

Infrastructure Monitoring

John Hedengren, Ryan Farrell and Kevin Franke Brigham Young University

Project Overview

- Objective To achieve sub-cm point cloud accuracy using optical sensing methods
- Duration 2 years
- Budget \$80,000
- Deliverables for current year
 - Study methods for improving computer vision models vs. LiDAR
 - Measure impact of model error in engineering applications

Outline

- Infrastructure Case Studies
 - Steinaker Dam
 - Chile Earthquake
 - North Salt Lake Landslide
- Improving Model Quality
 - Image Collection Optimization
 - New Processing Techniques
 - Proposed Study

INFRASTRUCTURE CASE STUDIES

Infrastructure Case Studies

Study	Objective		
Steinaker Dam, Vernal UT	Measure and observe slope failure		
Iquique Chile Earthquake	Develop and compare metrics to those taken by hand		
North Salt Lake Landslide, UT	Detect change and movement		

Steinaker Dam- USBR

- In October 2014, we assisted with the investigation of a slope failure at Steinaker Dam in Vernal, Utah
- Due to airspace restrictions, photos were taken from a manned helicopter
- Camera equipped with GPS tracker
- Analysis is ongoing; working models (point cloud, mesh, and texture), DEM, and orthophoto developed so far

Steinaker Dam- USBR

Point Cloud Models

Orthophoto

Iquique Chile Earthquake

- On April 1st 2014, Iquique, Chile experienced a M8.2 earthquake; BYU collaborated on the geotechnical report
- Imagery gathered with a quadcopter platform was used to develop 3D models of affected infrastructure
- Intention is to develop metrics comparable to those taken on-site, proving the viability of UAV-based remote sensing for post-earthquake reconnaissance

Iquique Chile Earthquake

North Salt Lake Landslide

- On August 5th 2014, a landslide occurred in North Salt Lake, Utah. The slide destroyed one home and put several others in danger
- UGS and FEMA requested that we fly the site. We flew an sUAV over the slide on August 6th, 14th and 28th
- The goal of these flights was to gauge drift over the month following the initial slide
- The comparison between the models is ongoing
- Collaboration with the city of North Salt Lake and UGS is ongoing as well

Landslide Comparison Models

August 14th

August 28th

IMPROVING MODEL QUALITY

Image Collection Optimization

Lab Scale Camera Testing

(a) Simulation bounding box

(b) Coordinate system

 $\mathbf{c}\iota)$ Lateral view of the box in the 3D model

Table 2: 95% Confidence Interval Quality Assessment Results

Camera	5	10	15	20
(Pictures)	(cm)	(cm)	(cm)	(cm)
Nikon (24)	5.0085 - 5.1432	9.8117 - 10.0742	15.0002 - 15.2123	19.6559 - 19.8679
Nikon (18)	5.0539 - 5.1441	9.6818 - 10.0458	14.4786 - 14.6990	19.6635 - 19.8602
LumiX (18)	4.6382 - 5.0428	_	_	_
GoPro (24)	4.4230 - 4.7730	_	_	_

Flight Path Optimization Workflow

Terrain Simulation

Son of Blaze Canyon, Utah

4.238 4.2378

Flight Path Optimization

Terrain Simulator

USGS Data

Point Cloud Comparison

SfM Software

4.2386 4.2386

5 Degree of Freedom Camera Optimization

- Latitude
- Longitude
- Elevation

5 Degrees of Freedom

- Latitude
- Longitude
- Elevation
- Camera Pitch
- Camera Yaw

IMPROVING MODEL QUALITY

New Processing Techniques

Improved Processing Workflow

- Masking Crop out unwanted areas such as sky and water. Reduces processing time
- **Computer** In-house assembled and upgraded processing computer. Large increase in processing capability
- **Processing Settings** Ultra-High processing setting increased model density, however, processing time increased considerably

Before Masking

Resulting Point Cloud

Results From Improved Processing Workflow

SkyJib and Nikon 7100 vs. LiDAR

	Before	After
Resolution	6,919 pts/m²	38,889 pts/m ²
Ground Nearest Distance	1.2 cm	.5 cm
Accuracy	3 cm	3 cm

US-89 Arizona landslide

Phantom and GoPro vs. LiDAR

	Before	After
Resolution	99 pts/m²	2,061 pts/m ²
Ground Nearest Distance	10 cm	2.2 cm
Accuracy	14 cm	5 cm

Flying Wing and GoPro vs. LiDAR

	Before	After	
Resolution	85 pts/m²	797 pts/m²	
Ground Nearest Distance	10.8 cm	3.5 cm	
Accuracy	14 cm	14 cm	

Comparison of Resolutions

Added Processing Time

*All time estimation based on a picture sample size of 500 photos

C-UAS

New Study Plan

- When studying US89 in Arizona, different platform and camera combinations were tested and compared
- There are several additional processing parameters that can be tested in order to improve accuracy of models
- Three processing parameters will be compared in the new study of the North Salt Lake landslide
- The new study will determine the most accurate model based on density and ground nearest distance to ground truth LiDAR

Study Matrix

	No GPS		Ground Control		Camera GPS		Ground Control and Camera GPS	
	No masking	Masking	No Masking	Masking	No Masking	Masking	No Masking	Masking
essing ty	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium
Proce Quali	High	High	High	High	High	High	High	High

• **Objective** - Take what we learn and quantify and understand the contribution of each processing technique to the accuracy of the model

• 16 models comparing processing factors

Conclusions/Recommendations

Based on these results, we believe:

- Model quality and accuracy are significantly improved
- Improvements in accuracy limited by photo quality (motion blur, etc.)
- Accuracy an upper limit when using non-georeferenced imagery
- Both hardware choices and processing methods should be optimized for a given project

Next six months, we will:

- Use camera-mounted GPS to overcome apparent accuracy limits
- Implement new low-cost, light-weight LiDAR sensors, and compare results to SfM output
- Perform a study to quantify the relative influence of flight path, camera-mounted GPS, surveyed GPS control points, and various processing parameters

Beyond this project...

Model Information Extraction

- Automated identification of materials and objects
- Applications to:
 - Geologic formations
 - Pipeline monitoring
 - Levee monitoring
 - Other large scale infrastructure

Sensor Fusion

- Leverage SLAM for improved SfM
- Automated ground control point acquisition
- Combining strengths of LiDAR, hyperspectral, and E/O sensors
- Optimal flight paths for multi-sensor missions
- Multi-scale modeling and detection

