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Abstract 

Wired Drillpipe (WDP) technology provides two-way and high speed measurements from bottom hole 

and along-string sensors. The data offered by WDP technology has maximum benefit when applied in an 

automation system or as a real-time advisory tool. Improved control is demonstrated for Managed Pressure 

Drilling (MPD) with the use of high-speed telemetry and physics-based models. Stabilizing and 

minimizing pressure within an acceptable bound leads to higher and more consistent Rate of Penetration 

(ROP). 

MPD control is challenging due to tight pressure windows and the nonlinearity of the choke and pump 

response on Bottom Hole Pressure (BHP).  This work demonstrates a new Hammerstein-Wiener nonlinear 

model predictive controller for BHP regulation in drilling. Hammerstein-Wiener models employ input and 

output static nonlinear blocks before and after linear dynamics blocks and thereby simplify the controller 

design. The control performance is evaluated in scenarios such as drilling, pipe connections, and kick 

attenuation. A physics-based drilling simulator, WeMod, is used for model identification and control 

performance evaluation. 

The control performance of the new nonlinear controller is compared to conventional controllers in 

various scenarios. Because of the interconnected multivariable and nonlinear nature of the drilling 

operation, conventional controllers show severe limitations. In a first scenario, the performance of set 

point tracking during normal drilling operation is compared. By changing the set point of the BHP, the 

conventional controller manipulates only the choke valve opening while the nonlinear controller moves 

choke valve opening, mud pump, and back pressure pump simultaneously. In a second scenario, a pipe 

connection of a typical drillpipe stand is demonstrated. The conventional controller is not able to regulate 

the BHP by adjusting the choke valve only. Although a linear version of the controller is able to exploit 

multivariable relationships, absence of the nonlinear relationships results in severe oscillation when the 

operational range is shifted outside of the training region. The nonlinear controller maintains a BHP within 

±1 bar of the requested set point. A third scenario investigates the kick attenuation performance of 

conventional and nonlinear control algorithms. The nonlinear controller attenuates the kick within well 

control conditions, without requiring a well shut-in procedure. 
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Recent advances in drilling simulators and the reliability of the WDP data highway have enabled tighter 

BHP control. This study presents a robust method to control BHP by applying Hammerstein-Wiener 

models in an efficient model predictive controller.  The proposed methods have been validated in the 

downstream industry, but are applied for the first time to drilling with nonlinear control functionality. The 

multivariable control adjusts three main manipulated variables in MPD simultaneously.  

 

Introduction 
The recent downturn of the crude oil market motivates improvements in cost effective oil and gas well 

manufacturing and production. Automation is one possible solution to minimize costs and well completion 

time. Automation systems can improve safety and convenience and enable optimization strategies. The 

oil well drilling industry is transitioning to automation systems as downhole sensors, communication, and 

control technology improves. Thanks to modern telemetry and integration of control systems in new 

drilling rig designs, several opportunities are opened for Managed Pressure Drilling (MPD) automation 

and optimization strategies. One of these technologies is Model Predictive Control (MPC). MPC has 

successfully been applied in many industries (Qin and Badgwell 2003). MPC vendors report that over 

4,600 MPC applications were in use by the early 2000s with most applications in the downstream industry. 

Several features make the technology attractive to the drilling industry. First, MPC has a prediction feature 

that employs a process model, either determined from data or from physics-based simulators. This feature 

predicts future constraint violations and anticipates behavior of the process in advance. Processes that 

have long time constants and time delay or inverse response can be effectively managed. Second, MPC 

deals with multiple variables at a time, considering the coupling effect between variables. It is able to 

control multi-input and multi-output (MIMO) systems with single-input and single-output control (SISO) 

systems are typically implemented with less advanced methods such as Proportional, Integral, and 

Derivative (PID) control. Third, MPC accommodates nonlinear processes by using Nonlinear 

Programming Solvers (NLP) and efficient methods to discretize the control and prediction horizon. 

Fourth, MPC has a range feature that specifies an acceptable control range instead of always driving to a 

desired target set point. This gives more freedom to operate within an upper and lower range or to drive 

to a limit, especially when the system has more than one controlled variable (CV). The range control 

feature can reduce conflicted situations when set points for individual CVs are simultaneously 

unachievable. Fifth, MPC allows optimization strategies to push the operation to a more beneficial point, 

while keeping within an acceptable range. All of these advantages are compared to the well-known PID 

controller that has the advantage of simple implementation and tuning. 

There are the several characteristics of MPD that are improved with MPC technology. First, it is critical 

to regulate the BHP within a pressure window during MPD operations. Low pressures lead to unexpected 

gas influx (kick) and high pressures lead to formation damage or lost drilling fluid (mud) circulation. 

Lower pressure has the effect of increasing ROP because it reduces the chip hold-down effect (McLennan 

1997). Related studies demonstrate this benefit by using simplified pressure hydraulics and an ROP model 

(Asgharzadeh Shishavan 2015, Asgharzadeh Shishavan 2014). The set range control and optimization 

functionality of MPC are important for these multivariate operation criteria. Second, in comparison to 

conventional drilling operation, MPD has more manipulated variables (MVs) such as choke valve, main 

mud pump and backpressure pump that move in coordination to maintain a BHP. All three MVs are 

adjusted simultaneously by exploiting the multivariate capabilities of MPC. Lastly, the inherent nonlinear 

and saccadic nature of drilling is a challenge for the application of automation. Fig. 1 shows the 

nonlinearity of the drilling operation between the main variables. The simulated data is obtained from a 

detailed physics-based drilling simulator, WeMod. A full nonlinear model can be applied to control MPD 

automation but there are different types of nonlinear models that have been demonstrated. Many previous 

research studies in drilling automation have established reduced order models by capturing the main 

dynamics of the drilling process (Nygaard 2005, Nygaard 2006, Kaasa 2007, Siahaan 2008). Although 
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using simplified low order models reduces the computational time significantly, solving the numerical 

optimization problem in the MPC algorithm with nonlinear equations is still computationally demanding 

for real-time control purposes. Moreover, those models use several variables that are not measured and 

must be estimated. This estimation step adds an additional layer of complexity and computational burden. 

In contrast with a first principles model, an empirical step response model such as those used in linear 

Model Predictive Control (LMPC) are widely used in many industries. However, these linear models are 

not sufficient to capture the nonlinear nature of drilling. Hammerstein-Wiener models are the most widely 

implemented method of empirical nonlinear models in industry (Ławryńczuk 2013, 2014). The 

Hammerstein-Wiener models employ input and output static nonlinear blocks before and after the linear 

dynamic blocks. Because the nonlinear portions of the model are not included in the MPC calculation, the 

computational burden is significantly reduced. This study demonstrates a Hammerstein-Wiener based 

NMPC for BHP regulation in drilling. The control performance of the Hammerstein-Wiener based NMPC 

is compared to the ubiquitous PID controller in various scenarios that frequently occur in drilling 

operations, such as a pipe connection procedure and with unexpected gas influx.  

 
 
Fig. 1 –– Nonlinearity analysis of drilling operation  
 

 

Hammerstein-Wiener based Model Predictive Control 
The structure of Hammerstein-Wiener NMPC for drilling is detailed in this section. The Hammerstein-

Wiener model is an extended form of LMPC. It uses the same algorithm as LMPC to optimize the linear 

dynamic portion of the model. As such, Hammerstein-Wiener NMPC captures the input and output 

nonlinearities with the computational robustness and simplicity of LMPC. To add the nonlinear control 

elements to LMPC, the Hammerstein-Wiener model employs static nonlinearity blocks that process the 

input and output values of the linear dynamic model block. The static nonlinearity blocks are static 

functions that are separated from the quadratic programming (QP) optimization problems in the MPC 

algorithm (K.P. Fruzzetti 1997, Sandra J. 1997). Therefore, it allows a gain-scheduling concept for a 

nonlinear process without significantly increasing the computational complexity. As shown in Fig. 2, the 

linear dynamic model (G) is located in between the input and output static nonlinearity blocks (F and H). 
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Fig. 2 –– Structure of the Hammerstein-Wiener Model 

 

Various types of models can be used for the linear dynamic model. In this study, a state space model 

is chosen over other types such as a Finite Impulse Response (FIR) model. Eq. (1) and (4) represent the 

input and output nonlinearity blocks (F, H) respectively and both (2) and (3) describe the state space form 

of the linear dynamic model (G):  

 

    𝐰(𝑡) = 𝐅(𝐮(𝑡))                                                                                         (1) 

 
𝑑𝐱(𝑡)

𝑑𝑡
= 𝐀𝐱(𝑡) + 𝐁𝐰(𝑡)                                                                                   (2) 

 

𝐳(𝑡) = 𝐂𝐱(𝑡)                                                                                            (3) 

 

𝐲(𝑡) = 𝐇(𝐳(𝑡))                                                                                         (4) 

 

where, the vector 𝐮(𝑡) ∈ 𝐑𝒎 and 𝐰(𝑡) ∈ 𝐑𝒎 are the input variables of the input nonlinearity block and 

linear dynamic model block, respectively.  The input value, u(t), is the actual input value from the process 

and is converted to an internal variable w(t) by the input nonlinearity function F. The vector 𝐱(𝑡) ∈ 𝐑𝒏 

represents the state variable of the state space model. The vectors 𝐳(𝑡) ∈ 𝐑𝒍 and 𝐲(𝑡) ∈ 𝐑𝒍 are the output 

variables of the linear dynamic model and output nonlinearity block, respectively. Similar to u and w, 

internal variable z(t) is converted to an actual prediction variable y(t) through the output nonlinearity block 

H. A, B and C denote the state, input, and output matrix of the state space model. The function F and H 

in the nonlinearity blocks could be a nonlinear relationship such as a polynomial, power series, or 

piecewise linear function. In this study, we use the piecewise linear function for nonlinearity blocks 

discussed in the case study section.  

The Hammerstein-Wiener model is utilized in the MPC platform in two main steps: ‘Prediction’ and 

‘Optimization’. In the prediction step, a sequence of future moves of the CVs is predicted by processing 

the set of past movements of the MVs through the process dynamics model. Then, in the optimization step, 

a sequence of optimized future MVs movements is calculated by solving a QP optimization problem. The 

QP objective function is designed to minimize the difference between the predicted value and desired 

trajectory of the CVs. The first MV move of the sequence is implemented to modify the choke position 

and pump rates. The entire procedure is repeated for every sampling time. The additional steps for the 

Hammerstein-Wiener model are the processing of input and output values for the LMPC. This involves 

reverse processing the actual CV targets or ranges through the inverse nonlinearity block before it goes 

into the MPC block. Additionally, the internal MV output which is reverse transformed and applied to the 

process. Note that the nonlinearity blocks are inverted for the control schematic. The structure of the 

Hammerstein-Wiener based MPC system is shown in Fig. 3.   
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Fig. 3 –– Structure of the Hammerstein-Wiener based MPC system 
 

Mathematical expressions of the Hammerstein-Wiener MPC are shown below. The upper and lower 

bound of control input (sphi, splo) and control input (y) are transformed by inverse output nonlinearity 

function H-1 shown in Eq. 5 and 6. The control output (w) is transformed by inverse input nonlinearity 

function F -1 shown in Eq. 7.  

 

𝑠𝑝
ℎ𝑖
∗ (𝑡) = 𝐻−1 (𝑠𝑝

ℎ𝑖
(𝑡))         𝑎𝑛𝑑       𝑠𝑝

𝑙𝑜
∗ (𝑡) = 𝐻−1 (𝑠𝑝

𝑙𝑜
(𝑡))                                                    (5) 

𝑧(𝑡) = 𝐻−1(𝑦(𝑡))                                                                                      (6) 

𝑢(𝑡) = 𝐹−1(𝑤(𝑡))                                                                                      (7) 

 

The QP objective function used in this study is the l1 norm type objective which has many advantages 

especially for the multiple objective optimization (Hedengren 2014). The l1 norm objective function with 

the parameters associated with Hammerstein-Wiener structure is shown in Eq. 8 and Table 1.  

   
min
𝑧,𝑤

𝜙 = 𝑄ℎ𝑖
𝑇 (𝑒ℎ𝑖) + 𝑄𝑙𝑜

𝑇 (𝑒𝑙𝑜) + (𝑧)𝑇𝑐𝑧 + (𝑤)𝑇𝑐𝑤 + (𝛥𝑤)𝑇𝑐𝛥𝑤 

𝑠. 𝑡.   0 = 𝑓 (
𝑑𝑥

𝑑𝑡
, 𝑥, 𝑧, 𝑤) 

0 = 𝑔(𝑥, 𝑧, 𝑤) 

 0 ≤ ℎ(𝑥, 𝑧, 𝑤) 

𝜏𝑐

𝑑𝑧𝑡,ℎ𝑖

𝑑𝑡
+ 𝑧𝑡,ℎ𝑖 = 𝑠𝑝

ℎ𝑖 
∗  

𝜏𝑐

𝑑𝑧𝑡,𝑙𝑜

𝑑𝑡
+ 𝑧𝑡,𝑙𝑜 = 𝑠𝑝

𝑙𝑜
∗  

𝑒ℎ𝑖 ≥ (𝑧 − 𝑧𝑡,ℎ𝑖) 

𝑒𝑙𝑜 ≥ (𝑧𝑡,𝑙𝑜 − 𝑧) 
𝑒ℎ𝑖 , 𝑒𝑙𝑜 ≥ 0 

 
 

(8) 

 
Table 1. Summary of parameters used in the l1-norm objective function and LMPC QP solution 
 

Parameter Description 

sphi, splo, sphi*, splo* actual and transformed (*) value of upper and lower bound  

𝜙 objective function 

𝑧𝑚 model output values (𝑧𝑚,0, … , 𝑧𝑚,𝑛)
T
or predicted output values 

w, Δ𝑤  inputs, input change 

x states 
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zt,hi, zt,lo desired trajectory dead-band 

Qhi, Qlo penalty outside trajectory dead-band or weighting factor 

cz, cw, cΔw cost of z, w and Δw, respectively 

f equation residuals 

g output function 

h inequality constraints 

𝜏𝑐 time constant of desired controlled variable response 

elo slack variable below the trajectory dead-band 

ehi slack variable above the trajectory dead-band 

 
 
 

Case Study 
In this section, the wellbore condition and scenarios are described. A vertical geometry well is 

simulated with topside MPD rig equipment. The MPD rig has a choke valve, a main mud pump, and a 

back pressure pump as adjustable parameters for BHP regulation. The detailed parameters of the wellbore 

condition are referred from the other study (Gravdal 2010) and shown in Table 2. For the BHP 

measurement, WDP is used for all scenarios. Unlike the traditional mud-pulse telemetry, WDP increases 

the data transmission rate up to 104-105 bits per second and provides reliable bottomhole data to the surface 

to enable MPD control systems in real-time (Pixton 2014).  

 
Table 2. Wellbore conditions 

 
Parameter Value (AES) Value (SI) 

Well depth 11,800 ft 3,600 m 

Riser inner diameter 19’’ 0.48 m 

Water depth 590 ft 180 m 

Casing inner diameter 9’’ 0.23 m 

Casing depth 7,100 ft 2,164 m 

Drill string average outer diameter 4.5’’ 0.12 m 

BHA length 150 ft 45.7 m 

BHA average outer diameter 6.7’’ 0.17 m 

Open hole/bit size 8.5’’ 0.2 m 

Reservoir depth 9840 ft 3,000 m 

Reservoir Pore Pressure 401.0 bar/1.364 s.g. 401.0e+05 Pa/1.364 s.g. 

Initial mud density 1.24 s.g. 1.24 s.g. 

 

An important factor in the MPC design is the relationship between inputs and outputs. Table 3 shows 

the MPC design matrix with +/- signs that denote the positive or negative gain relationships. Various 

process dynamics models could be used for these relationships such as transfer function or state space 

forms that have equivalency relationships. These types of models represent both transient behavior and 

steady state gain.  In Table 1, BHP (pbit) is the main controlled variable (CV) for the normal operation and 

pipe connection procedure. The mud flow balance (qbal) is considered as an additional CV for kick 

attenuation. The three MPD manipulated variables (MVs) are choke opening (zchoke), back pressure pump 

(qback), and main mud pump (qp). All three variables play a role as MVs except during the pipe connection 

procedure where the main mud flow is manually ramped up and down. Therefore, the main mud flow is 

considered as a ramped input for the pipe connection procedure. The MPC algorithm reflects the influence 
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of the ramping sequence on the control calculation so that it compensates for the loss or gain of mud flow 

before it drives the BHP away from a target value. 

 
Table 3. Model matrix with the positive and negative interaction between CVs and MV/DVs  

 

              
MV / DV 

zchoke qback qp 

CV 

Pbit - + + 

qbal - + + 

 
 

 
 

Fig. 4 –– Piecewise linear function for nonlinearity blocks 

 
Normal drilling  



8  SPE-184610-MS 

 

Maintaining the wellbore pressure within a pressure window is one of the highest priorities for normal 

drilling. Within this pressure window, it is best to maintain pressure near the lower limit of pore pressure 

for maximum ROP. This is not only to reduce mud loss in certain zones, but also because the pressure 

difference between wellbore and reservoir generate the chip hold-down effect that causes lower ROP 

(McLennan 1997). Although lower pressure is desired, approaching the reservoir pore pressure increases 

the possibility of a gas influx. In the normal drilling scenario, two aspects of NMPC are tested. The first 

is control performance when the set point or set range is changed, called servo control. The set range of 

the BHP is changed to sufficiently cover a wide operation range. All three MVs (choke opening, main mud 

pump flow, and back pressure pump) are actively adjusted to meet the new set range of BHP. The 

weighting factors in the objective function for each MV are tuned to adjust the relative movements among 

the MVs. The second aspect is related to an optimization feature of MPC. While the BHP is maintained in 

the desired set range, the linear programing (LP) objectives for the CVs and MVs drive the variables to the 

upper or lower limit of each. The parameters cz and cw in Eq. 8 are the cost parameters for the minimized 

LP objectives. They are positive constants to push the BHP to the low value of the range near the pore 

pressure.   

 
Pipe connection 

Pipe connection is the addition of multiple sections of drilling pipe to the existing drill string as the 

drill bit penetrates the formation. Based on a rough calculation with typical ROP and length of a single 

pipe stand, the pipe connection procedure takes place every one to three hours (Stamnes 2008). During 

the procedure, the main mud pump flowrate is ramped down to zero and waits until a new pipe is added 

and then ramped back up to normal drilling operation. The BHP is formed by three different sources, 

hydrostatic pressure of mud and cuttings, annulus friction pressure loss by mud flow rate, and back-

pressure exerted by the back-pressure pump and choke valve. By ramping down the main mud flow rate, 

one of the pressure sources exerted on the bottomhole is lost. The back-pressure system includes the choke 

valve and back-pressure pump and is adjusted to compensate for the BHP decrement. Note that the 

hydrostatic pressure does not change during the entire pipe connection procedure. In the MPC 

configuration for pipe connection procedure, the main mud pump flowrate (qp) switches from an 

optimized degree of freedom to a fixed ramp input. The predefined ramping sequence of the mud flowrate 

(qp) is not a part of the MPC output. However, it has a significant effect on the BHP and is therefore 

considered by MPC calculation. By having this feedforward input in the MPC, the pressure control 

performance is significantly improved in comparison with the case that fully relies on feedback control. 

 
Kick attenuation 

When the drill bit enters a formation that has high reservoir pressure, formation gas may unexpectedly 

penetrate into the wellbore as the pore pressure exceeds the BHP. The gas influx from the formation may 

require more aggressive well control methods or may cause loss of well control in extreme circumstances. 

To prevent such problems, any detected gas influx above a certain threshold required for well control is 

typically circulated out after the well is shut in. In MPD, the mud pump flowrate and choke valve regulate 

the BHP without shutting in the well and stopping the drilling process. The kick is conventionally detected 

by monitoring the mud pit levels or by observing an imbalance between mud pump flow and returning 

mud. Other kick detection methods include monitoring of unexpected increase in annulus pressure as the 

dissolved gas escapes the formation or an unexpected decrease in hydrostatic pressure due to the expansion 

of the dissolved gas as it travels with the mud back to the surface. The control strategy for the BHP should 

be differentiated between the normal operation and the kick situation. To decrease the high BHP in normal 

operation, the choke valve opens and the mud pump flowrate decreases. During a kick, the same control 

actions, however, still allow or even accelerate the gas influx to rise up to the surface through the mud 

circulation. The strategy in the previous research (Asgharzadeh Shishavan 2015) correctly decreases the 

choke valve opening and increases the mud pump flowrate by switching the CV from BHP (pbit) to choke 
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valve pressure (pc) with a calculated higher set point. The other research proposed a different switching 

method between BHP control and mass balance control with a PID control algorithm (Zhou 2011). In this 

study, the mass balance control concept is adopted with an MPC algorithm. The flow balance is added to 

the BHP control configuration as a second CV without additional switching logic. However, by 

introducing the second CV, conflicts potentially arise from physically infeasible constraints of all the CVs 

and MVs. These situations are significantly reduced by the aforementioned MPC advantages, such as the 

range control feature and weight factors for the CVs in the objective function to prioritize conflicting 

objectives. In addition to these, a CV prioritization is added to exclude a CV from the MPC calculation in 

a specific condition. The condition is defined by adding additional high and low limits for CVs that are 

normally higher and lower than set ranges. When the current value of one CV violates these limits, the 

controller temporarily gives up controlling this CV while still controlling the other CVs that stay within in 

the specified limits. A simplified illustration in Fig. 5 shows how this method works in the kick situation. 

When BHP increases beyond the prioritizing limit, MPC immediately turns off the BHP CV and fully 

focuses on the Flow Balance CV. After mitigating the gas influx, the new set range is set based on the 

stabilized BHP plus a safety margin. Then, the controller automatically turns on the BHP CV again by 

having a current value within the prioritizing limit. 

 

 
 
Fig. 5 –– Illustration of prioritizing function for kick attenuation 

 

Result and Discussion 
The simulation results of the three previously described scenarios are detailed in this section. Fig. 6 

shows the result of normal drilling operation. The servo control performance is tested for both (a) PID and 

(b) NMPC. The SISO configuration of PID allows the controller to move one MV at a time. The choke 

valve opening (zc) is a single MV for the PID controller while NMPC adjusts choke valve opening (zc) and 

mud pump flowrate (qp) simultaneously. In order to test the performance for a severe situation, greater 

changes in the set point than typical operation are demonstrated. The PID controller cannot reach the set 

point changes, even though the choke valve moves are more aggressive and cover the full range of the 

valve opening (0 – 100%). This result shows that the operation is limited into a narrow pressure range 

with adjustments only to the choke valve opening. Improved performance is demonstrated by using the 
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mud pump flowrate to add or remove the pump head pressure in the wellbore pressure. In the NMPC 

result, BHP quickly follows the set point changes by coordinating adjustments to the two MVs.  

Fig. 7 shows the results of the pipe connection procedure. Unlike the normal drilling scenario, the pipe 

connection procedure covers a wider operation range by ramping down and up the main mud pump from 

the normal operation range to zero and back again. In this case, the nonlinearity problems are more evident 

than in a normal drilling operation. Similar to the normal operation case, the PID controller fails to 

maintain the BHP within an acceptable range (a). Although it fully closes the choke opening while 

ramping down the mud pump flowrate, it is not sufficient to compensate for the mud pump head pressure 

loss. For this specific case, MPD employs the back pressure pump to exert additional pressure by 

maintaining the mud circulation flow through the choke valve. The back pressure pump is included as an 

MV in the NMPC configuration. Thus, the back pressure pump and choke valve move together and 

successfully maintain the BHP within ± 1 bar deviation (b). Furthermore, when the mud pump flowrate 

MV is set to receive a ramp input, NMPC automatically considers it as a process disturbance variable, DV. 

The NMPC controller includes the change of the DV in the prediction and control calculation. This gives  

 
(a) PID                                                                                                      (b) NMPC 

 
Fig. 6 –– Comparison of BHP control performance during normal drilling 
 
 

feedforward information that is unavailable to controllers that rely solely on feedback control. To validate 

nonlinear control of the Hammerstein-Weiner NMPC, the pure LMPC control results are compared with 

the NMPC results in the same plot (b). The LMPC, not including the Hammerstein-Weiner nonlinearity 

block, shows severe oscillation on both the CV and MVs when the mud pump flowrate reaches zero. On 

the contrary, the NMPC shows the appropriate control performance covering the process nonlinearity with 

the static nonlinear blocks.  

Fig. 8 shows the kick attenuation performance of NMPC. The CVs and WeMod output are shown in 

(a) and MVs of NMPC are displayed in (b). The additional CV, flow balance (qbal), is added to the existing 



SPE-184610-MS  11 

 

control matrix that already has BHP as a main CV for normal drilling and pipe connection. Both CVs are 

turned on at the beginning of the simulation. The control set ranges of the BHP and flow balance are set 

to ±1 of 466 bar and ±0.01 of 0 m3/min, respectively. New prioritizing limits are applied to both CVs, with 

the limits for the BHP being relatively narrower than those of the flow balance, as summarized below.  

 

Control set range for pbit = set point for pbit ± 1 bar  

Control set range for qbal = set point for qbal ± 0.01 m3/min 

Prioritizing limits for pbit = set point for pbit ± 3 bar 

Prioritizing limits for qbal = set point for qbal ± 0.5 m3/min 

 

     where, set point for pbit = 466 bar 

                               set point for qbal = 0 m3/min 

 

 
(a) PID                                                                                             (b) LMPC and NMPC 

Fig. 7 –– Comparison of BHP control performance during pipe connection procedure 

 

 

Both of the CVs (flow balance and BHP) fluctuate as the gas influx starts at 100 seconds. The controller 

immediately turns off the BHP control letting it increase and stabilize at a new balance condition while 

attenuating the gas influx with the other CV, flow balance. After the gas influx starts, the BHP steeply 

increases and goes above the prioritizing limits, while the flow balance is still within prioritizing limits. 

The controller logic prioritizes flow balance control over BHP control to attenuate the kick. In the results, 
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the controller closes the choke valve and increases both the main mud pump and the back pressure pump, 

which is anticipated in kick attenuation. These control actions efficiently block the gas migration and 

increase the wellbore pressure to balance to the new reservoir pressure. Approximately one minute after 

the kick occurs, BHP is stabilized at 481 bar, stopping the amount of total gas influx at 60 kg. At 180 

seconds, the set point of the BHP is adjusted based on the current pressure with an additional safety 

margin. The BHP is now placed within the prioritizing limits and turned on for future pressure control.  

 
                                  (a) CVs and WeMod output                                                                                         (b) MVs 
 
Fig. 8 –– kick attenuation performance of NMPC  

 

 

Conclusions 
This study proposes an advanced NMPC control algorithm for MPD automation of BHP and flow 

balance control. The Hammerstein-Wiener based NMPC shows a superior control performance to a 

conventional PID controller. A number of advantages of NMPC are discussed and validated with common 

operation scenarios. The proposed method assumes that the bottom hole pressure is measurable by WDP 

telemetry. The proposed method improves the control reliablity by eliminating uncertainties of predictive 

BHP estimation. By adjusting multiple MVs simultaneously the control performance is significantly 

improved for normal drilling, pipe stand connections, and in kick attentuation. For the kick attenuation 

scenario, adding the additional CV and prioritizing limits combines flow balance control and utilizes BHP 

control when there is no significant flow imbalance.   
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