order system that is commonly
encountered in process control as shown in Equation 9:

τ
dω

dt
= −ω + kTnet (9)

where τ = J0
B

is the time constant and k = 1
B

is the gain of the system.
For our analysis, it is convenient to express the dynamic equations in terms
of SPM. The angular velocity relates to SPM by a simple relation given in
Equation 10:

ω =
2π

60
SPM (10)

Combining Equations 9 and 10 and solving explicitly for the time derivative
results in the following relation:

dSPM

dt
= −1

τ
SPM +

60

2π

k

τ
Tnet (11)
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Equation 11 expands to a second order system by adding an additional
equation that relates SPM to dθ

dt
. This can be achieved by combining Equa-

tions 3 and 10. The result is Equation 12:

dθ

dt
=

2π

60
SPM (12)

Equations 11 and 12 describe the equations of motion for the crank arm
in terms of SPM. They can be synced with Equations 1 and 2 to simulate the
surface position of the rod string at non-constant SPM values. The surface
position is then translated to the dynamics of lower segments of the rod string
through the wave equation given in Equation 13.

2.3. Rod String and Well Modeling

The one-dimensional wave equation with viscous damping models the rod
string dynamics, shown in Equation 13 [22, 34, 20], with buoyant gravita-
tional effects included, and describes the propagation of forces and motion
in the rod string.

∂2u(x, t)

∂t2
= a2∂

2u(x, t)

∂x2
− πaν

2L

∂u(x, t)

∂t
−
(

1− ρwγ

ρr

)
g (13)

Simulating the rod string requires two boundary conditions. First, the posi-
tion of the polished rod load is specified, as shown generally in Equation 14,
where F (t) represents an arbitrary motion profile determined by the surface
unit. This work uses kinematic equations for a conventional rod pump, given
in Section 2.2. Second, the behavior of the downhole pump is modeled by
Equation 15 where α, β, and Pbd(t) depend on the pumping conditions [22].
This study assumes the produced fluid to be liquid and incompressible. In
this case α is equal to 0, β is equal to 1, and Pbd(t) is given by Equation
16. Equation 16 implies that the load at the pump is zero when the pump is
descending (the fluid column is held up by production tubing) and equal to
the buoyant weight of the fluid in the production tubing when the pump is
ascending.

u(0, t) = F (t) (14)

Pbd(t) = αp + β
∂u(xf , t)

∂x
(15)
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Pbd(t) =

{
Wf−(At−Ac)Pwf

EAc
if:

∂u(xf ,t)

∂t
> 0.0

0.0 if:
∂u(xf ,t)

∂t
≤ 0.0

(16)

A differential form of Hook’s Law determines the load at each rod segment
as shown in Equation 17.

f(x, t) = EAc
∂u(x, t)

∂x
(17)

This work also includes the dynamic effects of annulus fluid level and
reservoir influx. A mass material balance on the downhole well assembly
shown in Figure 2a yields Equation 18.

dm

dt
= ρwγ(qin − qprod) (18)

Where dm
dt

is the change of mass in the well annulus, and qin and qprod
are the influx of fluids from the reservoir and the fluid produced by the
pump. qin and qprod are shown in Equations 19 and 23, for incompressible
fluids. Equation 19 is piecewise because fluid is only removed from the control
volume during the pump upstroke.

qprod =

{
Acpump

∂u(xf ,t)

∂t
if:

∂u(xf ,t)

∂t
> 0.0

0.0 if:
∂u(xf ,t)

∂t
≤ 0.0

(19)

Assuming the fluid is incompressible, Equation 18 expands to Equation
20. Simplifying leads to the final equation describing the change in height
of fluid in the well annulus, Equation 21. Reformulating Equation 21 into
oilfield units gives Equation 22. The simulation solves Equations 13, 14, 19,
21, and 23 simultaneously, to dynamically simulate the well.

ρfγ(Accasing
− Actubing

)
dh

dt
= ρwγ(qin − qprod) (20)

dh

dt
=

(qin − qprod)
(Accasing

− Actubing
)

(21)

dh

dt
=

1617

2

(qin − qprod)
(Accasing

− Actubing
)

(22)
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2.4. Reservoir Modeling

The simplified well model considers a solution gas drive reservoir in
pseudo-steady state flow. To simplify the analysis further, we assume gas
is held in the solution over the life of the well, i.e. the oil pressure never
falls below bubble point pressure. Thus we do not have to consider more
complicated dynamics such as two phase flow and relative permeability in
the reservoir. Using the assumptions defined above the inflow performance
relationship for the reservoir is defined by Equation 23 [17].

qin =
kh(P − Pwf )

141.2B0µ
(

1
2

ln 4A
γCAr2w

+ S
) (23)

At pressures above the bubble point, the fluid recovery from an oil reservoir
depends entirely on the fluid expansion as the reservoir pressure declines.
This behavior can be described by the isothermal compressibility defined by
Equation 24 [39].

c = − 1

V

∂V

∂P
(24)

Integrating Equation 24 by the method of separation of variables from initial
reservoir pressure to the current average reservoir pressure, the solution to
the partial differential equation becomes the following:

V

Vi
= ec(Pi−P ) (25)

It should be noted that c is assumed constant over the producing life of
the well. The volume at the lower average reservoir pressure P includes the
volume left in the reservoir, Vi, and the volume of the fluid that has been
produced, Vp, i.e.

V = Vi + VP (26)

Combining Equations 25 and 26 an explicit solution for average reservoir
pressure can be derived as a function of the cumulative volume extracted
from the reservoir as shown in Equation 27:

P = Pi −
1

c
ln

(
Vp
Vi

+ 1

)
(27)

The cumulative volume produced is given by Equation 28:
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Vp =

∫
qout dt (28)

Using Equations 23, 27, and 28 an inflow performance relationship (IPR)
model of a reservoir can be developed. The values of the constants given in
the equations are shown in Table 1.

2.5. Well Vertical Lift Performance

The Vertical Lift Performance (VLP) of a rod pumped well is defined by
Equation 29:

Pwf = 0.433γhf (29)

To obtain Equation 29 we assumed that the pressure at the liquid surface
in the annulus is at atmospheric pressure, i.e., the casing surface pressure is
atmospheric and the hydrostatic pressure of the gas column above the fluid in
the annulus is negligible. Combining Equation 23 from IPR and Equation 29
from VLP, nodal analysis can be performed to acquire the flow rate supplied
by the reservoir as the fluid level changes in the annulus.

2.6. Economics

In the oil and gas industry, NPV is a common metric used to measure
the economic viability of a project. NPV considers the time value of money
and helps distinguish between multiple investment options. The continuous
form of NPV is given by Equation 30:

NPV =

∫
S(t)e−rtdt− Cinitial (30)

The profit rate, S(t), is given by the difference between the revenue and
expense rates as shown in Equation 31:

S(t) =
dR(t)

dt
− dX(t)

dt
(31)

For the rod pump system, the revenue rate depends on the production
rate and the price of oil as shown in Equation 32:

dR(t)

dt
= Poqout(t) (32)
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The expenses depend on the initial cost of the rod pump and the cost to
operate the motor to pump the fluid. Applying an energy balance and mass
balance between the bottom of the tubing string to the well head, the work
required to produce the fluid with an electric motor can be derived. The
initial energy balance is given by Equation 33. The mass balance is given by
Equation 34:

Ẇmotor+ṁ

(
Pwf
p

+
v2
in

2
+ gzin

)
= ṁ

(
Pwh
p

+
v2
out

2
+ gzout

)
+ėmech,loss (33)

ρVinAt = ρVoutAt = ρQ (34)

Combining Equations 33 and 34, and assuming the fluid is incompressible,
an explicit expression for the rate of work of the rod pump motor can be
formulated in terms of the pumping rate, Q. The expression is given by
Equation 35:

Ẇmotor = Q(Pwh − Pwf + ρgzout) + ėmech,loss (35)

The horsepower to overcome frictional losses for a rod pump can be em-
pirically estimated by Equation 36 [17]:

ėmech,loss = 6.31x10−7WrSlength(SPM) (36)

Combining Equations 35 and 36 and reformulating the equation so that
it is compatible with oilfield units gives Equation 37. The rate of work of the
rod pump motor has units of kilowatts.

Ẇmotor = 1.2687x10−5qout(Pwh−Pwf+0.433γTV D)+4.7053x10−7WrSlengthSPM
(37)

The expense rate of operating the motor can then be determined. The result
is given by Equation 38:

dX(t)

dt
= 24ẆmotorEcost (38)

where Ecost is the cost of electricity per kWh. Substituting Equations 32
and 38 into Equation 30 gives the final expression to calculate the NPV of
operating the rod pump over the life of the well:
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NPV =

∫
(Poqout(t)− 24ẆmotorEcost)e

−rtdt− Cinitial (39)

It is important to note that 100% motor efficiency and no mechanical down-
time is assumed when deriving Equation 39.

2.7. Moving Horizon Estimation and Model Predictive Control

MHE is a dynamic optimization technique that looks back at a time hori-
zon and fits model parameters to historical data. MHE approximates uncer-
tain parameters or variables, and performs well on systems that include large
amounts of noise in the data set [37]. MHE also allows process information
to be directly considered during optimization [55]. The main disadvantage
of MHE is computational time, but real time solutions are possible, even for
large systems [65]. In this work, an optimizer uses a squared error objective,
as described in Hedengren et al. [29], to minimize the error in the model fit
by varying uncertain model parameters or states. 40 Equation 40 shows the
general MHE squared error. The model equations (Equations 1 - 39 and 55
- 59) are included as Equations 41 - 43 in nonlinear open-equation form with
differential, algebraic, and inequality constraints, respectively. The objec-
tive function minimizes the sum of square error between measured data and
model predictions. Terms used in Equations 40 - 43 are shown in Table 2.

min
x,y,p

Φ = (yx − y)TWm(yx − y) (40)

s.t. 0 = f

(
dx

dt
, x, y, p, u

)
(41)

0 = g(x, y, p, u) (42)

0 ≤ h(x, y, p, u) (43)

Estimation of uncertain parameters (p) in wells and reservoirs is an im-
portant area of research [42, 56]. The process of estimating reservoir param-
eters from historical data (yx) is often called history matching. Prior work
illustrates estimation of reservoir properties using simultaneous techniques
[33, 66]. The ability and importance of estimating parameters in real-time
is also shown [2, 26]. This work expands prior work by utilizing a combined
rod string, well, and reservoir model to estimate parameters in real-time and
utilize those parameters in automatic well control.
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Table 2: Objective Function Terms from Hedengren et al. [29] for MHE and MPC

Symbol Description

Φ objective function
yx measurements (yx,0, ..., yz,n)T

y model values(y0, ..., yn)T

Wm measurement deviation penalty
x, u, p states (x), inputs (u), and parameters (p)

∆p change in parameters
f, g, h equation residuals, output fraction, and inequality constraints

yt, yt,hi, yt,lo desired trajectory target or dead-band
Whi,Wlo penalty outside trajectory dead-band
cy, cu, c∆u cost of y, u and ∆u, respectively

τc time constant of desired controlled variable response
elo, ehi slack variable below or above the trajectory dead-band
splo, sphi lower and upper bounds to final set point dead-band

MPC determines future manipulated variables at control intervals. In-
dustrial MPC began in the energy industry and has been applied to many
systems [47]. The MPC application minimizes the l1-norm error between the
desired controlled variable trajectory and the model prediction by varying
the variables that can be manipulated (u). At each time step the next opti-
mal control move (u0) is implemented, then the process repeats. A general
formulation of the MPC problem is given in Equations 44 - 51 Hedengren
et al. [29]. The objective function (Equation 44) is composed of four terms
that minimize an upper trajectory error, a lower trajectory error, the cost of
the controlled variable (y), and the cost of manipulated variable movement
(∆u). Equations 45 - 47 are the nonlinear model equations after spatial dis-
cretization of the PDE with differential, algebraic, and inequality constraints,
respectively. Equations 48 - 49 are first-order upper and lower reference tra-
jectories that guide the speed of the controlled variable response with the
parameter τc. Equations 50 - 52 are error variables that are used in the ob-
jective function to penalize deviations outside the reference trajectory dead-
band. The dead-band is set to ±0.1 ft to account for the natural variation in
fluid height with the discrete stroke cycles. This dead-band can be further
increased to reduce the variation of the stroking speed manipulated variable
adjustments due to process disturbances. Terms used in Equations 44 - 52
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are shown in Table 2.

min
x,y,u

Φ = W T
hiehi +W T

loelo + yT cy + ∆uT c∆u (44)

s.t. 0 = f

(
dx

dt
, x, y, p, d, u

)
(45)

0 = g(x, y, p, u) (46)

0 ≤ h(x, y, p, u) (47)

sphi = τc
dyt,hi
dt

+ yt,hi (48)

splo = τc
dyt,lo
dt

+ yt,lo (49)

ehi ≥ y − yt,hi (50)

elo ≥ yt,lo − y (51)

0 ≥ ehi, elo (52)

3. Solution Methods

Two solution methods to the wave equation include a numerical approx-
imation and an exact analytical solution. The following sections discuss a
numerical and analytical approach to a simplified problem with the analytical
solution verifying the numerical approximations that are used in optimiza-
tion, and in the non-ideal case.

3.1. Numerical Methods

Equation 13 is a second order hyperbolic partial differential equation
(PDE). Numerically simulating hyperbolic PDEs is difficult since they are
unstable, or conditionally stable when solved with some numerical methods.
Also, some numerical simulation methods suffer from numerical damping.

Gibbs [22] uses finite differencing to convert Equation 13 into an algebraic

expression. First order forward differencing approximates ∂u(x,t)
∂t

. First order

central differencing approximates ∂2u(x,t)
∂t2

and ∂2u(x,t)
∂x2

. Doty and Schmidt [16]
use a similar finite difference method to simulate a sucker rod system.

For converting differential equations into algebraic equations this work
utilizes both finite differencing and orthogonal collocation on a finite element.
Partial derivatives with respect to space (x) in Equation 13 are approximated
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using first order central differencing. First and second order derivatives with
respect to time (t) are approximated by orthogonal collocation on a finite

element. ∂u(x,t)
∂x

in Equation 17 is approximated with a first order central
difference at internal rod positions and by a second order forward difference
at the surface, and a second order backward difference at the pump. The
GEKKO optimization suite with the IPOPT solver simulates the system
and solves subsequent MHE and MPC applications [8, 60, 7]. To verify the
validity of this method a special case of the solution method is compared to
a Fourier series analytical solution. A grid independence study determines
by observation the stability and discretization requirements to achieve stable
and accurate solutions to the well and reservoir model.

3.2. Simulating Pump Boundary Conditions for Optimization

Simulating the sucker rod system requires time varying boundary condi-
tions at the pump. For example, in the case that the pump is liquid full and
the pump valves are operating correctly, when the pump is traveling upwards
it is loaded with the buoyant weight of the fluid in the production tubing,
and when the pump is descending it is unloaded (the weight is borne by the
production tubing). Previous work simulates these changing conditions with
a series of conditional statements or tests [22, 16]. However, these conditional
statements create discontinuities in the model and these discontinuities are
inappropriate for dynamic optimization using simultaneous solvers [29]. This
work formulates the pump boundary conditions with MPCCs to solve the well
model in both dynamic simulation and optimization modes with large-scale
solvers. MPCCs have been used in similar problems with discrete decisions
or switching points [49, 6, 4, 5, 46]. The approach taken in this work is to
include the bilinear switching terms as objective function terms and option-
ally as an inequality constraint. An alternative strategy is to include the
bilinear switching terms as an equality constraint but it is found that the
small slack value 10−4 as shown in Equation 60 is needed to improve solver
convergence speed. The additional constraints add computational expense
and are not needed for simulation and MPC but are needed for MHE with
model mismatch. When there is model mismatch the MPCC objective and
MHE objective trade off producing non-physical results. Adding the inequal-
ity constraint ensures the MPCC objective approaches zero, and the MHE
application can accurately estimate model parameters. The MPCC objective
function contributions are verified to be zero at the solution when only the
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objective function form is used. If the objective function is not zero, Equa-
tion 60 is added to the model. It is found that the inequality constraint is
only needed for the one particular case (MHE with model mismatch) which
would typically occur with real data. The additional slack variables and
bilinear switching terms enable gradient-based solution methods to be used
with the discontinuous pump boundary conditions. An MPCC formulation
of the signum function, shown in Equation 53, determines when the pump is
traveling up or down. When the velocity of the pump is positive it is travel-
ing upward, and y is equal to 1. When the pump is descending the velocity
is negative and y is equal to -1.

y(t) = sgn

(
∂u(xf , t)

∂t

)
(53)

The solver solves Equations 54 through 58 and determines the sign of the
velocity, y. Equation 59 uses y to determine the boundary condition at the

pump. Pbd(t) = 0 when y = −1 and Pbd(t) =
Wf−(At−Ac)Pwf

EAc
when y = 1.

min sa(1− y) + sb(y − 1) (54)

∂u(xf , t)

∂t
= sb − sa (55)

−1 ≤ y ≤ 1 (56)

sa ≥ 0 (57)

sb ≥ 0 (58)

Pbd(t) =
Wf − (At − Ac)Pwf

EAc
· (1 + y)

2
(59)

10−4 ≥ sa(1− y) + sb(y − 1) (60)

3.3. Comparison to Analytical Solution

A simplified version of Equation 13 is obtained when the viscous damping
term is equal to zero and gravitational effects are neglected. The resulting
wave equation is shown in Equation 61. When initial position and velocity of
the rod string are given by Equations 63 and 64, a Fourier series provides an
analytical solution. The analytical solution to this case is given in Equation
62. This solution is called the d’Alembert solution to the Cauchy problem for
the wave equation [43]. Where φ and ψ are the initial position and velocity
of u.
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∂2u(x, t)

∂t2
= a2∂

2u(x, t)

∂x2
(61)

u(x, t) =
1

2
(φ(x+ at) + φ(x+ at)) +

1

2a

∫ x+at

x−at
ψ(s)ds (62)

u(x, 0) = φ(x) (63)

∂u(x, 0)

∂t
= ψ(x) (64)

A simulation of this special case compares the analytical solution to the
proposed method. The initial position and velocity of the rod are given in
Equations 65 and 66. The boundary condition in space is that the rod is of
infinite length. Equation 62 finds the analytical solution to this initial value
problem which is given in Equation 67.

u(x, 0) = cos(x) (65)

∂u(x, 0)

∂t
= sin(2x) for −∞ < x <∞ (66)

u(x, t) = cos(x) cos(at) +
1

2a
sin(2x) sin(2at) (67)

Figure 4 shows the analytical solution method versus the orthogonal col-
location (in time) with the finite difference method (in space) over the time
domain 0.0 ≤ t ≤ 0.0005 and the spatial domain 0.0 ≤ x ≤ 2π. The solu-
tions are very similar. Figure 5 shows the difference in the proposed solution
method versus the analytical solution. The difference is small for most of the
domain. Error increases further out from the initial time, t = 0, indicating
that the proposed solution method, in this case, appears to have numerical
damping. Despite moderate numerical damping, the results indicate that
the proposed method appropriately simulates the simplified wave equation.
A grid independence study identifies criteria for discretization in time and
space that allows for sufficiently accurate solutions to simulate the rod string
behavior in the combined rod string, well, and reservoir model.
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Figure 4: Comparison of analytical and GEKKO solutions
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3.4. Grid Independence Study

A grid independence study evaluates the solution dependence on time
and space grid size. Discretizing in time and space to simulate the system
creates a large problem with thousands of variables and equations. This
section determines minimum spatial and time resolution to capture system
dynamics. Simulations for the combined rod string, well, and reservoir model
are solved with increasingly fine discretization in time and space. The solver
simulates the horizon iteratively in one second intervals.

The solver attempts to simulate all combinations with the sucker rod dis-
cretized in 3, 4, and 5 to 30 segments in increments of 5, and time discretized
with 5 to 30 intervals in each second, in increments of 5. Figures 6 and 7
show representative results of the study. In these figures, the polished rod
(surface) load is shown vs. time. Figure 6 shows results for 10 rod segments
and varying time discretization. Figure 7 shows results for 20 time segments
in each second and varying rod discretization. All simulations are initialized
with u(x, t) = 0 and du

dt
= 0. Cases that do not successfully solve for the first

second of the horizon are omitted.
Figure 6 shows that when fewer time steps are used, the solution does

not adequately capture the dynamics of the force and position propagation
in the sucker rod. 20 segments in time appears to adequately captures the
system dynamics. Figure 7 shows that increasing the number of rod segments
changes the shape of the simulation results very little. However, the results
do show that as the number of rod segments increase the entire curve shifts
upward, although the amplitude of each case stay very similar. Few rod
segments are required to capture system dynamics. These results indicate
that 20 time segments per second and 10 rod segments capture a majority
of the system dynamics, shown on Figures 6 and 7 in dashed red. This
discretization is selected for simulation, estimation, and control in Section 6
as a compromise between computational speed and accuracy. Results shown
in Section 4 are for 30 points in time per second and 30 rod segments.
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Figure 6: Fixed rod length discretization of 10 sections
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4. Modeling Results

Modeling results are discussed for reservoir and rod string dynamics. A
unique contribution of this work is the combined models that are used in
optimizing production and NPV. Both MHE and MPC require a system
model. A more accurate system model leads to more accurate parameter
estimation and improved MPC controller performance. This section verifies
that the proposed model accurately describes the system, and is appropriate
for MHE and MPC use.

4.1. Reservoir Pressure and Production Dynamics

The well and reservoir model described in Sections 2 and 3 simulate the
well system over a 30 minute horizon using 30 rod string discretizations and
30 time points per second. It took 3.14 hours to run the entire 30 minute
simulation. Figures 8 through 16 illustrate the results of the simulation.
Figure 12 gives a modified version of the time horizon to demonstrate NPV.
Figure 13 captures the transient dynamics within the first ten seconds after
the simulation is initialized. Figures 14 to 16 capture the steady state dy-
namics of the rod string shown in the time interval 20 to 40 seconds after the
simulation is initialized.
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Figure 8: Doublet test performed at different net torque values

Figure 8 shows how the annular fluid level changes over the 30 minute
simulation period with adjustments to net torque using a doublet test. Tnet
is defined as the manipulated variable. Tnet is initialized at 10 ft-lbs and is
adjusted between 5 and 15 ft-lbs over the 30 minute simulation. The height of
the fluid level in the annulus is defined as the controlled variable. During the
simulation, the fluid level in the annulus changes dependent on the torque
input. In cases where the fluid level in the annulus rises, the inflow rate
of the reservoir exceeds the motor pumping rate. In cases where the fluid
level in the annulus declines, the pumping rate exceeds the inflow rate of the
reservoir.
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Figure 9: Change in reservoir pressure with cumulative volume produced from the rod
pump

Figure 9 illustrates the reservoir pressure decline over the 30 minute sim-
ulation period for the solution gas drive reservoir. As fluid is produced and
enters the annulus, the reservoir reserves are depleted. In this case, the cumu-
lative volume produced is dependent on the bottomhole flowing pressure and
pumping rate of the motor. As the cumulative volume produced increases,
we observe a decline in pressure in accordance with Equation 27.
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(a) The first 10 seconds of the simulation
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(b) The full 30 minute simulation

Figure 10: The system is a dynamic blend of inflow and outflow of fluids

Figure 10 shows the interacting dynamics between the reservoir and rod
pump. Figure 10a shows the first ten seconds of the simulation. The rod
pump is stroking with a Tnet of 10 ft-lbs and the fluid level is oscillating up
and down. The fluid level in the annulus exhibits non-linear behavior because
of the intermittent pumping rate of the rod string. The producing flow rate
rises greatly with the upstroke of the rod string and is zero when the pump is
not pulling fluid on the downstroke. It can also be observed that the fluid rate
flowing into the annulus (qin) is fairly constant for the first ten seconds. This
is because the bottomhole pressure and reservoir pressure does not change
significantly over the first ten seconds of the simulation. Figure 10b shows
the interacting dynamics between the reservoir and rod pump over the full
30 minute simulation. Initially, the fluid level in the annulus rises because
the reservoir inflow exceeds the pumping rate of the rod string. When the
Tnet is increased to 15 ft-lbs the pumping rate increases, the fluid level in the
annulus decreases. This is because the pumping rate exceeds the reservoir
inflow. The ”tug of war” between inflow and outflow is constantly observed
through the changing liquid level height in the annulus and is difficult to
control manually due to the inherent non-linear nature of the system. Using
a control scheme like MPC, the fluid level can be controlled to a desired
set point and maintained over the simulation period that otherwise may be
difficult to control manually.
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(b) The full 30 minute simulation

Figure 11: Power consumption of the rod pump motor as FBHP declines and SPM varies

Figures 11 shows the interacting dynamics between power consumption,
SPM, Tnet, and Flowing Bottomhole Pressure (FBHP). When SPM is con-
stant it is equal to Tnet, and in the longer simulation there is a very short
time constant following a first order response. Figure 11a shows the first ten
seconds of the simulation. The rod pump is stroking at a rate of 10 SPM
(which corresponds to Tnet = 10) and the bottomhole pressure and power con-
sumption is fluctuating up and down. The bottomhole pressure and power
consumption exhibit non-linear behavior because of the intermittent pump-
ing rate of the rod string. The power consumption rises with the upstroke
of the well. At the same time, the bottomhole pressure declines because
the fluid level in the annulus drops slightly. On the downstroke, the power
consumption is zero and the bottomhole pressure increases. The bottomhole
pressure increases on the downstroke because the liquid level height in the
annulus increases due to reservoir inflow. Figure 11b shows the interacting
dynamics between power consumption, SPM, Tnet, and FBHP during the
full 30 minute simulation. It is clear that the power consumption increases
with increasing Tnet. This makes sense because at a higher Tnet setting, more
volume of fluid moves in a smaller amount of time. Further, power consump-
tion increases with time at fixed Tnet inputs. This occurs because as FBHP
declines, there is less assistance from the reservoir to help push the column of
fluid above the pump to surface. Hence, power consumption increases with
time at a fixed Tnet value.
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Figure 12: Shows how NPV varies over an 8 year simulation period

Figure 12 illustrates how NPV changes over the life of the well. Because
the resolution of a 30 minute simulation cannot capture the entire dynamics
of NPV, the simulation is extended to 8 years. As is expected, the NPV is
negative during the early development of the well due to the initial cost of
the rod pump which is assumed to be $1 million. Initially, the rod pump
produces at the maximum SPM and Tnet setting and NPV increases. As
time progresses, the income is discounted and begins to deviate from a linear
profile as shown between year 1 and year 3. Additional factors that cause
the the trajectory to deviate from a linear profile include: (1) the inflow rate
from the well declines, forcing the pump to produce at a lower Tnet value and
(2) the operating costs increase because the bottomhole pressure declines
providing less assistance to raise the fluid to surface. As time progresses,
the NPV attains a maximum value around year 3 as shown in Figure 12.
Beyond this point, the operating costs begin to exceed the income produced
from production for the reasons mentioned above. Therefore, a decline in
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NPV is apparent. As illustrated by the figure above, the goal of a pro-
ducer is to attain the maximum NPV. Using control methods combined with
optimization, higher NPV can be realized that would be difficult to attain
through manual control methods.

4.2. Rod String Dynamics

The rod string and pump dynamics are illustrated in this section. The
first ten seconds and the 20 to 40 second interval of the 30 minute simulation
(to avoid the noise from the transient start up of the system) show the quick
dynamics of the rod string and pump system. The simulation takes into
account the changes in the reservoir and the oscillations of the pump as it
removes production fluid.

Distance (ft)

0100020003000
4000
5000

Time (seconds)0 2 4 6 8 10

Po
sit

io
n 
(ft
)

0
2
4
6
8
10
12
14

Figure 13: Dynamic rod string position in space and time (10 seconds)

Figure 13 displays the sucker rod position in time and space. Distance
0 ft represents the rod at the surface that is actuated by the surface unit.
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Distance 4800 ft is the rod position at the pump. Figure 14 gives the position
and velocity of the pump. The sign of the velocity is also shown, scaled
by 10 to be visible. The solver accurately determines when the velocity is
positive, and when it is negative, which determines the fluid load at the
pump, simulating pumping conditions.
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Figure 14: Pump position, velocity, and velocity sign (20-40 seconds)

Figures 15a, 15b, 16a and 16b refer to the load on the system at the
surface, for the pump, and as the pump load changes with position and
time. Offset lines on the surface card and pump card would be present from
startup dynamics of the first 10 seconds so the segment of 20-40 seconds is
shown. The rod load varies depending on stroking rate and the fluid load
at the pump. The dynamic load is essentially zero when the pump rod rests
buoyantly in the annular fluid. The polished rod load mimics the motion of
the pump at the surface and the rod load versus the position of the pump
draws out a dynamometer card in roughly the shape of a rectangle which
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corresponds to actual data and previous research on rod pumps.
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Figure 15: Rod load vs. position
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Figure 16: Rod load vs. time

5. Moving Horizon Estimation Results

In the oil and gas industry, it is common not to have all the available data
to carry out meaningful reservoir engineering analysis. The cost to acquire
new information through well intervention techniques such as well logging,
pressure build up tests, core analysis, and well surveys, is expensive. Further,
those measurements are typically limited to a snapshot in time and require
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the well to be shut-in. Other methods used to acquire continuous reservoir
surveillance data through downhole electronic sensors always suffer in relia-
bility due to the extreme pressures and temperatures encountered downhole
[9]. Thus, there is a high degree of risk involved in implementing downhole
measuring devices. Because operators are trained to minimize expenses, re-
duce downtime, and limit risks, this information is usually never realized, or
acquired indirectly using stochastic estimates from other wells in the area.
With MHE, reservoir properties and flow variables can be estimated at no
cost, without shutting in the well, and at no risk. This section highlights the
results of two simulation case studies where MHE is implemented to (1) infer
the fluid level in the annulus of a rod pumped well and (2) estimate reser-
voir parameters. Both case studies use the simulation model from Section 4.
Two measured parameters are passed to the MHE: (1) the surface polished
rod load and (2) the net torque produced by the motor. This is convenient
for operators because both measurements can be easily acquired from the
surface through surface dynagraph cards and gauges on the motor. The case
studies are shown in Table 3. In Case 1 the MHE estimates the annular
fluid height given the rod load at the surface (polished rod load) and the net
torque produced by the motor. The MHE estimate of annular fluid height
is compared to the true value to validate that the fluid level in the annulus
can be inferred from the surface load. In Case 2, MHE is used to estimate
reservoir properties such as porosity and flow properties such as skin using
the surface load and net torque produced by the motor. The true values are
compared to the estimated values. All MHE figures use a discretization of
20 points in each one second interval and 10 rod sections.

Table 3: Estimation Case Studies

Estimation Estimated Variable(s) Measured Variable
Case

1 Annular fluid height Polished rod load, Tnet

2 Well Skin factor and Poros-
ity

Polished rod load, Tnet

5.1. Annular Fluid Height Estimation

In rod pumped wells, it is critical to maintain the annular fluid level
above the pump to avoid pump-off and fluid pound conditions [36]. Fur-
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ther, it is desirable to produce at the lowest level possible to maximize NPV
over the lifetime of the well. Traditional methods used to measure the fluid
level height in rod pumped wells include echo-meter surveys and electronic
bottomhole pressure gauges. Although these tools have benefits, there are
some drawbacks as described in the previous section. Figure 17 highlights
the MHE estimate of the annular fluid height from the surface load values
and the net torque produced by the motor excluding measurement noise. At
the initial time, it is assumed that the well is not flowing and the hydrostatic
head of the fluid is equal to the reservoir pressure. Therefore, for this sce-
nario the initial condition assigned to the MHE is assumed to be equivalent
to the true initial condition as demonstrated in Figure 17.
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Figure 17: Height is estimated with varying inputs of Tnet (which adjusts based off the
load)

From Figure 17 it is clear that the MHE estimate of annular fluid level
height is identical to the true value. In practice, there may be measurement
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noise in the load measurements taken at the surface. Further, there may
be uncertainty in the starting fluid level height of the annulus. To test the
robustness of the MHE estimator, an additional scenario is investigated which
includes added measurement noise and an initial condition different from the
actual fluid level height. In this scenario, the initial condition is set to 100
ft below the actual fluid level height (2400 ft) at the initial time. Normally
distributed white noise is added to the measured force from the simulator
with a standard deviation of 50 lbs. The results are shown in Figure 18:
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Figure 18: Height is estimated with varied Tnet, noise, and an offset initial condition

In this case an inequality constraint, Equation 60, is added to the MHE
model to ensure the MPCC objective term approaches zero. If there is no
inequality constraint, the optimizer finds non-physical solutions when there
is process model mismatch as a result of measurement noise. Figure 18 sug-
gests that the measurement noise adversely effects the estimator performance.
However, the MHE is adequately successful in tracking the actual fluid level

37



height. The estimator approaches the actual fluid height after about 60 sec-
onds even when the initial condition is unknown. It is interesting to note
that because the system has intermittent production, i.e. fluid is produced
on the upstroke but not on the downstroke, the MHE estimator is only able
to retrieve useful loading data on the upstroke. This is observed in Figure 18
where the estimated height is constant then steps during periods where the
fluid level is decreasing. This is because on the downstroke, when no fluid
is produced, the loading condition is constant and does not provide useful
information for the MHE to react. Despite white measurement noise, the
MHE application is able to accurately track the fluid level height over the
course of the simulation. The results from the two scenarios validate that
the MHE can use surface loading measurements to infer the annular fluid
level height in the well. Thus downhole pressure gauge measurements and
acoustic surveys are not necessarily required. By estimating annular fluid
height the MHE can be integrated with MPC to lead to automated control
as described in Section 6.

5.2. Reservoir Parameter Estimation

Parameters of interest to reservoir engineers include drainage area, poros-
ity, pressure, permeability, skin factor, etc. This study estimates the porosity
and skin using MHE.

In general, parameters such as porosity and skin are considered time-
invariant in reservoir modeling. However, in practice, these parameters
change during depletion of a well and are not necessarily time-invariant. For
example, depleting reservoirs generally experience a change in total stress
state in the reservoir rock as pressure reduction occurs over time [30]. There-
fore, it is expected that pore volume reduction occurs as the reservoir is de-
pleted. Changes in temperature and pressure in the reservoir can also cause
formation skin damage to change over time. For example, as the temper-
ature or pressure declines with time, compounds can precipitate from the
wellbore fluids, this results in permeability impairment in the near wellbore
region [17]. The precipitates can build up over time resulting in a constantly
changing skin value. MHE has the capability to track such changes over the
life cycle of a well. Further, MHE is an additional method to retrieve useful
information of reservoir parameters. In practice there are several tools used
to estimate the same reservoir properties (e.g. core analysis, logging, seismic,
and stochastic methods can all be used to estimate porosity). Each method
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has pros and cons. For example, core analysis has a high resolution, how-
ever it is expensive and limited to a snapshot in time. Stochastic methods
are fast and inexpensive, however the results may not be representative of
a particular well because it is relying on a distribution of a statistical data
set from other wells of a given sample size. Seismic is extremely expensive
and is also limited to snapshots in time. What makes MHE unique over the
other methods, is it would be relatively inexpensive, does not require well
intervention, and can dynamically estimate reservoir parameters with vary-
ing conditions which allows the reservoir engineer to monitor the health of a
particular well in real time.

Porosity is a measure of the amount of void space in the reservoir and
is important to petroleum engineers because it determines fluid storage ca-
pacity. Knowing porosity allows a reservoir engineer to calculate the amount
of oil in a reservoir. This can subsequently be used to determine an over-
all recovery factor and can help engineers plan the depletion strategy of a
well. Traditional methods used to infer porosity include logging tools such as
acoustic, density, neutron, and NMR [15]. Direct measurement of porosity
is determined through core analysis in a lab environment. It is not always
convenient to run logging tools or retrieve core samples from a well. Figure
17 highlights the MHE estimate of the porosity from the surface load values
and net torque supplied by the motor. All other reservoir parameters are
assumed to be known.
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Figure 19: MHE estimate of porosity from surface loading measurements

An initial guess of porosity is provided to the MHE with a value of 12%.
From Figure 19 it is clear that the MHE is able to closely approximate the
true value of porosity after more data became available. This shows that the
current MHE model is capable of estimating reservoir parameters from a rod
pumped well without well intervention. Thus, well logging and core analysis
are not necessarily required.

Skin factor is another parameter of interest to reservoir engineers. Skin is
a measure of formation damage or production enhancement near the wellbore
and can change over the producing life of the well. Examples of formation
damage include mud filtrate invasion during drilling, plugging of pore space
by cement solids during completion, and scale buildup during production.
Examples of production enhancement include an acid wash, solvent wash, and
various other chemical treatments. Traditional methods used to estimate skin
include pressure drawdown or pressure buildup tests. Each method requires
well intervention. With MHE, the skin can be estimated without shutting in
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the well. Figure 20 highlights the MHE estimate of skin from the surface load
values and the net torque supplied by the motor. Note, all other reservoir
parameters are assumed to be known.
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Figure 20: MHE estimate of skin from surface loading measurements

An initial guess of skin is provided to the MHE with a value of 0. From
Figure 20 it is clear that the MHE is able to find the true value of skin after
more data became available. This shows that the current MHE model is ca-
pable of estimating reservoir flow parameters from a rod pumped well without
well intervention. Thus pressure drawdown and pressure buildup tests are
not necessarily required. Assuming skin and porosity are unknown, Figure
21 shows the case where both parameters are estimated simultaneously.
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Figure 21: MHE estimate of skin and porosity. Figure demonstrates potential collinearity
between skin and porosity

The initial guesses for skin and porosity provided to the MHE are the
same values used previously. From Figure 21 it is clear that the MHE es-
timate of porosity and skin are almost identical to the true values. It is
interesting to note that at different starting initial conditions, the MHE con-
verged to different values of porosity and skin. Further, from Figure 21 it can
be observed that in regions where the solution oscillates, the porosity and
skin compensates by an analog negative slope. This behavior suggests that
the system of equations and variables may have multiple solutions for the
given simulation conditions when estimating more than one variable. More
information on collinearity of solutions, improving initial conditions, and sen-
sitivity analysis can be found in Lewis et al. [37]. As demonstrated from the
analysis above, MHE is capable of estimating reservoir and flow parameters
from a rod pumped well using information from the surface. Further, MHE
does not require well intervention. For the reasons described above, MHE
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has distinct advantages over traditional methods.

6. Dynamic Optimization & Model Predictive Control

This section shows how an optimum SPM input to the well is determined
to maintain a constant fluid level in the annulus. The optimized SPM is
implemented into the model. Results are shown and discussed. Three control
strategies are demonstrated and compared. Table 4 describes each case. All
cases utilize the model of a conventional four bar linkage sucker rod pump
described in Section 2.2, with three different control strategies. Case 1 shows
control results for pump-off control. Case 2 combines the MHE estimation
of fluid height with a proportional integral (PI) feedback controller. Case
3 shows control when MHE estimates fluid levels and a MPC application
controls the unit.

When a producing well is shut down, the fluid influx from the reservoir
continues until the hydrostatic pressure of fluid accumulating in the well
annulus equals the reservoir pressure. When fluid production restarts, the
annular fluid level is pumped down and reservoir influx reoccurs. The well is
pumped down until one of two conditions occurs. Either a minimum annular
fluid level, or a predetermined fluid level or FBHP is obtained. The lowest
possible FBHP occurs when the fluid level is drawn down to a minimum,
this results in maximum fluid production. This is common in practice. In
this case, the main purpose of the controller is to maintain adequate fluid
over the pump to prevent equipment damage. However, this practice does
not always result in the largest NPV or ultimate recovery for a reservoir
system. Multiple studies show that determining and maintaining the optimal
FBHPs for a set of wells in a reservoir system increases NPV and ultimate
oil recovery [12, 3, 27]. In either case, the initial pump down period is not
interesting for comparing controller performance since the pump will operate
at a maximum rate until the fluid level approaches the set point. In view of
this, the simulation case studies compare the quality of the control when the
fluid level approaches and maintains the set point, which requires a relatively
short simulation time.
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Table 4: Simulated Control Cases

Case Description Manipulated Controlled Variable
Variable(s) & Objectives

1 Conventional Unit Control
- PUMP-OFF/TIMER

On/OFF Annular fluid level

2 Conventional Unit Control
- PI

Tnet (SPM) Annular fluid level

3 Conventional Unit Control
- MPC

Tnet (SPM) Annular fluid level

6.1. Case 1 - Pump-Off Control With Timer

This case simulates a typical pump-off control system that is commonly
used in industry. For these methods, equipment such as a load cell or vibra-
tion sensor detect when a pumped off condition has occurred and/or when
the fluid level has fallen below a predetermined threshold. The controller
then turns off the unit for a predetermined time period. The unit restarts
after the timer period ends.

Figure 22 shows the results of a 3 minute pump-off control simulation.
A major benefit of pump-off controllers is their simplicity. Additionally, if
measurements to detect pump-off are not available the pumping unit can be
run fully on timers where the percent of time the unit operates in a day is
manually tuned to match nominal production rates. These controllers are
a great option when the unit is not electrified since combustion units rarely
have automatically adjustable stroking speed. Further, this type of control
may be preferred when the minimum stroking speed of the unit is faster than
the reservoir influx. However, a major downside to these systems is that sub-
optimal production rates are achieved. The time when the unit is down and
fluid level is increasing represents loss in production. In order to maintain
maximum production, frequent start stop cycles are required. These start
stop cycles lead to increased equipment degradation. Operators strive to
balance these effects. In some wells where sand is present in the produced
fluid, problems occur when the unit stops and dispersed sand settles.
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Figure 22: Pump-off controller performance

6.2. Case 2 - Fluid Height Control With PI

In this case, it is assumed that the field is electrified and the simulated
rod pump are equipped with a variable frequency drive so that the net motor
torque, Tnet, can be automatically adjusted. The Tnet is adjusted by a PI
controller. This is a simplification of typical real systems, which is derived
in Section 2.2. In practice an electric motor is equipped with a variable
frequency drive that allows control of the motor rotational speed or torque. In
practice the PI controller or MPC application act as a primary controller and
send a command to the motor controller acting as the secondary controller.
The response time of such motor controllers is rapid, and is neglected in
this study [35]. The objective is to control the annular fluid height to a
desired set point. In practice this would often be as low as possible, while
still maintaining fluid over the pump. However, in some cases the optimal
fluid height may be set at some other value to maximize ultimate reservoir
recovery, or to prevent gas interference at the pump as the pressure falls
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below the fluid bubble point. Figure 23 shows a diagram of the simulated
control system for cases 2 and 3. First the model simulates a one second
horizon. The system then passes the surface load to the MHE application.
The MHE application estimates the annular fluid height, and passes it to
the PI or MHE controller. The controller then determines the motor torque,
Tnet, for the next simulator cycle.

System Model: 
Surface Unit & Rod String

Well
Reservoir

Controller:
MPC or PI

Set Point 
Height

Measure: 
Surface Load

MHE

Figure 23: Block diagram of PI and MPC controllers

This application utilizes the MHE described in Section 5.1 because in
practice the fluid level is rarely measured in real-time. The fluid height is
usually measured infrequently with an acoustic device, but the manual mea-
surement and infrequency make it impractical for automatic control. How-
ever, many current pump-off control systems measure the polished rod load
and acceleration. From these, the polished rod load and position are obtained
as a function of time. The MHE application illustrated in 5.1 converts the
measured loads into predictions of the fluid height. The MHE passes the
estimated height into the PI controller application as a “measurement”. The
PI controller compares the “measured” height from the MHE application and
compares it to the set point height. The resulting error, e(t), determines the
motor torque output via Equation 68.

Tnet = Kce(t) +
Kc

τI

∫
e(t)dt (68)
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A 180 second simulation shows the results of Case 2. These results are
shown in Figure 24. The controller draws down the fluid level rapidly, but
suffers from overshoot. These results are for an aggressive tuning Kc = 10ft·lb

ft

and τI = 5 seconds. The controller holds the set point very well but there
is large chatter in the net motor torque output, which leads to accelerated
equipment failure. When tuning the PI controller an operator balances hold-
ing the set point accurately and smoothing the controller response.
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Figure 24: Aggressive PI controller performance Kc = 1 ft·lb
ft and τI = 1s

One benefit of the combined PI and MHE application is computation
time. Figure 25 shows the controller solve time for each cycle in Case 2 on
an Intel i7 processor. The average cycle time is 1.23 seconds, indicating that,
the controller is nearly appropriate for real-time control. To be appropriate
for real-time control a controller cycle time must be faster than real-time. In
this case most of the computation time is solving the MHE application to
estimate fluid height, so faster computation may be achieved with a faster
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processor or by model simplification, such as, using fewer rod discretizations.
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Figure 25: Solve time for combined MHE and PI controller

To verify that real time control is possible, Case 2 is re-simulated where
the MHE model utilizes 10 discretizations per second and 5 rod discretiza-
tions (npt=10, npx=5). The resulting average controller solve time is 0.62,
indicating that the method is suitable for real time control. The disadvan-
tage of using a reduced resolution model in the MHE application is that
the model-process mismatch is greater, resulting in less accurate parame-
ter estimates. However, these results indicate that the proposed controller
utilizing MHE and PI control is possible for field-testing with reduced res-
olution. Future work could explore model linearization around the nominal
operating conditions for both the estimator and controller to further improve
computational speed.
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6.3. Case 3 - Fluid Height Control With MPC

This case is similar to Case 2, except that instead of PI control a MPC
determines the pumping unit net motor torque. Again, the MHE applica-
tion described in Section 5.1 estimates the fluid height, and passes it as a
“measurement” to MPC application.

Figure 26 shows the results of the combined MHE and MPC controller.
The MPC application determines a 10 second horizon to achieve and hold
the set point, varying Tnet. The MPC then implements the first second of
net motor torque as the control move. The MPC controller achieves the set
point with no overshoot and holds the set point adequately. It is interesting
to note that the set point fluid height is constant, but the actual fluid level
is inherently cyclical since fluid is only produced from the well during the
pump upstroke. This is different from traditional chemical processes where
cyclical changes to a controlled variable are uncommon. However, the results
indicate that MPC is able to track the set point well despite the cycling fluid
level, with a sufficiently long prediction horizon. A measurement dead band
is used to allow the height to oscillate around the set point without penalty.
The maximum change in Tnet per controller cycle is held at 1 ft·lb per second
and a minor penalty is allotted to each change in Tnet, to prevent controller
chatter. Overall, the MPC application performs very well.
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Figure 26: Runs MHE and MPC synchronously.

A major downside to the MPC application is long computation time.
Figure 27 shows the combined MPC and MHE controller computation time
per cycle. The average computation time for the combined MHE MPC ap-
plication is 7.4 seconds per one second cycle on an Intel i7 processor. One
unsuccessful MPC solve occurred during the horizon at approximately 65
seconds. A speedup in computation time of 7-8X is required for real-time
control with this application. A faster processor or model simplification, such
as, using fewer rod discretizations may decrease computation time. To verify
this, Case 3 is resolved using 10 time discretizations per second and 5 rod
discretizations (npt = 10, npx = 5). The average controller solve time with
this discretization is 2.39 seconds, much closer to real time applicability. As
noted in Section 6.2, the main disadvantage of reduced resolution is increased
model-process mismatch, which may lead to suboptimal control. In addition
to reduced model resolution, a shorter MPC prediction horizon can be used,
although, the controller performance degrades. A future area of study is to

50



explore model simplification such as linear MPC or control parameterization
methods such as explicit nonlinear MPC [28].
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Figure 27: Solve time for combined MPC and MHE

6.4. Comparison of Cases

The cases each have pros and cons. Case 1 has the benefit of simplicity,
and is well suited for fields where electric power is not available, and func-
tions well when reservoir influx is less than the minimum stroking rate. Case
2 is intermediate in its complexity, and is a common control algorithm. Com-
bining MHE to determine annular fluid level with PI control enables good
fluid level or bottomhole pressure control with intermediate computational
requirements. Finally, Case 3 with MPC provides the best control of annular
fluid level, but is the most complex. Case 3 also has the ability to consider
multiple objectives as well as simultaneously consider well and reservoir in-
teractions. These features enable optimal production and profitability.
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Figure 28: Increased cumulative oil production relative to Case 1 ( Pump-off)

Figure 28 illustrates the differences in incremental cumulative recovery
between MPC, MPC with reduced model discretization resolution, PI, PI
control with reduced MHE model discretization resolution, and pump-off
control for a 180 second simulation. In Figure 28, pump-off control is the
base case, and increases in production are shown relative to it. From the
figure, it is clear that MPC, MPC with reduced discretization, PI, and PI
with reduced MHE discretization each outperform pump-off control. Further,
there is little difference between the the controller performance when the full
or reduced discretization models are used. This result indicates that there
is little controller performance loss due to reducing the model discretization
to increase computational speed. Both MPC cases produce slightly more oil
than the PI cases, but this is because the PI cases hold the average fluid
level slightly above the set point and MPC cases maintain an average fluid
level slightly below the set point. The increase in cumulative recovery is
0.029% over the simulation period for the MPC case, 0.031% for the MPC
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case with reduced discretization, 0.026% for the PI case, and 0.028% for the
reduced PI case. Although these appear to be small increases in incremental
production for a single well, the cumulative effect on a large-scale field would
imply significant gains in field wide production. This needs to be verified
in future work with high fidelity reservoir simulators to quantify production
and profitability gains from improved height control.

7. Conclusion and Future Work

This work illustrates the ability to use MPC for oil production systems
with sucker rod pumps. The oil production system model includes both
reservoir and well/pumping unit dynamics. The models are combined to op-
timize for closed loop control. This determines optimal operation by directly
considering all major physical constraints of the system simultaneously. In-
creased ultimate recovery and NPV are enabled by automatically controlling
annular fluid height and bottomhole pressure.

The ability to estimate uncertain reservoir parameters is illustrated with
MHE. Specifically, reservoir skin estimation is illustrated where the load
and position of the rod pumping unit are measured. When fluid height is
also measured, additional reservoir parameters, such as the average reservoir
pressure and porosity, can be estimated.

Predictively setting strokes per minute for a conventional rod pumping
unit is shown where the annular fluid level is inferentially controlled. The
fluid height remains controlled within the acceptable region with minimal
stroking speed adjustments. MPC application results in a slight 0.03% in-
crease in cumulative oil production vs. conventional pump off control over
a period of 3 minutes. Future work will verify production gains over longer
periods with high fidelity reservoir simulations.

The models and methods in this work represent a novel contribution in
oil field production well control and reservoir optimization. Simultaneously
considering many, or all, system degrees of freedom and constraints may
lead to more optimal reservoir production. Future work should expand these
methods to include: 1) Additional artificial lift methods such as gas lift and
electronic submersible pumps 2) Additional system constraints such as gath-
ering systems, 3) More rigorous well, pump unit, and reservoir models that
include prime mover dynamics, multiple phase flow, and fluid compressibility
4) Investigate and improve solve time to determine applicability for real-time
control 5) Tune the application for use in unconventional reservoir settings.
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[60] A Wächter and L T Biegler. On the implementation of a primal-dual
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming, volume 106. 2006. ISBN 1010700405.

[61] Dongyu Wang and Hongzhao Liu. Dynamic Modeling and Analysis of
Sucker Rod Pumping System in a Dirrectional Well. Mechanism and
Machine Science, 408, 2017. doi: 10.1007/978-981-10-2875-5. URL
http://link.springer.com/10.1007/978-981-10-2875-5.

[62] G. Wayne Westerman. Successful application of pump-off controllers.
In SPE Annual Fall Technical Conference and Exhibition, pages 1–
10. Society of Petroleum Engineers, 1977. ISBN 978-1-55563-732-
3. doi: 10.2118/6853-MS. URL http://www.onepetro.org/doi/10.

2118/6853-MS.

[63] P Wolm, X.Q. Chen, J.G. Chase, W. Pettigrew, and C.E. Hann. Anal-
ysis of a PM DC Motor Model for Application in Feedback Design for

61

http://dx.doi.org/10.1021/ie9018116
http://dx.doi.org/10.1021/ie9018116
http://www.mdpi.com/2227-9717/5/3/34
http://www.mdpi.com/2227-9717/5/3/34
http://link.springer.com/10.1007/978-981-10-2875-5
http://www.onepetro.org/doi/10.2118/6853-MS
http://www.onepetro.org/doi/10.2118/6853-MS


Electric Powered Mobility. Mechatronics and Machine Vision in Prac-
tice, 2008.

[64] Yunhua Yu, Haitao Shi, and Lifei Mi. Research on feature extraction
of indicator card data for sucker-rod pump working condition diagnosis.
Journal of Control Science and Engineering, 2013(60574:1–6, 2013. ISSN
16875257. doi: 10.1155/2013/605749.

[65] Victor M. Zavala, Carl D. Laird, and Lorenz T. Biegler. A fast moving
horizon estimation algorithm based on nonlinear programming sensitiv-
ity. Journal of Process Control, 18(9):876–884, 2008. ISSN 09591524.
doi: 10.1016/j.jprocont.2008.06.003.

[66] Yin Zhang, Heng Li, and Daoyong Yang. Simultaneous Estimation
of Relative Permeability and Capillary Pressure Using Ensemble-Based
History Matching Techniques. Transport in Porous Media, 94(1):259–
276, 2012. ISSN 01693913. doi: 10.1007/s11242-012-0003-3.

62


	Introduction
	Rod Pump Controller
	Sucker Rod Pump and Well Modeling
	Reservoir Modeling for Well Control
	Nomenclature

	Methods
	Well and Rod String System
	Surface Unit Equations of Motion
	Rod String and Well Modeling
	Reservoir Modeling
	Well Vertical Lift Performance
	Economics
	Moving Horizon Estimation and Model Predictive Control

	Solution Methods
	Numerical Methods
	Simulating Pump Boundary Conditions for Optimization
	Comparison to Analytical Solution
	Grid Independence Study

	Modeling Results
	Reservoir Pressure and Production Dynamics
	Rod String Dynamics

	Moving Horizon Estimation Results
	Annular Fluid Height Estimation
	Reservoir Parameter Estimation

	Dynamic Optimization & Model Predictive Control
	Case 1 - Pump-Off Control With Timer
	Case 2 - Fluid Height Control With PI
	Case 3 - Fluid Height Control With MPC
	Comparison of Cases

	Conclusion and Future Work

