
1

A Continuous Formulation for Logical Decisions in Differential Algebraic Systems using

Mathematical Programs of Equilibrium Constraints

Submitted to: Industrial & Engineering Chemistry Research

October 19, 2012

Kody M. Powell (Corresponding Author)

kody.powell@utexas.edu

The University of Texas at Austin

Department of Chemical Engineering

200 E. Dean Keeton St. Stop C0400

Austin, TX 78712-1589

John D. Hedengren

Brigham Young University

Department of Chemical Engineering

Thomas F. Edgar

The University of Texas at Austin

Department of Chemical Engineering

2

ABSTRACT

 This work presents a methodology to represent logical decisions in differential algebraic

equation constrained optimization problems using a set of purely continuous algebraic equations.

The formulations may be used when state variables trigger a change in process dynamics, and

introduces a pseudo-binary decision variable, which is continuous, but will only take on values

of either zero or one at the solution. This formulation enables dynamic optimization problems

with logical disjunctions to be solved without using less computationally efficient methods, such

as mixed integer programming or sequential solution methods. Several case studies are given to

illustrate the value of this methodology including nonlinear model predictive control of a

chemical reactor using a surge tank with overflow to buffer disturbances in feed flow rate. In this

example, the continuous logic formulation of the problem solves over 300 times faster than the

corresponding sequential method formulation.

1. INTRODUCTION

 In the field of simulation, optimization, and control, models are ideally formulated as a

set of continuous equations with continuous derivatives, so that solutions can be efficiently

obtained using gradient-based solution algorithms, such as Newton’s method. However, in many

systems, the need frequently arises to include operators that may be discontinuous (such as the

signum operator) or have discontinuous first derivatives (such as the absolute value operator).

The introduction of such discontinuities into a model can have adverse impacts on the solver’s

ability to efficiently obtain an accurate solution due to the introduction of non-smooth gradients.

Such problems have to be re-formulated and solved using a less desirable method.

 In the field of dynamic optimization and control, optimization problems are particularly

difficult, due to the high dimensionality of time-dependent problems, as model predictions and

control actions for every time step must be prescribed by the solver. Furthermore, online

applications require fast solution times so that control actions can be calculated and

recommended within some pre-determined sampling period. The introduction of discontinuities

further complicates matters, as some practitioners may resort to computationally expensive

solution methods, such as Mixed Integer Nonlinear Programming (MINLP), in order to

implement such disjunctive constraints.

3

 Mathematical programs of equilibrium constraints (MPECs) have been proposed as a

way to integrate non-smooth behavior into a set of simultaneous algebraic equations by the

inclusion of complementarity conditions1,2. Complementarity, the requirement that at least one of

a pair of variables be at some limit, provides a framework for representing disjunctive behavior

using a set of continuous equations. MPECs using complementarity constraints have found use in

optimization problems in the fields of structural mechanics3,4, chemical and process

engineering5–7, electric power generation8, and other fields 9,10.

 Mathematical programs of complementarity constraints (MPCCs) are a subset of MPECs

and can be used to represent non-smooth or discontinuous operators, such as absolute value, sgn,

and min/max11. This work presents the formulation of a greater than or equal to (≥) and a less

than or equal to (≤) operator, which can be used for if/then logic in a process model. The

formulation is presented as a set of continuous algebraic equations. The equations are formulated

in such a way, however, that only binary (0 or 1) solutions are obtained for certain variables.

These pseudo-binary variables are then used to represent logical conditions within the model.

This work does not present a detailed explanation of the convergence properties of MPECs, but

rather puts forward a novel formulation that can be used by practitioners to represent logical

statements within a continuous process model.

2. MOTIVATION

2.1. LOGICAL DISJUNCTIONS IN OPTIMIZATION

 Logical expressions, such as the less than/equal to (≤) operator are typically introduced

into optimization problems through the use of mixed integer programming, where certain

variables are constrained at integer values. A general disjunctive program can be converted to an

equivalent MINLP12,13 and solved using various MINLP algorithms14–16. However, one drawback

to MINLP formulations is that solution times grow exponentially with an increased number of

discrete decisions5. When considering dynamic optimization problems, where the time domain is

typically discretized and a set of decisions is required for each time, optimization problems can

become especially large. When rapid solution is required, converting a large dynamic

optimization problem with disjunctions to an MINLP problem may not be a tractable option.

Therefore, the ability to embed logical statements or other disjunctive operators as sets of

algebraic equations (or MPECs) while maintaining mathematical continuity, allows the problems

4

to be posed as standard nonlinear programming (NLP) problems, for which many efficient real-

time solvers exist.

2.2. SEQUENTIAL SOLUTION METHOD

 When converting a dynamic optimization problem into an NLP, two basic methodologies

exist: sequential methods and simultaneous methods17. A sequential method employs a forward-

stepping differential algebraic equation (DAE) or ordinary differential equation (ODE) solver,

using a Runge-Kutta or similar numerical integration technique. Using this method, inputs at

every time step are specified. The DAE solver then integrates forward one step at a time using

the pre-specified inputs. The sequential method ensures that the state equations are satisfied at all

times, as they are enforced by the DAE solver as integration transpires. Logical statements and

other disjunctions are fairly easy to implement when using sequential methods, as the state

equations can be altered at any point during the integration. For example, when a state variable

reaches some limit that triggers a disjunction, a logical statement can be embedded into the DAE

model ensuring that the change will be applied to future output from the model while that

particular condition holds.

 Sequential methods for solving DAE systems certainly have some advantages. When

used to solve dynamic optimization problems, however, the disadvantages of sequential methods

far outweigh these advantages. These methods are inefficient for large-scale optimization

problems because they require simulating the model many times with different values of inputs

(at every time step) in order to compute numerical approximations to gradient matrices so that

new guesses can be calculated. The simulated solutions are continuously converged from initial

values that are not optimal, leading to excessive CPU time that is devoted to intermediate

solutions. The requirement to converge the model equations at every iteration also leads to a

challenge for unstable systems. If the specified decision variables produce an unstable response,

the iteration may fail to find an adequate search direction for the next iteration18. It is also

difficult to enforce inequality constraints on state (or dependent) variables because the values of

these variables at each time step are only obtained by forward integration using a set of pre-

determined inputs, therefore, constraints cannot be directly imposed on these variables.

5

2.3. SIMULTANEOUS SOLUTION METHOD

 Simultaneous solution methods are frequently used in industry for dynamic optimization

and real-time control problems because they help to overcome many of the computational

inefficiencies associated with sequential solution methods19–21. Simultaneous solution methods

use collocation (more specifically, orthogonal collocation on finite elements22,23) to convert a

DAE-constrained dynamic optimization problem to an NLP where the objective function is

minimized and the constraint equations are solved simultaneously, making the algorithm much

more computationally efficient. By comparison, a sequential method requires simulating through

the differential constraint equations many times for every set of inputs24.

 The crux of a simultaneous solution method is the conversion of the DAE system to a

system of purely algebraic equations using a collocation method. The differential equations are

specified in (1) with time derivatives given as a function (f) of differential state variables (x),

algebraic state variables (y), user-controlled inputs (u), and external inputs (p), each of which is a

function of τ, a variable representing time, normalized to the range [0,1] over the time interval.

   (), (), (), ()x f x y u p     (1)

 Conversion of these differential equations is done by representing differential state

profiles in time by polynomial approximations, which are generated using Lagrange interpolation

polynomials (Ω). These polynomials are formulated to exactly match the value of the derivatives

when evaluated at the collocation points (τi). This relationship, assuming constant inputs over the

time interval, is shown in (2), where the derivatives are approximated as the summation of f

evaluated at each collocation point (τj) multiplied by the corresponding interpolation polynomial

(Ωj).

     
1

(), (), (), ()
CN

i j i j j j j
j

x f x y u p     


  (2)

 The Lagrange polynomials are formulated as shown in (3) and are of order NC-1, where

NC is the number of collocation points used in the approximation over the time interval25.

1 2

1, 1 2

()
C

C

C

N
Nk

j
k k j j k j j j N

      
        

  
  

     (3)

6

 The relationship in (2) holds exactly at the collocation points because each polynomial

(Ωj) in (3) is formulated to have a value of unity at the corresponding collocation point (τj) and a

value of zero at all the other collocation points25.

 
1,

0,
i j

j i
i j

 


 


   
 (4)

 With state derivatives guaranteed to exactly match at the collocation points, the state

variables themselves are approximated by integrating (2).

   
1

0

ˆ d     (5)

This allows for the state values themselves to be approximated.

     0
1

ˆ (), (), (), ()
CN

i j i j j j j
j

x x w f x y u p     


   (6)

where ˆ
j is the integral of j , which is a polynomial of order NC, x0 is the value of the state

variable at the beginning of the time interval, and h is the width of the time interval.

 In order to ensure integration accuracy and that Ω is explicitly defined at the right end of

the time interval (τ=1), Radau collocation points are used. The Radau collocation points are

derived from Radau quadrature, which is similar to Gaussian quadrature, except that one

collocation point is defined explicitly at one end (rather than having all points exclusively in the

interior) of the time interval26. For dynamic optimization applications, the interval is 0 to 1, with

the state values at 0 obtained from the previous interval, and with a collocation point set exactly

at 1.

 With an approximation for a single time interval defined, multiple time intervals can be

joined together, with a separate polynomial representing each interval, or finite element. The

initial condition for each time interval is given as the final condition of the previous time interval

(C0-continuity). Other quadrature methods propagate first derivatives (C1-continuity) or higher p-

order derivative information (Cp-continuity) across the interval boundaries27 to achieve higher

accuracy across intervals. Figure 1 illustrates the orthogonal collocation on finite elements

discretization scheme. Each time interval (k) of length w contains NC collocation points. The

example in the figure uses NC=3, but higher or lower orders of approximation also exist. The

7

approximation from finite element k would use the state value from the last collocation point

(i=NC) of element k-1 as its initial condition, as shown in (7). In (7), the subscripts (i and j) refer

to the collocation point and the superscript (k) refers to the finite element number.

     1

1

ˆ , , ,
C

C

N
k k k k k k
i i N j i j j j j

j

x x w f x y u p 



   (7)

 With the approximation in (7) completed, the differential equations are converted into

algebraic equations, which can be solved by a nonlinear algebraic equation solver. Therefore,

enforcing additional algebraic equality constraints (g) becomes possible, as these equations (8)

can be included with the algebraic equations in (7).

 , , , 0k k k k
j j j jg x y u p  (8)

Nonlinear inequality constraints can also be included, as can upper and lower bounds on the

variables themselves.

 , , , 0k k k k
j j j jh x y u p  (9)

l uu u u  (10)

l ux x x  (11)

l uy y y  (12)

 The ability to directly impose constraints on state variables is one of the advantages of a

simultaneous solution method, as opposed to sequential method. The algebraic formulation of

(6)-(12) lends itself quite well to inclusion in an optimization problem which can be converged

by an NLP solver.

2.4. EMBEDDING MPECS INTO SIMULTANEOUS EQUATIONS

 One of the disadvantages of a simultaneous solution method compared to a sequential

method is that it is much more difficult to embed disjunctive constraints or logical conditions.

Because the model is solved as a set of simultaneous algebraic equations, the introduction of

disjunctions would make it difficult to solve the equations by standard methods. However, with

the ability to enforce algebraic constraints within a differential model, MPECs, which are

formulated as sets of algebraic equations, can be embedded into the model to represent

disjunctions. These MPECs take advantage of a complementarity condition that at least one of

two constraints be active, as shown in (8), where ┴ is the complementarity operator, enforcing at

least one of these constraints at all times5,10.

8

0≤ ┴  ≥0 (13)

In this work,  and  are referred to as complementarity variables. The condition in (13) can

be maintained by using a number of different formulations, and the performance of each may

depend on the solution algorithm used. The first option is to represent the complementarity as an

equality constraint as in (14).

0    (14)
This equation requires that at least one of the pair  and  be equal to zero. Alternatively,

inequality constraints may also be used.

0    (15)
or

     (16)
where ε is a very small positive number, indicating that some error in this relationship may be

tolerated in order to enhance the convergence properties of interior point NLP methods5.

 Using the complementarity condition, several different MPECs can be formulated to

represent some commonly used functions. These sets of equations can be embedded into a DAE

model and keep the model continuous and smooth, despite the fact that these operators represent

non-smooth or discontinuous operators in standard practice.

2.4.1. ABSOLUTE VALUE OPERATOR

 The absolute value operator

y x (17)

can be alternatively represented in a continuous optimization problem by embedding the

following equations into the DAE or algebraic model:

x     (18a)

, 0    (18b)

0    (18c)

y     (18d)

In (18b), the complementarity variables are restricted to be nonnegative. Because the

complementarity condition (18c) requires that at least one of these variables be zero, (18a)

9

represents the difference between two nonnegative values. When x is positive,  must be zero

in order to satisfy (18c).  is therefore positive and equal to x. Thus, the summation of  and

 in (18d) becomes equal to the absolute value of x. Similarly, for negative x,  must be

positive and  must be zero. The summation of these two nonnegative values (18d), therefore,

will always be a positive number equal in magnitude to x5.

2.4.2. MIN/MAX OPERATOR

 The min and max operators, which select the minimum and maximum value,

respectively, of two inputs (x1 and x2)

 1 2min ,y x x ,  1 2max ,z x x (19)

can also be represented using MPEC formulations.

1 2x x      (20a)

, 0    (20b)

0    (20c)

1y x   (20d)

1z x   (20e)

 In this formulation, if x1 is greater than x2,  will assume the difference between these

values.  will be zero in order to satisfy the complementarity condition (20c). The lesser of x1

and x2 will therefore be the higher number (x1) minus the difference () leaving y to be equal to

the min of the two as specified in (20d). The greater number will be the higher number plus  ,

which is zero in this case. Therefore, z will represent the max of the two numbers, as (20e)

indicates5.

2.4.3. SIGNUM OPERATOR

 The signum operator gives an output of +1 for positive input and -1 for negative input.

 sgny x (21)

This binary behavior can also take on a continuous representation by using an MPEC

formulation.

x     (22a)

10

, 0    (22b)

0    (22c)

   1 1 0y y      (22d)

As (22) indicates, when x is positive,  will also be positive and equal in magnitude to x.

Because  will be zero, y will have to equal +1 in order to satisfy (22d). Similarly, when x is

negative, y will be equal to -1, as a positive value of  and a zero value of  will enforce this

in (22d)5.

3. MPEC FORMULATIONS TO REPRESENT LOGICAL STATEMENTS

 Because MPECs provide a continuous formulation to represent some disjunctive

relationships, it is possible to represent some logical behavior within a model using similarly

constructed MPECs which take advantage of the complementarity relationships described above.

For instance an MPEC can be used to represent a binary variable, which is 1 when some

condition is true and 0 otherwise. This binary variable can then be integrated into the model

equations such that certain equations only hold true under the logical conditions dictated by the

MPEC. The remainder of this section discusses the development of a greater than/equal to (≥)

and a less than/equal to (≤) operator. Section 4 will then discuss the methodology for

implementing such logic into a set of DAEs.

3.1. GREATER THAN AND LESS THAN OPERATORS

 With only a slight modification of (22), the MPEC can be constructed so as to produce a

1 for a positive input (x) and a 0 for a negative input. Here, the variable δ is introduced to

represent the binary output of this MPEC.

1 if x>0

0 if x<0



 


 (23)

 The MPEC formulation is very similar to the signum operator, with only a slight

modification made in the fourth equation. As (24d) indicates, the output of this MPEC can be

customized to yield various constants, depending on the terms added to or subtracted from δ.

x     (24a)

, 0    (24b)

0    (24c)

11

   1 0       (24d)

 Using the formulation in (24), δ becomes a pseudo-binary variable, one which is

continuous, but can only assume values of zero or one at the solution for negative or positive

values of x, respectively.

3.2. GREATER THAN/EQUAL TO AND LESS THAN/EQUAL TO OPERATORS

 Careful inspection of (24) reveals a major shortcoming. When x=0, both complementarity

variables are simultaneously equal to zero. This means that (24d) will be satisfied by any value

of δ, as the system has an infinite number of solutions in this case. The MPEC equations must

therefore be modified in order to give the system the discrete switching behavior that is desired

with no ambiguity for any value of x.

1 if 0

0 if <0

x

x



 


 (25)

 Adding a second complementarity condition to the set of equations is proposed to

overcome the issue of ambiguity when x=0. This equation (26d) contains a third

complementarity variable, 0 , and is designed such that 0 will take on some finite (albeit still

ambiguous) value when  and  are simultaneously zero, due to the input, x, being equal to

zero.

x     (26a)

, 0    (26b)

0    (26c)

 2 2
0 0     (26d)

     01 1 0           (26e)

 In (26e) a third term is added for the case that only 0 is nonzero (which occurs when

x=0). However, some ambiguity still exists in this formulation, namely, that all complementarity

variables may simultaneously be zero when x is zero, thereby satisfying (26e), regardless of the

value of δ. In order to prevent this occurrence,  and  are squared in (26d) order to ensure

that these squared terms converge to zero at a faster rate, leaving 0 at some nonzero value. With

zero values for  and  and a finite value for 0 , the (1-δ) term multiplying 0 must equal

zero, giving δ a value of 1 when x=0. Changing the δ term in (26e) will obviously affect what δ

12

converges to in this case, meaning that the MPEC can be formulated so that δ takes on some

other, user-determined, value. The same holds true for the terms multiplying  and  if other

outputs are desired for positive and negative values for x, respectively.

 An alternate formulation using only equality constraints is used for testing the

convergence properties of this logical MPEC. The non-negativity constraints in (26b) are

removed and these constraints are instead enforced by squaring the complementarity variables in

the first equation (27a). Note that this is a system of four equations and four unknowns, with x

being considered an external input to this system.

2 2x     (27a)

0    (27b)

 2 2
0 0     (27c)

     01 1 0           (27d)

 This system of equations is evaluated for convergence properties using Newton’s method

for solving systems of nonlinear equations. The system exhibits no issues with convergence for

positive and negative values of x, with δ converging to 1 and 0, respectively, as desired. The

predominant concern is obtaining a distinct desired solution when x is zero. Newton iterations for

this scenario are shown in Figure 2 and 3. As Figure 2 illustrates,  and  converge to zero as

expected. The other complementarity variable, 0 , however, remains at its initial guess value, as

the squared terms in (27c) converge to zero in order to satisfy (27a). This finite value for 0 ,

however, forces δ to converge exactly to 1 in order to satisfy (27d), rather than leaving this value

ambiguous, as the formulation in (24) would have.

4. CONTINUOUS LOGIC IN DYNAMIC SYSTEMS

 Using the collocation scheme combined with the logical MPEC framework developed in

the previous section, dynamic systems of equations with logical conditions can be simulated

using only a set of continuous algebraic equations. This is done by embedding a logical MPEC

into the DAE system. The pseudo-binary variable, δ, from this MPEC can be multiplied with the

model equations, meaning that some equations will hold only when δ =1. Two simulation

examples are used to illustrate how this is done.

13

4.1. TANK WITH OVERFLOW

 A simple example to illustrate the need for representing logic in a DAE model is that of a

simple tank with overflow, shown in Figure 4. While the dynamics of this system are trivial, the

equations representing the dynamic behavior of the tank change dramatically when the tank

reaches its overflow limit. The system, as posed in (28), can be represented as a simple ODE

combined with a logical expression determining when the tank overflows.

in out over

dV
Q Q Q

dt
   (28a)

 if &

0 otherwise
in out max in out

over

Q Q V V Q Q
Q

  
 


 (28b)

where V is the tank volume, Qin is the flow into the tank, Qout is the flow out of the tank, and

Qover is the flow exiting the tank as overflow, when the tank volume exceeds its capacity, Vmax.

While the system simple in (28) is very simple, the logical statement (28b) prevents it from being

solved using a standard simultaneous solution method. However, by including the algebraic

equations representing the greater than/equal to logic MPEC, this system can be solved using a

simultaneous solution method. This DAE system translated into a continuous logic formulation

using an MPEC with complementarity constraints is given in (29), where (29e-29h) represent the

additional algebraic equations introduced by the logical MPEC.

in out over

dV
Q Q Q

dt
   (29a)

 1 0hi overQ  (29b)

0overQ  (29c)

maxV V (29d)
2 2

maxV V      (29e)

0    (29f)

 2 2
0 0     (29g)

     2 2
01 1 0hi hi hi           (29h)

 In this formulation, δhi is a pseudo-binary variable that is equal to one when the tank is

full and zero when it is not full. When the tank is not full, (29b) will ensure that Qover is zero.

When the tank is full, Qover will take on whatever value necessary to satisfy the material balance

(29a). However, Qover must be restricted to non-negative values in order to prevent negative

values of Qover from satisfying (29a) when the tank is not full. The MPEC tests whether the

14

quantity V-Vmax is greater than or equal to zero. However, in order to enhance convergence

properties, V is also restricted by (29d), so that V cannot exceed its limit. Alternatively, this

constraint can be imposed solely by the MPEC equations. However, this may lead to poor

convergence properties of the system. Convergence is also enhanced in this case by squaring 

and  in (29g) and (29h), forcing the squared terms to converge more quickly so that 0

remains near its initial guess in the event that the system is at its volume limit.

 In order to demonstrate the ability of (29) to accurately represent a logic-dependent

dynamic system, the set of equations with pre-specified inputs (Qin and Qout) is solved using a

DAE solution package known as Advanced Process Monitor, or APMonitor 28. This software

package allows a user to define a model using both differential and algebraic equations. The

software performs the collocation to convert the differential equations to algebraic equations and

the problem is converted to a set of nonlinear algebraic equations. For optimization, an NLP

problem would be solved. Because the system is still a continuous set of equations, APMonitor

computes the gradient matrices with automatic differentiation, ensuring accuracy and fast

solution times. The APOPT solver, which uses an active set method, demonstrates the best

convergence as the problem is solved assuming some set of constraints to be active, which works

well with inequality constraints such as (29c) and (29d).

 The results of the simulation are shown in Figures 5 through 8. As Figures 5 and 6

illustrate, the overflow (Qover) remains at zero until the tank fills. Once the tank fills, the

logical condition that Qover=0 is nullified as δhi=1, allowing Qover to take on whatever positive

value is needed to satisfy (29a). The complementarity variables (Figure 8) are well behaved, with

 equaling zero when the tank is at the high limit and 0 equaling zero when the tank is not at

the high limit. The positive complementarity variable () is always zero as the system is

prevented from exceeding the high limit by (29d).

 Remarkably, the results in Figures 5-8 illustrate that logic can be embedded into a

dynamic system using only continuous algebraic equations to model the system. While

convergence for the formulation in (29) is obtained, there are many variations of the MPEC

formulation, some of which do not display the same ability to converge consistently. When

15

implementing similarly-formulated MPECs, it may be necessary to explore various formulations

to determine which will be the most robust for the application and choice of solver.

4.2. POWER FLOW SYSTEM

 The logical MPEC’s performance is also tested in a power flow system (shown in Figure

9) with a photovoltaic solar panel, a battery, a load (represented by a building), and the electric

grid. This system assumes simple dynamics for the battery (30a). Energy balances are computed

around the photovoltaic panel and the load in order to obtain (30b) and (30c), respectively. A

logic-based operating strategy is applied in order to specify the system’s operation. Using this

strategy, the maximum amount of solar power is delivered to the load by using the battery. When

solar power available (qPV) exceeds the demand (qload), the battery (whose state of charge is

represented by Ebatt) is charged. When the battery reaches its capacity (Emax), the excess power is

delivered to the grid with flow q3. Conversely, when the battery is void of charge, power must be

imported from the grid to the load with flow q4. This logic is specified in (30d) and 30e). The

variables q1 and q2 represent the power delivered to and extracted from the battery, respectively.

1 2
battdE

q q
dt

  (30a)

1 30 PVq q q   (30b)

2 40 loadq q q   (30c)

1 1
3

 if &

0 otherwise
PV batt max PVq q E E q q

q
  

 
 (30d)

4

 if 0 &

0 otherwise
load 2 batt load 2q q E q q

q
  

 


 (30e)

 Conversion of the model to continuous form requires two sets of logical MPEC equations

representing the logical decisions of (30d) and (30e). This requires two sets of pseudo-binary (δ)

and complementarity variables (), which are assigned the subscripts hi and lo, corresponding to

the full (30d) and empty (30e) battery charge conditions, respectively. When converted to

continuous logic form, (30) becomes (31).

1 2
battdE

q q
dt

  (31a)

1 30 PVq q q   (31b)

2 40 loadq q q   (31c)

min batt maxE E E  (31d)

16

High limit MPEC eqns corresponding to (30d)

  31 0hi q  (31e)

3 0q  (31f)
2 2

max batt hi hiE E      (31g)

0hi hi    (31h)

 2 2
,0 0hi hi hi     (31i)

     2 2
,01 1 0hi hi hi hi hi hi           (31j)

Low limit MPEC eqns corresponding to (30e)

  41 0lo q  (31k)

4 0q  (31l)
2 2

min batt lo loE E      (31m)

0lo lo    (31n)

 2 2
,0 0lo lo lo     (31o)

     2 2
,01 1 0lo lo lo lo lo lo           (31p)

 The continuous logic formulation for the power flow system is demonstrated using a

simulation with pre-determined qpv and qload over a 24-hour time horizon, which is shown in

Figure 10. Hourly time intervals are used in the simulation. As the figure shows, the supply (qpv)

and demand (qload) do not perfectly coincide, with the available solar power peaking near midday

and the demand peaking later in the afternoon, requiring the system to use battery energy storage

in order to maximize the power delivered to the load from the solar panel. As Figures 11 through

13 illustrate, at the beginning of the day, there is no charge in the battery (indicated by δlo=1) and

the demand exceeds the load, forcing power to be drawn from the grid. As the solar power picks

up, the battery charges until it reaches its capacity (indicated by δhi=1). When this occurs, the

logic dictates that the excess power be exported from the solar panel to the grid, indicated by the

positive values for q3 in Figure 11. At the end of the day, the solar power is diminished, the

battery completely discharges, and power is again imported from the grid.

 The power flow example again demonstrates the value of using MPECs to represent

logical decisions in a DAE system. Embedding this logic in the form of continuous algebraic

equations allows the system to be solved using the simultaneous method, which has been proven

to significantly increase computational efficiency as compared to a sequential method.

17

5. CONTINUOUS LOGIC IN AN NMPC PROBLEM

 As a demonstration of the value of integrating logic into a simultaneous solution method,

a nonlinear model predictive control (NMPC) problem is solved for a continuous stirred tank

reactor (CSTR), which carries out the reaction:

2A B C  (32)
The objective of the controller is to regulate the concentration of component C (CC) using the

heat input to the reactor (qheat) and the flow rate of component B (QB) as manipulated variables.

The system is subject to disturbances in the flow of component A (QA,in) and is equipped with a

surge tank to buffer out the effects of sudden increases in QA. However, in the case that the

volume of fluid in the surge tank exceeds the tank capacity, the surge tank will overflow and a

sudden increase in the flow of A will enter the CSTR as shown in Figure 14. NMPC in this

scenario can monitor the level in the surge tank (h) and the flow of A coming into the surge tank

so that sudden disturbances due to surge tank overflow can be anticipated and accounted for pre-

emptively by the controller. The model requires a built-in logical statement as in (28) to

represent the tank overflow condition.

 In the MPC problem, the outflow from the bottom of the surge tank (QA,out) is

proportional to the square root of the height (h) in the tank (34), with the dynamics of the tank

represented by a simple material balance (33). The model requires a built-in logical statement to

represent the tank overflow condition (35).

, , ,tank A in A out A over

dh
A Q Q Q

dt
   (33)

,A outQ C h (34)

, , ,
,

 if h &

0 otherwise
A in A out max A A out

A over

Q Q h Q Q
Q

  
 


(35)

 The CSTR is assumed to be at constant volume so that the total inlet flow equals the flow

out (Qout) at all times (36).

, ,out A out A oover BQ Q Q Q   (36)

The kinetics in the tank are first order in both A and B and the rate law (37) has temperature

dependence subject to the Arrhenius equation, where RA is the rate of reaction of component A,

18

k0 is the reaction rate constant, EA is the activation energy, R is the ideal gas constant, T is the

temperature in the tank, CA and CB are the concentrations of component A and B, respectively.

0

AE

RT
A A BR k e C C



 (37)

The tank temperature is determined by an energy balance on the tank (38), where qheat is the rate

that heat is delivered to the tank, V is the CSTR volume, ρ and CP are the density and the heat

capacity, respectively of the fluid in the system, and the subscript 0 refers to the fluid before it

enters the tank. The components A, B, and C are all assumed dilute so that their concentrations

do not affect the density, heat capacity, or overall material balances of the solution. This

assumption also permits neglecting heat of reaction in the energy balance.

 0P P out heat

dT
VC C Q T T q

dt
    (38)

 Material balances on each component are also computed, giving three more differential

equations (39)-(41), where CC is the concentration of component C.

 , , 0
A

A out A over A out A A

dC
V Q Q C Q C R V

dt
    (39)

0
B

B B out B A

dC
V Q C Q C R V

dt
   (40)

2C
A out C

dC
V R V Q C

dt
  (41)

 The MPC problem seeks to minimize deviations from the set point for CC subject to

disturbances in QA,in without making drastic control moves. To achieve this trade-off, a quadratic

performance index is used where the squared deviations at the end of each time interval are

weighted differently (10 for set point deviations and 1 for manipulated variable changes) and

summed to create a performance index to be minimized. This yields the dynamic optimization

problem in (42), which is subject to the system model in (33) through (41) and inequality

constraints on the inputs.

     2 2 2

, , , , 1 , , 1
,

1 1 1

min 10 1 1
t t t

B heat

N N N

C i C SP B i B i heat i heat i
Q q

i i i

C C Q Q q q 
  

        (42a)

Subject to (33)-(41)

19

0 B B,maxQ Q  (42b)

0 heat heat,maxq Q  (42c)

 A first order hold is used for the manipulated variables (MVs) where the value of these

variables is held constant over each time interval. A total of Nt time intervals are used in the

model prediction. As Figure 14 shows, the controller checks the most recent state measurements

(concentrations and temperature in the CSTR and fluid height in the surge tank) and disturbance

measurements (flow of A) at each time step in order to update the model and ensure accurate

future predictions. The model with built-in logic for surge tank overflow allows the controller to

anticipate large influxes of flow and proactively account for this disturbance.

 The optimization problem posed in (42) is solved using both a sequential and a

simultaneous solution method. In this problem Nt=30 over 1 minute time intervals with a control

horizon equal to the prediction horizon of 30 minutes. With two MVs, the optimization problem

has 60 degrees of freedom in total. The sequential method version of the problem uses an

optimization solver (FMINCON) in MATLAB 29, which takes pre-determined values of the inputs,

simulates the system using an explicit ODE integrator (ODE45), computes the objective function

and uses this information to construct numeric approximations to the gradient matrices to

compute a new search direction for the next iteration. The sequential method also uses if/then

logic as in (28b) to describe the changing dynamics of the surge tank. This methodology requires

simulating through the entire time horizon of the system model thousands of times in order to

generate the gradient matrices and iterate.

 The simultaneous version of the problem is solved using APMonitor with the greater

than/equal to MPEC described in (29), which, combined with the built-in orthogonal collocation

scheme in APMonitor, allows the problem to be expressed entirely as a set of algebraic equations

and inequality constraints, which can be solved using an NLP. The APOPT solver is again used

to obtain a solution to this NLP. This method does not require multiple simulations of the system

model as it solves the constraints of the system simultaneously subject to minimization of the

objective function. As opposed to the sequential approach, the simultaneous method converges

the equation residuals only once at the optimal solution.

 The MPC problem is solved with the system initially at steady state with QA,in=QB,in=0.5

m3/min and CC exactly on set point at 3 mol/m3. At time t=0, however, a step change disturbance

20

is introduced, changing QA,in to 0.8 m3/min. The results from each solution method showing the

controlled variable (CV) and the MVs are shown in Figure 15. As the figure shows, despite the

introduction of a large disturbance, the CV is maintained very near its set point in each case.

There are slight differences in the solutions using the sequential method relying more heavily on

QB control moves and the simultaneous method relying more heavily on qheat control moves. The

optimization results of the two methods are compared in Table 1, which shows that the

sequential method produces a slightly better objective function, but requires 300 times more

computational effort. The simultaneous method has negligible computation time for an MPC

problem with a one minute time interval, indicating that this MPC scheme could be implemented

with no concerns on completing the solution within the required cycle time. In contrast, it would

be difficult to implement a real-time MPC application with the sequential method due to the

computation time exceeding the time interval in used in the MPC problem.

Table 1: Computational results from the sequential and simultaneous solution methods. Computations for
each method are executed using an Intel ® Core 2 Duo ™ (2.54 GHz) processor with 4 GB RAM.

	 Sequential	 Simultaneous	
Objective	function	value	 0.0094	 0.0108	
System	model	evaluations	 3,336	 1	
Computation	time	(s)	 331.6	 1.1	

 The profiles of some relevant state variables are shown in Figure 16 for the simultaneous

solution method. As these plots indicate, the continuous logic formulation produces the desired

switching behavior with no issues. As the surge tank reaches its overflow condition, the tank

overflows but otherwise, QA,over=0. In this MPC application, it is invaluable to have the overflow

condition represented in the model, as it allows the controller to anticipate large interruptions to

the operation of the CSTR. While the disturbance it introduced at t=0, its major impact is not

observed until t=18 min when the tank overflows. The model however, allows for this change to

be predicted and control moves to be made pre-emptively. As Figure 15 shows, more drastic

control moves are made several minutes before the tank overflows. Predicting this occurrence

with a logic-embedded model allows the system to effectively maintain its set point despite the

large change in operating conditions.

21

6. CONCLUSIONS AND FUTURE WORK

 This work demonstrates how logical expressions based on a greater than/equal to (≥) or

less than/equal to (≤) operator can be used in NMPC. As opposed to prior work, the new method

is well-conditioned at the switching point, leading to a unique solution with improved

convergence properties. These equations, known as MPECS, can be embedded into a DAE

model using only continuous algebraic equations. The MPECs take advantage of

complementarity conditions, requiring that at least one of a set of two inequality constraints be

active at all times. Two simulation examples have been presented to demonstrate the viability of

using MPECs to represent these logical decisions. The examples, as presented, demonstrate rapid

and accurate convergence, illustrating how a logical operating scheme can be simulated using an

efficient simultaneous solution method.

 In addition to simulation, an NMPC problem is also solved using the formulation

developed in this work. The simultaneous solution method combined with the continuous logic

formulation is compared to a sequential method using simple if/then logic. The results show that

the methods produce nearly equivalent solutions. However, the simultaneous method with

continuous logic is 300 times faster in obtaining a solution. The continuous logic formulations

allow implementation of logical statements into a model without having to resort to the less

efficient sequential method for real-time NMPC or dynamic optimization calculations. The

model including the dynamics and the logical statements are implemented as a continuous

system of algebraic equations, which can be solved with efficient NLP solvers.

 While the examples posed in this work demonstrate the potential of using MPECs for

logical decisions, this nascent topic requires much more research to be a viable method for

solving optimization problems with such decisions. One of the key challenges to overcome is the

non-convexity that is characteristic of many problems with logical decisions like this, which

causes the optimizer to converge to local solutions. Furthermore, the mathematical properties of

logical MPECs must be studied to provide a better understanding of how these problems are

handled by various solvers and what can be done to further enhance performance. In particular,

in the examples in this paper, the logical conditions are dependent on pre-determined inputs.

Optimality is more difficult to obtain when the logical statements depend on the decision

variables, with the optimizer typically finding a feasible solution and stopping. This issue is one

22

that requires further understanding of how a solver deals with continuous logic dependent on

decision variables. This paper presents the concept of using MPECs to represent logical

decisions when using a simultaneous solution method so that this concept may be explored for

other applications.

23

7. WORKS CITED

1. Movahedian, N.; Nobakhtian, S. Necessary and Sufficient Conditions for Nonsmooth
Mathematical Programs with Equilibrium Constraints. Nonlinear Analysis: Theory, Methods
& Applications 2010, 72, 2694–2705.

2. Yin, H.; Ding, F.; Zhang, J. Active Set Algorithm for Mathematical Programs with Linear
Complementarity Constraints. Applied Mathematics and Computation 2011, 217, 8291–
8302.

3. Tangaramvong, S.; Tin-Loi, F. An FE-MPEC Approach for Limit Load Evaluation in the
Presence of Contact and Displacement Constraints. International Journal of Solids and
Structures 2012, 49, 1753–1763.

4. Tangaramvong, S.; Tin-Loi, F.; Senjuntichai, T. An MPEC Approach for the Critical Post-
collapse Behavior of Rigid-plastic Structures. International Journal of Solids and Structures
2011, 48, 2732–2742.

5. Baumrucker, B. T.; Renfro, J. G.; Biegler, L. T. MPEC Problem Formulations and Solution
Strategies with Chemical Engineering Applications. Computers & Chemical Engineering
2008, 32, 2903–2913.

6. Raghunathan, A. U.; Biegler, L. T. Mathematical Programs with Equilibrium Constraints
(MPECs) in Process Engineering. Computers & Chemical Engineering 2003, 27, 1381–
1392.

7. Raghunathan, A. U.; Soledad Diaz, M.; Biegler, L. T. An MPEC Formulation for Dynamic
Optimization of Distillation Operations. Computers & Chemical Engineering 2004, 28,
2037–2052.

8. Gabriel, S. A.; Leuthold, F. U. Solving Discretely-constrained MPEC Problems with
Applications in Electric Power Markets. Energy Economics 2010, 32, 3–14.

9. Baumrucker, B. T.; Biegler, L. T. MPEC Strategies for Optimization of a Class of Hybrid
Dynamic Systems. Journal of Process Control 2009, 19, 1248–1256.

10. Baumrucker, B. T.; Biegler, L. T. MPEC Strategies for Cost Optimization of Pipeline
Operations. Computers & Chemical Engineering 2010, 34, 900–913.

11. Hedengren, J. D. MPEC: Mathematical Programs with Equilibrium Constraints
http://apmonitor.com/wiki/index.php/Apps/MpecExamples.

12. Björkqvist, J.; Westerlund, T. Automated Reformulation of Disjunctive Constraints in
MINLP Optimization. Computers & Chemical Engineering 1999, 23, Supplement, S11–S14.

13. Grossmann, I. E. Review of Nonlinear Mixed-Integer and Disjunctive Programming
Techniques. Optimization and Engineering 2002, 3, 227–252.

14. Grossmann, I. E.; Türkay, M. Solution of Algebraic Systems of Disjunctive Equations.
Computers & Chemical Engineering 1996, 20, Supplement 1, S339–S344.

15. Liu, G. S.; Zhang, J. Z. A New Branch and Bound Algorithm for Solving Quadratic
Programs with Linear Complementarity Constraints. Journal of Computational and Applied
Mathematics 2002, 146, 77–87.

16. Sawaya, N. W.; Grossmann, I. E. A Cutting Plane Method for Solving Linear Generalized
Disjunctive Programming Problems. Computers & Chemical Engineering 2005, 29, 1891–
1913.

17. Biegler, L. T. An Overview of Simultaneous Strategies for Dynamic Optimization. Chemical
Engineering and Processing: Process Intensification 2007, 46, 1043–1053.

18. Tanarkit, P.; Biegler, L. T. Stable Decomposition for Dynamic Optimization. Industrial &
Engineering Chemistry Research 1995, 34, 1253–1266.

24

19. Hedengren, J. D.; Allsford, K.; Ramlal, L. Moving Horizon Estimation and Control for an
Industrial Gas Phase Polymerization Reactor. Proceedings of the American Control
Conference 2007, 1353–1358.

20. Leibman, M. J.; Edgar, T. F.; Lasdon, L. S. Efficient Data Reconciliation and Estimation for
Dynamic Processes Using Nonlinear Programming Techniques. Computers & Chemical
Engineering 1992, 16, 963–986.

21. Spivey, B. J.; Hedengren, J. D.; Edgar, T. F. Constrained Nonlinear Estimation for Industrial
Process Fouling. Industrial and Engineering Chemistry Research 2010, 49, 7824–7831.

22. Carey, G. F.; Finlayson, B. A. Orthogonal Collocation on Finite Elements. Chemical
Engineering Science 1975, 30, 587–596.

23. Finlayson, B. A. Orthogonal Collocation on Finite Elements—progress and Potential.
Mathematics and Computers in Simulation 1980, 22, 11–17.

24. Bequette, B. W. Nonlinear Control of Chemical Processes: a Review. Ind. Eng. Chem. Res.
1991, 30, 1391–1413.

25. Zavala, V. M. Computational Strategies for the Optimal Operation of Large-Scale Chemical
Processes. PhD Dissertation, Carnegie Mellon University: Pittsburgh, PA, 2009.

26. Biegler, L. T.; Cervantes, A. M.; Wächter, A. Advances in Simultaneous Strategies for
Dynamic Process Optimization. Chemical Engineering Science 2002, 57, 575–593.

27. Hughes, T. J. R.; Reali, A.; Sangalli, G. Efficient Quadrature for NURBS-based
Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering 2010,
199, 301–313.

28. Hedengren, J. D. Advanced Process Monitor; Advanced Process Monitor, 2012.
29. MATLAB; The MathWorks Inc., 2011.

25

Figure 1: A schematic illustrating the orthogonal collocation on finite elements discretization with a first-
order hold assumed for inputs (u) in each element (k). The differential state variables (x) are approximated at

each of the collocation points, denoted by i. The points are represented using different shapes and colors,
which help distinguish one finite element from another.

Figure 2: A plot showing the convergence of the greater than/equal to logic MPEC when x=0. As the plot
shows, δ converges to 1 as desired.

26

Figure 3: A plot of residuals when solving (27) using Newton's Method when x=0.

Figure 4: A schematic showing how the dynamic equations representing a simple tank change when the tank
overflows.

27

Figure 5: Flow rates in and out of the tank overflow system. Qin and Qout are the model inputs. Qover is a
dependent variable, subject to the logical condition of the tank being at its overflow limit.

Figure 6: Tank volume with a high limit (Vmax) of 10 m3. If the tank volume reaches this limit, overflow may
ensue.

28

Figure 7: The pseudo-binary variable, δhi, which is a continuous variable that takes on values of 1 (tank full)
and 0 (tank empty) at the solution.

Figure 8: Complementarity variables used in the tank overflow system.

29

Figure 9: Schematic for the power flow example with photovoltaic panel, battery, electric grid, and a load
(represented by the building) with the corresponding flows defined between these elements.

Figure 10: Inputs to the power flow model with qpv (the electric power flow entering the photovoltaic panel)
and qload (the power demand of the building).

30

Figure 11: Flows in the power network illustrating the viability of the continuous logic MPEC formulation.

Figure 12: State of charge (kWh) of the battery with an upper limit of 2 kWh.

31

Figure 13: Pseudo-binary variables indicating a fully charged battery (δhi) and a fully discharged battery (δlo).

Figure 14: A schematic showing the MPC scheme of a CSTR and surge tank with overflow.

32

Figure 15: Results from the CSTR with surge tank nonlinear MPC problem showing the solution from the
sequential method (red dotted line) with the simultaneous method (blue solid line), where CC is the controlled
variable with a set point of 3 mol/m3 (a), QB and qheat are manipulated variables subject to a zero-order hold.

33

Figure 16: Results of the CSTR MPC problem showing other differential and algebraic state variables with
time including the compositions of A and B (a), height of fluid in the surge tank (b), and flow from the surge

tank (c).

