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REAL-TIME ESTIMATION AND CONTROL OFLARGE-SCALE NONLINEAR DAE SYSTEMSPubliation No.John David Hedengren, Ph.D.The University of Texas at Austin, 2005Supervisor: Thomas F. EdgarModel-based ontrol inorporates fundamental proess knowledge toahieve improved monitoring and ontrol performane. However, on-line model-based ontrol is generally limited to linear models or nonlinear models oflow-dimension. Rigorous models of dynami proess are often desribed bydi�erential algebrai equations (DAEs). Many rigorous DAE models requiretoo muh omputational e�ort to be implemented in real-time ontrol appli-ations, where ontrol alulations must be performed on-line (i.e. in a fewseonds). The prinipal fous of this dissertation is to redue the omputa-tional requirements for large-sale model-based estimation and ontrol. Thisobjetive is aomplished with a variety of strategies that are ombined in ane�etive way to meet real-time onstraints with limited omputing resoures.The prinipal strategies are adaptive storage and retrieval o�-line to enableeÆient on-line ontrol, nonlinear DAE model redution, and development ofvi



an expliit solution to moving horizon estimation (MHE). Both MHE and re-eeding horizon ontrol (RHC) are developed to meet real-time onstraints. Insitu adaptive tabulation (ISAT) is used to store and retrieve ontrol solutions.In addition to the adaptation for ontrol appliations, ISAT is developed asa general nonlinear funtion approximator and is shown to outperform neuralnetworks in both interpolation and extrapolation. In addition, ISAT is de-signed to handle nonlinear funtions with disontinuities or regions that arenot ontinuously di�erentiable. With DAE model redution, storage and re-trieval of ontrol solutions with ISAT, and the expliit solution to movinghorizon estimation, real-time nonlinear model preditive ontrol (NMPC) isfeasible with large-sale DAE models.
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Chapter 1Introdution
The dynami modeling of hemial and biologial proesses, using �rstpriniples, usually leads to mathematial models that are systems of di�eren-tial and algebrai equations. Two main lasses exist: lumped parameter anddistributed parameter models. The lumped parameter models are mostly sys-tems of di�erential and algebrai equations. The di�erential equations stemfrom material and energy balanes over di�erent �nite ontrol volumes, whilethe algebrai equations usually desribe the physial, hemial, and thermo-dynami properties of the system. Often the algebrai relations representdynami mehanisms that our in�nitely fast. This time sale di�erene isused in model redution of reation networks, hene redued models for thekinetis are sometimes DAEs. Fundamental models for distributed parame-ter systems onsist of sets of partial, di�erential, and algebrai equations. Inthese models, the onservation laws are expressed around in�nitesimal ontrolvolumes, leading to partial di�erential equations. Using di�erent tehniques,e.g., the method of lines, these models are approximated as DAEs so they anbe numerially solved.The quandary of an engineer who must develop a dynami physio-1



hemial or biologial model to use in proess ontrol is that there is a verylarge range of possible models that an be used, from simple to omplex. Ev-ery model inorporates assumptions that must be made by the modeler, whousually does not know a priori the impat of the assumptions on model au-ray or ontrol quality. If the model is too omplex (e.g., over 20 states), thenthe omputation time for ontrol alulations may be prohibitive, in the rangeof several hours, for a proess that responds with time onstants on the orderof several minutes. What is needed is a methodology that allows the mod-eler to use a rigorous model, and imbeds model redution and omputationredution into the CAD approah, so that time redutions by a fator of 100an be ahieved, permitting real-time alulations. Using rigorous models hasbeen a reent trend in related �elds, e.g., in proess simulators suh as HYSYSand in omputational uid dynamis software suh as Fluent. Developing amethodology to use suh models for proess ontrol is the main thrust of thisresearh.The proposed approah onsists of unifying four steps in order to arryout model-based ontrol of DAE systems in real-time (order of several minutesbetween ontrol hanges):1. di�erential and algebrai equation redution (new adaptive approah)2. shift ontrol alulations o�ine for eÆient online retrieval, using in situadaptive tabulation (new appliations for estimation and ontrol)3. expliit solution to moving horizon state and parameter estimation2



4. expliit solution to reeeding horizon ontrolThe hallenge is to make this approah work for DAE systems with hundredsof variables, whih has not been done suessfully before.1.1 DAE Model RedutionLarge sale �rst priniples models an onsist of hundreds of di�erentialequations and thousands of algebrai equations. Solving the di�erential alge-brai equations (DAEs) simultaneously in simulation and ontrol appliationsan pose a numerial hallenge. Other motivations for model redution arefor storage and retrieval of optimal ontrol trajetories, insight into the modelstruture, and analysis of dynami degrees of freedom.Nonlinear model redution approahes suh as balaned ovariane ma-tries (BCM) and proper orthogonal deomposition (POD) have been devel-oped to optimally redue the number of di�erential states. However, thesemodel redution approahes annot redue the number of algebrai equations.Beause the algebrai equations often greatly outnumber the di�erential states,signi�ant order redution of the overall model is not ahieved by POD andBCM, whih onstrut a redued model from a linear ombination of the orig-inal states. During this transformation, physial signi�ane of the variablesis lost. In appliations it is often desirable or required for a redued model toretain physial signi�ane of the original variables.Other approahes have been suggested for DAE model redution, but3



they generally su�er from poor saling to large sale problems or extensivemodel on�guration [20℄. The proposed tehnique in this work has the advan-tage of good saling for large sale problems and no speial model manipu-lation. An added advantage is that the physial signi�ane of the algebraiequations is retained. A major fous of this work is also in making the modelredution approah adaptive in order to ahieve a spei�ed level of aurayompared to the orginal model. Being adaptive, the DAE model is reduedautomatially with no prior training simulations.1.2 Storage and RetrievalIn ontrol, a group of inputs are used to determine a ertain number ofoutputs. If the model is deterministi, the same set of independent variables(inputs) will always produe the same set of dependent variables (outputs).In blok diagram form, the inputs (s) enter the system and leave as a set ofoutomes (f) . Sensitivity information may also be optionally available from
Figure 1.1: Blok diagram of a deterministi alulation of f based on inde-pendent variables s. The blok diagram may represent open loop simulationor a simpli�ation of losed loop ontrol.the funtion evaluation. The sensitivity matrix (A) reveals the amount that f
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hanges with a small perturbation in s.A = �f�s (1.1)In some appliations, it is desirable to store previously omputed values of fin order to estimate future values of f without redoing the usual alulations.In this proess of storage and retrieval it is desirable for the estimated valuesof f to be within some error tolerane (�tol) of the atual f .jf � festj � �tol (1.2)Costs assoiated with a storage and retrieval method inlude on�gurationosts, CPU time osts, and storage osts. Con�guration osts are largely afuntion of the degree to whih the method is generalized and automated.CPU time osts inlude the onstrution of a database and the retrieval time.Storage osts an be a fator if the dimension of s or f is large. Overall,storage and retrieval may be desirable if the following onditions exist.1. Retrieval time is muh faster than the original alulation2. The same alulations are performed repeatedly but with di�erent values3. Real time onstraints make the original alulation infeasible4. The CPU time to generate the database is small ompared with retrievalsavings5. Storage osts are small 5



Storing and retrieving solutions to sets of nonlinear algebrai equations anbe aomplished in many ways. General riteria to benhmark storage andretrieval methods were given by Pope [66℄.1. The CPU time required to reate the store2. The memory required for the store3. Inauraies in the retrieved mapping (e.g., interpolation errors)4. The CPU time required to retrieve from the store5. The degree to whih the tehnique is generally appliable and an beautomatedAn exhaustive review of all possible storage and retrieval tehniques is beyondthe sope of this work. However, one algorithm, the arti�ial neural network,has beome a popular tehnique for nonlinear funtion approximation. In situadaptive tabulation (ISAT) is then introdued as a new approah for storageand retrieval. Eah of the algorithms is judged by the benhmark riteria.Neural nets are networks of adaptable nodes whih, through a proessof learning from task examples, store knowledge about system behavior andmake it available for later use [5℄. The exibility and general appliability ofneural nets have been demonstrated by diverse appliations aross many �eldsof study. Neural nets are an e�etive tool to inorporate historial data foruse in state estimation and ontrol, although �ltering and preonditioning the6



plant data are often time-onsuming tasks [67℄. One limitation of neural netsis the inability to extrapolate outside the training domain.1.2.1 In Situ Adaptive TabulationIn situ adaptive tabulation (ISAT) is a storage and retrieval methoddeveloped for diret numerial simulation (DNS) of turbulent ombustionames [66℄. ISAT diretly ontrols the approximation error by adding multi-dimensional linear regions to hart unmapped state spae. In this way, ex-trapolation error is kept within spei�ed error toleranes. Another desirableproperty of ISAT is that the store is onstruted in situ, without previoustraining simulations or optimizations. For DNS, ISAT replaes the hemialreation integrations to greatly enhane the speed of the alulation. As ablak-box funtion approximator, ISAT gradually replaes the original fun-tion alulation by storing and retrieving previous omputations (see Figure1.2).
Figure 1.2: ISAT stores solutions and sensitivities (A) to approximate f withmultidimensional pieewise linear regions.
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1.3 Researh ObjetivesThe main objetive of this researh is to develop tehniques to applylarge sale �rst priniples models in real-time ontrol. Detailed models ofhemial manufaturing proesses often onsist of many thousands of DAEs.Solving large sale models in ontrol appliations an be omputationally in-feasible in real-time. Several strategies have been developed to make optimalapproximations and simpliations. Other objetives of this researh inlude:1. Optimally redue the real-time omputational requirements of nonlinearmodel preditive ontrol (NMPC) for large sale models. Many teh-niques have been proposed to redue the on-line requirements of NMPC[22℄ [23℄ [43℄, but are generally limited to single proess units and smallmodels with short ontrol horizons.2. Develop adaptive model redution of DAE models to optimally reduethe model order. This optimal redution of model order retains the mostimportant dynami degrees of freedom of the original model. Developingan adaptive approah means that training and appliation our simul-taneously in an iterative proess.3. Redue the real-time omputational requirements of dynami state es-timation while retaining the auray of large sale model based stateestimation. Reeeding horizon state estimation an be nearly as ompu-tationally demanding as the reeeding horizon ontrol problem. Beauseboth are solved on-line, both must meet real-time yle requirements.8



4. Propose ISAT as a replaement for neural networks as a general nonlinearfuntion approximator. One of ISAT's limitations was that a sensitivityalulation is required to add a new reord to the database. Beausemany nonlinear funtion alulations do not inlude this feature, a mod-i�ation to the algorithm is neessary.1.4 Overview of this DissertationIn this introdutory hapter, storage and retrieval of open loop simu-lations and losed loop ontrol is proposed with ISAT. ISAT eÆiently storesmultiple linear approximations of a nonlinear solution. It is a generi approahthat is applied for storage and retrieval for real-time ontrol. A brief overviewof neural networks as a omparison, a history of ISAT development, and dis-ussion of DAE model redution provide some bakground for this researh.Eah of the researh objetives is addressed in following hapters.Chapter 2 gives details of the ISAT algorithm modi�ed to adaptivelyapproximate any nonlinear funtion. An approximation to the loal sensitiv-ity is developed with multivariable linear regression. Unlike neural networks,the ISAT mapping of the nonlinear surfae is performed sequentially, therebyavoiding large global optimizations. ISAT and neural networks are diretlyompared in an illustrative example.Chapter 3 introdues DAE model redution. Beause ISAT storageand retrieval is more eÆient for smaller problems, signi�ant e�ort has beendevoted to extrating optimally redued small and medium sale models from9



large sale models. In pratie, many large sale models an be redued withvery little redution in model auray. An adaptive DAE model redutionapproah is proposed with the only tuning parameters being the required vari-able auray. The adaptive strategy simultaneously re�nes the redued modelstruture and model order with an iterative approah.Chapter 4 outlines the appliation of a ombined model redution andstorage and retrieval for real-time NMPC. DAE simulations are stored andretrieved to redue real-time ontrol requirements by 85 times for the regulator.Appliation to state estimation is also outlined. In sequential or hybrid NMPCformulations, the same store an be aessed for state estimation and theregulator, leading to faster training of the ISAT database.Chapter 5 proposes another way to dynamially store NMPC solutions.By parameterizing ontrol solutions as a funtion of urrent states, NMPCsolutions an be stored and retrieved for sequential, hyrbid, or simultaneoussolution strategies. The proposed storage of optimal ontrol is potentially moreeÆient than that of Chapter 4 and requires no ustomization of the nonlinearprogramming (NLP) sub-problems. A ontrol study involving a ontinuouslystirred tank reator (CSTR) model demonstrates an appliation of ISAT inontrol.Chapter 6 is the estimation ounterpart to Chapter 5 on ontrol. Chap-ter 5 reveals an expliit solution proedure for ontrol to redue the omputa-tional demands. However, the estimation problem must also be solved at everytime horizon step with a omputational load similar to the ontrol problem.10



An expliit solution to the unonstrained moving horizon estimation problemis proposed. This expliit solution is able to estimate the urrent states, pa-rameters, and input or output disturbanes. For onstrained problems, aniterative solution tehnique is proposed to guarantee onvergene in solutiontimes that are lose to the expliit solution. By ombining the tehniques ofhapters 5 and 6, model preditive estimation and ontrol an be implementedwithout omputational hardware restritions.
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Chapter 2The ISAT Algorithm
Model size, nonlinearity, sparsity, and other fators ontribute to theease or diÆulty of obtaining a numerial solution in simulation and ontrolalulations. Generally, small nonlinear models in the range of 100 states orless are amenable to real-time (�10 seonds or less yle time) MPC imple-mentation. By reduing the model size, larger models an be eÆiently appliedin real-time ontrol appliations.Another real-time feasible MPC strategy involves shifting the ompu-tational burden o�-line for eÆient on-line retrieval. Storage and retrieval ofontrol trajetories an eliminate the on-line omputational burden of modelpreditive ontrol. By reduing the ontrol alulations to a simple lookup ofpreomputed solutions, advaned ontrol an be applied to appliations thatdo not merit large omputational resoures. The purpose of this hapter isto demonstrate the appliation of a storage and retrieval algorithm, ISAT,that ompatly stores the preomputed ontrol solutions, eÆiently aessesthe values to meet fast sampling onstraints, and adaptively builds the storewhen new information is aessible. In applying ISAT to ontrol alulations,some of the speially tailored features designed for the original appliation in12



simulation of reating turbulent ows [66℄ had to be modi�ed. However, thishapter does not atually disuss the spei� tailoring to ontrol. Instead,the ISAT algorithm is made generi to store and retrieve any deterministinonlinear funtion. Subsequent hapters then take this generi framework toshow ontrol appliations. By starting general and beoming spei�, all ap-pliations of ISAT an be seen in one ontext. Also, this will aide appliationto other areas outside of ontrol or ombustion modeling.Besides generalizing ISAT for a range of appliations, a new develop-ment in this hapter is a more thorough explanation of the algorithm on astep-by-step basis. This is intended to expose all of the details to failitatefuture development. One of the biggest limitations to widespread use of ISATas a general nonlinear funtion approximator is the requirement of sensitiv-ities. As a new development, sensitivities are estimated from a database ofprevious input-output data using linear regression. A �ltering strategy is ableto determine when suÆient data exist to form a loally aurate linear ap-proximation.In storage and retrieval, the goal is to retain the auray of the originalalulations while substantially lowering the omputational osts. Analogies tothe ISAT method exist in many di�erent industries and produts. For example,omputer systems are built with multi-layers of ahing. One of the reasonsthat Pentium r proessors are onsidered superior to Celeron r proessors isthe larger amount of ahe. This ahe stores and aesses frequently om-puted instrutions and data and thereby improves the proessor performane.13



As another example, the omputer an speed-up the e�etive download speedfor internet onnetions by storing web pages on the hard disk. When a website is visited again, the page an be loaded from the muh faster hard disk.The ommon harateristis of these speed-up tehnologies are:1. The �rst time through there is no speed-up. In fat, there may be someslow-down assoiated with building and storing the database.2. Searh time is generally fast ompared to repeating the operation.3. Storage osts for the database are low ompared to the ost of repeatingthe operations.4. There is a suÆient probability that the operation will be repeated,otherwise the database would serve mainly as an arhive.5. The system performane inreases as the database matures and moreoperations are repeated.ISAT is storage and retrieval algorithm for nonlinear funtions. Thesenonlinear funtions may be time intensive omputer simulations, alulationsthat require real-time results, or for appliations that do not merit substantialompuational power. As a data-based appliation, there is a phase of trainingassoiated with every appliation. As the database matures and retrievalsour, ISAT uses a binary tree arhiteture to ensure fast searh time. Witha parallel inrease in data storage apaity and proessor speed in modernomputers, storage osts rarely beome a fator in ISAT appliations [21℄.14



2.1 Review of ISAT for Turbulent Combustion Simula-tionsDetailed ombustion models typially inlude reatants, produts, andreation intermediates that result from hundreds of reations. These reationtimesales an range from 10�9 to 1 seond. Models with a large range oftimesales produe a sti� system that is diÆult to integrate.Analytial and numerial tools have been developed to optimally reduethe kineti models. Some of these tools inlude sensitivity analysis, prinipalomponent analysis, and speies lumping proedures [85℄. Another tool isomputational singular perturbation (CSP) as a formal way to apply partial-equilibrium approximations on an a priori basis [46℄.Many of the methods for reating redued mehanisms rely on steady-state or partial-equilibrium approximations. However, the redued meha-nisms are generally limited to a range of temperature, pressure, and/or speies'onentrations, known as the thermohemial spae. Outside of this de�nedspae, large errors an our. To overome this de�ieny, Mass and Popeproposed a new method for reduing the simulation burden of detailed hem-ial kinetis based on intrinsi low-dimensional manifolds (ILDM) [50℄ [51℄.However, the ILDM method also had the following shortomings [93℄.1. Storage requirements inrease dramatially as the manifold dimensioninreases.2. The entire thermohemial spae must be alulated for a �xed dimen-15



sional manifold that annot be easily adapted when a higher dimensionalmanifold is required.3. For higher dimensional manifolds, the work to retrieve information is nottrivial.4. There is a lak of dynami error ontrol.5. Existene, uniqueness, and ontinuity of the lower dimensional manifoldare not guaranteed.ILDM was reated as a dimension redution tehnique that gave modestimprovements in omputational performane. Later, Pope developed in situadaptive tabulation (ISAT) to diretly redue the omputational requirementwithout dimension redution [66℄. The ISAT method alulates and storesthe data in situ rather than as a preproessing step. Thus, only areas of thethermohemial spae that are aessed are inluded in the database. Anotherbene�t of ISAT is the addition of error ontrol that seeks to limit the retrieveddata is within a spei�ed error tolerane [49℄. In a turbulent ame simulation,a redution by a fator of 1000 in the omputational e�ort was demonstrated[66℄. Consider how ISAT redues omputational time of simulating the om-plex hemistry in turbulent ames. Often tens of hemial speies are linkedtogether by thousands of possible hemial reation pathways. Coupling thehemistry, onvetion, and di�usion in a simultateous simulation is often too16



omputationally demanding. As a �rst step, the hemistry integration is iso-lated from other physial simulations, suh as mixing, by one of many splittingshemes. During the ourse of the reating ow simulation, integration queriesonsisting of initial states (�0), an integration time (�t), and an error toler-ane (�tol) are sent to ISAT many times. ISAT returns the �nal states (�f) ofthe hemistry integration within the spei�ed error tolerane. Sine Pope �rst
Figure 2.1: Blok diagram of ISAT interation with the reating ow simu-lation. ISAT stores and retrieves the thermohemial properties involved inhemial reations. Beause the hemistry is deoupled from the other aspetsof the simulation, the �nal hemial ompositions are a unique funtion of theinitial onentrations and time.published the ISAT method, there have been numerous appliations of ISATin ombustion to simulations that were previously quite formidable. Saxenaand Pope [74℄ [75℄ simulated a piloted jet di�usion ame of CH4�air with 16speies and 41 reations. A signi�ant speedup was not reported beause thehemistry alulations took only 60% of the total CPU time. Other simulationshave shown that up to 99.9% of the CPU alulation are hemistry related,making possible an overall redution of 1000 times [66℄. Shah and Fox [78℄performed omputational uid dynami (CFD) simulations of methane ther-mohlorination reators involving 38 speies with a speedup of 138 over diret17



integration. They also mentioned that ISAT has been suessfully applied toa mehanism with 116 speies and 447 reations, although no further detailswere given. Xu and Pope [92℄ performed another simulation of piloted jetames of methane with a parallel implementation of ISAT with an estimatedspeedup of 40.There has been some interest in reduing the storage requirements forISAT. Tang and Pope developed an extension that ombines ISAT and modelredution through rate-ontrolled onstrained equilibrium, abbreviated ISAT-RCCE [81℄. ISAT-RCCE as applied to a mehanism with 32 speies and 175 re-ations shows a speedup fator of 500 over diret integration. Another methodto redue storage was proposed by Chen et al. [21℄. The ISAT database isreplaed by a neural net, thereby reduing the storage requirement from �100MB to �1 MB. Even though there is a savings in memory, there is a loss oferror ontrol. The authors mention that by using a neural net, extrapolationwould produe unpreditable results and that ISAT should be used for pointsoutside the training domain.2.2 Details of the ISAT AlgorithmThe ISAT algorithm was originally developed for storage and retrievalof initial value problems (IVPs) involving ordinary di�erential equation (ODE)models (see Figure 2.2). ISAT was originally developed to store and retrieveODE numerial integrations. Given the initial states, the �nal states are ap-proximated by a linear extrapolation from a neighboring solution. ISAT at-18



Figure 2.2: ISAT was originally designed to store and retrieve numerial inte-grations of hemistry evolution in turbulent ombustion simulations.tempts to ontrol the approximation error by de�ning a region of aurayaround the initial state.A generalized development of the algorithm is neessary for the broaderappliation as a nonlinear funtion approximation tool for ases in whih gra-dient information is not available. As a nonlinear funtion approximator, thepotential appliations of ISAT are greatly expanded. In subsequent hapters,the ISAT algorithm is applied to IVPs involving di�erential-algebrai equa-tions (DAEs) and regulator solutions for nonlinear model preditive ontrol(NMPC). A generalized form of the ISAT algorithm follows.2.2.1 The ISAT ReordThe basi unit of the ISAT database is the reord. An ISAT reordonsists of the initial states and inputs, the �nal states, a sensitivity matrix,and an ellipsoid of auray (EOA). The sensitivity an be estimated whenit is not expliitly available from the funtion alulation. The EOA is a19



matrix used to ontrol the retrieval error. A distinguishing feature of ISATover other storage and retrieval methods is the automati error ontrol. ForTable 2.1: Elements of the ISAT reord, along with the vetor and matrixdimensions ISAT Reord Element Symbol and DimensionIndependent variables s 2 RmDependent variables f 2 RnSensitivity A 2 RnxmEllipsoid of auray M 2 Rmxmoptimal ontrol, s is a set of parameters and initial states, f is a set of inputsto the system, A is a sensitivity of the inputs to s, and M is an ellipsoidalregion about s that de�nes the linear approximation limit in order to ahievea desired auray.2.2.2 Searhing the Reords with Binary TreesWhen aessing the database, the only piee of information that isknown is a query vetor of initial onditions. Ideally, a stored reord is re-trieved that minimizes the approximation error. However, the approximationerror annot be veri�ed without performing the alulation of interest, therebynegating the utility of storage and retrieval. Generally, loser reords produelower approximation errors beause the linear approximation is loally au-rate. The approximation error is sub-optimally minimized by seleting a reordthat minimizes a measure of loseness. In this ase the measure of loseness is
20



the di�erene between the query vetor (sq) and stored vetor (ss) .x = jsq � ssj (2.1)Searhing the ISAT reords sequentially would require O(N) operations toompletely searh the database and �nd the losest reord. A more eÆientsearh struture is the binary tree. A balaned binary tree requires O(log2(N))operations for loating a reord. One of the drawbaks to binary tree searhing
Figure 2.3: Eah node of a binary tree an either be a leaf or branh. Theleaves of the binary tree are individual reords of the ISAT database. A branh,on the other hand, points to two other nodes. All branhes divide until a leafterminates the line.is that the losest reord is not always seleted. To overome this de�ieny,multiple binary trees are used to inrease the probability of �nding the losestreord. The reords are equally divided among the binary trees to maintain abalane in searh times. One all of the binary trees are searhed, a sequentialsearh is performed to determine the losest reord among the ones the binarytrees seleted. By adjusting the number of binary trees, an e�etive ompro-mise is reahed between the auray of the sequential searh and the speedof the binary tree searh. 21



One a lose reord is loated, ISAT performs one of three senarios.These senarios inlude retrieval, growth, and addition. Eah of these is de-sribed in more detail below.2.2.3 Reord RetrievalThe automati error ontrol deides if retrieval is appropriate. Theerror ontrol is aomplished with the ellipsoid of auray (EOA) with a enterbeing the stored start. Another point, sq is within the EOA if xTMxx � �2tol .If the query point is within the EOA then f is estimated (fest) with a linearapproximation using the sensitivity (A).fest = fs + Ax (2.2)
If xTMxx > �2tol then the point sq is outside of the EOA and a retrievalannot be performed. Even though the query point is not inside the EOA, thelinear approximation may still be within the error tolerane for fest. The nextstep of the algorithm is to hek the atual error.2.2.4 Reord GrowthWhen retrieval is not possible, the approximation error is omputed. Inorder to hek the atual error, an original funtion evaluation must determinethe orret value of f (f = funtion(sq)). If jf � festj > �tol, the EOA shouldnot be expanded. Instead a new reord should be added to the ISAT database.22



The growth step should be skipped and the algorithm jumps ahead to the ISATaddition phase (see setion 2.2.5).If jf � festj � �tol, the EOA an be expanded to inlude sq. This newregion is a minimum volume ellipsoid that inludes the new point, sq, and theoriginal EOA. The growth algorithm involves six steps. Eah of the steps isdesribed �rst in mathematial terms and subsequently with a two dimensionalgraphial example.2.2.4.1 De�nition of the EOA and growth pointAfter replaing �tol with  to simplify the notation, the EOA is de�nedby all possible query points that satisfy Equation 2.3.xTMxx � 2 (2.3)In the two-dimensional example shown in Figure 2.4, an ellipse is enteredabout the origin as an estimate to the region of auray. This ellipse angrow as the region of auray is revealed with further query points.2.2.4.2 Transform the oordinates to map the EOA to a unit hy-persphereIn this step a matrix Tyx is omputed to map the original x-oordinatesonto a new y-oordinate system that transforms the EOA into a unit hyper-sphere. A unit hypersphere is simply a higher-dimensional generalization ofthe three-dimensional sphere with radius of one. The matrix Tyx maps allpoints in x into the y oordinates with the relation y = Tyxx. Likewise, the23



Figure 2.4: The enter point of the ellipse is the origin. The growth point sqbeomes xq after the translation and the EOA is de�ned in terms of x.inverse of Tyx (or Txy) maps y into the x oordinates with x = T�1yx y = Txyy.The �rst subsript letter of T refers to the transformed oordinate systemwhile the seond subsript letter refers to the original oordinates.A Shur deomposition gives Mx = Qx�xQTx with Qx being a unitarymatrix (QTx = Q�1x ). The square root of the diagonal matrix �x is omputedby taking the square root of the individual elements along the diagonal. Thetransformation matrix beomes Tyx = �1�1=2x QTx .It will now be shown that the oordinate transform does, in fat, trans-form the EOA to a unit hypersphere in the new oordinate system. First, theinverse of Tyx is found to beT�1yx = Txy = Qx��1=2x (2.4)
24



Making the substitution Txyy = x in the EOA equation gives(Qx��1=2x y)TMx(Qx��1=2x y) = 2 (2.5)Rearranging and substituting Mx = Qx�xQTx gives2(yT��1=2x QTx )Qx�xQTx (Qx��1=2x y) = 2 (2.6)The 2 term anels and QTxQx = I beause Qx is a unitary matrix. Thisleaves yT��1=2x �x��1=2x y = 1 (2.7)Finally, beause ��1=2x �x��1=2x = I the EOA in transformed spae beomes aunit hypersphere. yT Iy = 1 (2.8)
2.2.4.3 Map the growth point to the transformed oordinatesThe same transformation matrix Tyx is used to transform the growthpoint to the new oordinates. yq = Tyxxq (2.9)The magnitude and normalized diretion of yq are important for subsequentalulations. The magnitude is the Eulidean norm of yq.mag (yq) = kyqk2 (2.10)25



Figure 2.5: In a two dimensional example, the y-axes are shown relative tothe x-axes. In the y-axes referene frame, the ellipse beomes a unit irleentered at the origin.The normalized diretion is simply the vetor divided by the magnitude.yn = yqkyqk2 (2.11)
2.2.4.4 Align one of the y-axes with the diretion of the growthpointOne of the y-axes must be aligned with the diretion of the growthpoint. This is aomplished by omputing an orthonormal basis to yn. Anorthonormal basis is produed by �rst subtrating the outer produt of ynfrom the identity matrix of appropriate dimension.R = I � ynyTn (2.12)
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Figure 2.6: The growth point is translated to the new y referene frame. Themagnitude is the distane between yq and the origin. The normalized vetoryn has a unit length and points in the diretion of yq.A Shur deomposition of R givesR = QR�RQTR (2.13)The diagonal matrix �R is equal to the identity matrix exept that one of thediagonal elements is zero. This diagonal element orresponds to the axis thatis aligned with yq in the z oordinate system. The transformation matrix isthe transpose of the unitary matrix from the Shur deomposition (or obtainedmore eÆiently by a Householder transformation).Tzy = QTR (2.14)A new oordinate system is de�ned by z = Tzyy. Transforming the y oordi-nates to the z oordinates the EOA beomes(Tyzz)T I(Tyzz) = 1 (2.15)27



Rearranging gives zTT TyzTyzz = 1 (2.16)Beause Tyz has the speial property of a unitary matrix that T TyzTyz = I, theEOA is also a unit hypersphere in the z oordinates.zT Iz = 1 (2.17)

Figure 2.7: The axes are rotated so that one axis aligns with the growth point.This rotation is important so that the ellipse an be expanded along the alignedaxis.
2.2.4.5 Grow the hypersphere into an ellipsoid that reahes thegrowth pointThe half length of the axis, aligned with yq, is expanded by modifyingthe appropriate element of the identity matrix. This is the same element thatorresponds to the zero diagonal element of �R. In this ase, the �rst diagonal28



element is shown as the appropriate seletion. The semi-axis of the ith axis ofan ellipsoid zTMzz = 2 is (2=�i)1=2 where �i is the ith eigenvalue of Mz. Inorder to streth the hypersphere into a minimum volume ellipsoid that inludeszq and the original EOA, the half length is lengthened to the magnitude of zq.Beause the magnitude of zq is equal to that of yq, the matrix element is setto kyqk�22 . Mz = 26664 kyqk�22 0 � � � 00 1 . . . 0... . . . . . . 00 � � � 0 1
37775 (2.18)The grown EOA is zTMzz = 1.

Figure 2.8: The irle is expanded into an ellipse that reahes the growthpoint. This is a minimum area expansion of a symmetri ellipse.
29



2.2.4.6 Transform the expanded ellipsoid bak to the original o-ordinate systemThe grown EOA is transformed bak to the original oordinate systemwith inverse transformation matries. The z oordinates are a funtion of thex oordinates aording to z = Tzyy = TzyTyxx (2.19)Substituting for z in the EOA equation and multiplying both sides of theequation by 2 reverts bak to the x oordinates and reovers the form of theoriginal EOA. This is the minimum volume ellipsoid that inludes the originalellipsoid and the growth point. xTM exx = 2 (2.20)with the expanded volume determined byM ex = 2(T TyxT TzyMzTzyTyx) (2.21)
2.2.5 Reord AdditionWhen jf � festj > �tol the EOA should not be expanded. Instead anew reord should be added to the ISAT database. The ore elements of anISAT reord are s, f , A, and Mx. Eah of these elements is disussed in thesubsequent setions. 30



Figure 2.9: When the ellipse is transformed bak to the original oordinates,xq is on the ellipse perimeter. In addition, the ellipse is a symmetri minimumarea expansion that inludes the growth point and the original ellipse.2.2.5.1 Initial states and inputsThe vetor s is the query point that is not eligible for retrieval orgrowth. This point beomes the enter of the new EOA.s = sq (2.22)2.2.5.2 Final statesThe vetor f omes from an original funtion alulation. There isno omputational advantage with growth or addition beause a omplete al-ulation is required. Reord growths and additions are part of the databasebuilding phase. The real advantage of ISAT ours when retrievals greatlyoutnumber growths and additions. 31



2.2.5.3 SensitivitySensitivity information may also be optionally available from the fun-tion evaluation. For dynami systems, the intial state sensitivities an besolved simultaneously with the state equations. Automati di�erentiation animprove the auray and redue the omputational burden that is requiredto obtain sensitivities. The sensitivity matrix A reveals the amount that fhanges with a small perturbation in s.A = �f�s (2.23)When the sensitivity is not available from the funtion evaluation a statistialapproximation an be made. At least m, where m is the dimension of thevetor s, funtion evaluations are required to alulate an aurate sensitivity.The funtion evaluations an be obtained by sorting through a database ofprevious results or by generating new results.When sorting through a database of previous results, are should betaken to selet reords that are lose to sq otherwise the sensitivity may notbe loally aurate. The data �ltering routine in this setion may be modi�edbased on the known harateristis of the funtion that is approximated. The�lter suggested here is designed for funtions that exhibit disontinuities, re-gions that are not ontinuously di�erentiable, or strong nonlinearities. When asensitivity is requested, a multiple binary tree searh is onduted to gather aset of 4m reords that are lose to sq (sq 2 Rm). Multivariate linear regressionis used to obtain a sensitivity about sq. If the residuals from the regression32



are less than the requested ISAT tolerane, the sensitivity is aepted as aloal approximation. In the event that the requested ISAT tolerane is notmet, data are �ltered from the set by two alternate means. The �rst �ltereliminates the reord with the highest regression residual. The seond �lterremoves the reord that is furthest from sq in the 1-norm sense. These �ltersremove reords until the regression toleranes are met or until fewer than mlinearly independent reords remain. Linear independene of the reords is ex-amined with a singular value deomposition of the raw data set. Independeneis maintained if m non-zero singular values exist.When generating new results,m linearly independent vetors of s shouldbe generated around sq. These linearly independent vetors an be reated byde�ning an orthonormal basis as R = I � yyT , where y is any unit vetor.Performing a funtion evaluation m times for all of the s vetors an be a putime intensive step.One the m funtion evaluations are ompleted, the sensitivity an beestimated through multivariate linear regression. Eah of the s and orre-sponding f vetors are �rst subtrated from sq and fq.�s = sq � s (2.24)�f = f(sq)� f = fq � f (2.25)The linear regression model inludes a residual vetor, �resid , as an indiationof how muh eah loal result deviates from the linear model. A large residualindiates that a perturbation of s does not �t in with the linear model. This33



ould indiate that the perturbation of s should be redued to generate loallylinear solutions to f . �f = A�s+ �resid (2.26)The vetors are assembled into matries X and Y .X = 264 �s1...�sm 375T (2.27)Y = 264 �f1...�fm 375T (2.28)An estimate of the sensitivity is alulated by simple matrix multipliations.A = Y XT (XXT )�1 (2.29)The regression approximation to the sensitivity an be poor if data are notin the loal linear area. However, an inaurate sensitivity approximationwill not degrade the error ontrol, but will likely derease the eÆieny ofISAT. Without an aurate �rst order approximation, the EOA size is limitedto smaller loal region. It is preferable to use integrated sensitivity analy-sis when available. For example, popular ODE and DAE integrators suh asODESSA, DASAC, and DASPK inlude the apability to ompute the sensi-tivity simultaneously with the integration. This sensitivity information is usedin the �rst order approximation of fest.
34



2.2.5.4 Initial estimate of the EOAAn initial estimate of the EOA should be onservative for good errorontrol. ISAT employs a �rst-order approximation for estimating f . Seondorder and higher terms have been trunated from this approximation.fest = fs + Ax (2.30)By assuming a zero-order funtion estimation, the �rst-order term beomes anapproximation to the trunation error.fest = fs (2.31)�trun � Ax (2.32)Substituting �trun for the error term in the EOA equation gives an approxi-mation for the zero-order EOA.xTMxx = �2 = �Ttrun�trun = (Ax)T (Ax) = xT (ATA)x (2.33)M zero�orderx = ATA (2.34)Sometimes the zero-order approximation produes an EOA with a large prin-iple axis beause of a low sensitivity in a partiular diretion or beause thedimension of f is less than s. To remedy this problem, the singular valuesof A are adjusted to be at least �2tol=2. To aomplish this, a singular valuedeomposition of A is performed to give U�V T . Any diagonal elements below�2tol=2 are raised to the minimum value. The orreted matrix is reonstrutedfrom the new diagonal matrix of singular values.~A = U ~� V T (2.35)35



The orreted zero-order approximation of the EOA ensures that large prini-ple axes are onservatively redued.~M zero�orderx = ~AT ~A (2.36)
2.2.5.5 Binary Tree AdditionOne all of the ISAT reord elements are omputed, the reord is addedto the binary tree. The growth of the binary tree involves the reation of anew node. In this ase, the reord added to the tree is reord3. Supposingthat reord3 is loser to reord2, the tree is grown on the right branh with thereation of node2. The new node2 is de�ned by �2 and a2 whih are obtained
Figure 2.10: The binary tree is grown to inlude a new reord. The growthreates a new node where the next losest reord previously appeared.from the following equations, where s2 and s3 belong to the new reord andnext losest reord, respetively. �2 = s3 � s2 (2.37)a2 = �T2 �s3 + s22 � (2.38)36



As a �nal step, the node2 pointers are linked to reord2 and reord3, and node1points to node2.2.3 Saling to Large Sale ProblemsOne of the limitations of the ISAT method is that the storage require-ments are proportional to n2, where n is the total number of states [21℄. There-fore, smaller models are better suited to omputational redution throughISAT. A pratial limit may be on the order of 100 states (see examples inChapter 4).2.4 Example: Comparison of ISAT and Neural Net-worksISAT and neural networks are ompared in this example. Neural net-works were seleted as a ompetitive alternative due to their suess in ontrolappliations. For this example, all retrievals are purposely kept within thetraining domain. ISAT diretly ontrols the most intuitive tuning parameterfor nonlinear funtion approximation: The amount of error between the a-tual funtion and its approximation. Neural networks tuning parameters areentered on the network struture and optimization tolerane for onvergene.These tuning parameters are less intuitive and lead to an indiret error ontrolsheme. The �rst eigenfuntion of an L-shaped membrane is seleted as a testproblem for the omparison (see Figure 2.11). One quadrant of the eigenfun-tion is linear while the three quadrants are a ontinuous nonlinear funtion.37



Figure 2.11: The �rst eigenfuntion of an L-shaped membrane used to ompareISAT and neural networks. The seond and third eigenfuntions have also beenshown in MathWorks' publiations.The eigenfuntion is a good test of nonlinear funtion approximation algo-rithms beause it exhibits both linear and nonlinear regions with parts thatare not di�erentiable. The horizontal axes x and y are the independent set.The vertial axis z is the dependent set. Data were generated by seletingoordinates of x and y at 31 equally spaed intervals for a total of 961 (= 312)funtion evaluations. On the graph, the intersetion of two lines indiates apoint where a funtion evaluation ourred.Beause the sensitivities are not available from the alulation, ISATused a statistial approximation for the slope at eah point. ISAT's prini-pal tuning variable is the absolute tolerane for funtion approximation error(�tol). As the error tolerane is lowered, the number of linear regions in theISAT approximation inreases. To illustrate, the error tolerane was initially38



set at �tol = 0.5. Beause the z values range from -0.3 to 1.0, an error toleraneof 0.5 is extremely oarse. ISAT omputed 12 linear regions to approximatethe nonlinear funtion (see Figure 2.12). The shape of the nonlinear funtion

Figure 2.12: ISAT approximation with an error tolerane of 0.5. Due to thehigh error tolerane, the approximation is very oarse with 12 linear regions.is barely reognizable beause the nonlinear region is approximated with onlya handful of linear funtions. One good aspet of the approximation is that theleft quadrant is exatly represented by ISAT's linear approximation. Dereas-ing the error tolerane to �tol = 0.1 produes onsiderably better results with atotal of 48 linear regions. However, there are still regions of the approximationthat approah the maximum error tolerane (see Figure 2.13). Finally, with anerror tolerane of �tol = 0.01 and 206 linear regions, the ISAT approximationresembles the original funtion (see Figure 2.14). For this example problem,the number of linear regions inreases proportional to the reiproal of �tol.With other appliations of ISAT, �tol should be hosen to balane the osts of39



Figure 2.13: ISAT approximation with an error tolerane of 0.1. The approx-imation is more re�ned with 48 linear regions.funtion approximation error and storage requirements. For omparison, thesame funtion approximation was made with an arti�ial neural network. Theneural network has two layers with a linear output layer of 1 neuron and atangent funtion layer with 4 neurons. The neural network was generated andoptimized using MATLAB's neural network toolbox. The neural network wastrained with the same data that produed the ISAT database (see Figure 2.15).The approximation deviates signi�antly from the original funtion shown inFigure 2.11. Some of the key missing features are the non-ontinuously dif-ferentiable points, a quadrant that is exatly linear, and shape of the peak.A neural network is basially a nonlinear funtion with parameters that areoptimized to �t a desired funtion. The neural network an approximate awide range of nonlinear funtions. However, some expertise is required to de-termine the number of layers, number of neurons in eah layer, training data40



Figure 2.14: ISAT approximation with an error tolerane of 0.01. The approx-imation inludes 206 linear regions and ISAT losely approximates the originaleigenfuntion.

Figure 2.15: Neural network approximation to the eigenfuntion.
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set, and optimization to �t the nonlinear funtion. In addition, there is noerror ontrol to limit the amount of approximation error. The approximationerror is determined by the struture and training of the neural network.ISAT, as opposed to neural networks, uses linear regions to �t a desiredfuntion. Also, ISAT has diret ontrol over the error tolerane, whih isthe most important tuning parameter for nonlinear funtion approximationalgorithms. Other advantages of ISAT over neural networks are that no globaloptimization step is required to build the database. When ISAT enountersdata outside of the training set, it either expands an existing linear region oradds a new linear region. The reation of new linear regions is determined bythe error tolerane ontrol. Also, ISAT an approximate funtions that arenot ontinuous or ontinuously di�erentiable.2.5 Summary and ConlusionsThis hapter outlines a new storage and retrieval algorithm for non-linear funtions. Although originally developed to redue the omputationalburden of DNS in turbulent ombustion, the algorithm shows promise as ageneral nonlinear funtion approximator. In this hapter, a desription of thealgorithm has been developed in a way that does not restrit the appliationof ISAT to one partiular area. Although many of the details of the ISATalgorithm are presented in other papers, a more thorough explanation of thealgorithm is given to larify some of the details. In addition to reporting thedetails of ISAT, new features have been developed. Many funtions do not42



produe an exat sensitivity. In the ase when the sensitivity is not avail-able, a statistial approximation is attempted. The statistial approximationis determined by olleting previous alulations lose to the point of interest.This feature also identi�es when insuÆient data exist to provide an auratesensitivity. With a sensitivity approximation, any nonlinear funtion an bestored and retrieved with ISAT.The eigenfution of an L-shaped membrane was used as a test problemto demonstrate ISAT's apabilities ompared to neural networks. In subse-quent hapters, it will be shown how ISAT applies in storage and retrieval ofopen-loop and losed-loop simulations. Open-loop simulations refer to simu-lations without optimization of partiular model paramters. Closed-loop al-ulations seek to optimize deision variables to meet an objetive. Theseappliations in proess ontrol are further examples of ISAT's apability as ageneral storage and retrieval tehnique.One of ISAT's limitations is that storage osts sale with the square ofthe system size. To overome this de�ieny, model redution is inorporatedto derease the model order. The next hapter is devoted to model redu-tion beause the eÆieny of storage and retrieval an be poor for large saleproblems. Beause large sale systems are typially neessary to auratelymodel real-world phenomena, model redution is used to redue the model sizewithin an aeptable range for storage and retrieval.
43



Chapter 3DAE Model Redution
A major obstale to more NMPC appliations is the rapid and reliablesolution of the optimization problem in real-time [68℄. To overome this ob-stale, several approahes have been suggested to redue the omputationaloverhead. In Chapter 4, the omputational load is redued by storing andretrieving solutions of DAE integrations of the model equations. In Chapter5 the omputation is shifted o�-line by storing and retrieving optimal ontrolsolutions. Both tehniques are muh more eÆient for lower dimensional prob-lems. Model redution generally does not signi�antly lower the omputationalost of simulation and ontrol. However, model redution an enable o�-linestorage and retrieval for eÆient on-line implementation. The model redutionstrategies in this hapter are an important step in ahieving omputationallyfeasible model based ontrol solutions.DAE model redution has traditionally been an a posteriori approah.Training simulations determine an aeptable redued order model that mayor may not be valid over the entire set of desired simulations. This hapteroutlines a new in situ approah to adaptively determine the redued modelorder during the desired simulations. One bene�t of this new approah is more44



diret ontrol over redued model error. The model error, not the model order,beomes the prinipal tuning parameter. This hange of tuning parameters ismore intuitive beause the tehnique automatially adjusts the model order tomeet variable error toleranes.3.1 Previous WorkDAEs onsist of di�erential equations and algebrai equations. In thegeneral form, the DAE problem is as followsfDAE( _z;z;t) = 0 (3.1)where z is a vetor of variables and t is a salar. The DAE is nonlinear whenthe vetor f is a nonlinear funtion of the _z, z, or t. In order for the problem tobe a DAE, at least one of the oeÆients of _z must be zero. The DAE an begrouped into di�erential equations (fODE) and algebrai equations (fAE). Thevariables are also divided into di�erential variables (x) and algebrai variables(y). fODE( _x;x;y;t) = 0 (3.2)fAE(x;y;t) = 0 (3.3)Typially, the DAE equation residuals are time invariant and t an be elimi-nated from the general equation form. However, it is inluded in subsequentderivations for the sake of generality.
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3.1.1 Redution of Di�erential EquationsThe main types of model redution for nonlinear ODE models are pro-jetion methods, proper orthogonal deomposition (POD), balaned ovari-ane matries (BCM), perturbation methods, and model simpli�ation [52℄.Perturbation methods are useful for models where there is a large separationof time sales allowing the fast dynamis to be eliminated [89℄. Even thoughthere are many types of model redution tehniques, few are optimal in somesense. Two optimal nonlinear model redution approahes are balaned em-pirial gramians [34℄ and POD [94℄. Balaned empirial gramians were laterfound to be a speial ase of BCM [33℄. The two step proess, in POD andBCM, �rst omputes a similarity transform from step or impulse simulations ofthe original model. Next, a Galerkin projetion onstruts the redued statesfrom a linear ombination of the original states. The redued set of statesfrom BCM is optimal in apturing input to output dynamis of the originalnonlinear system. POD is optimal in apturing input to state dynamis. Dur-ing the Galerkin projetion step, the physial meaning of the variables is lostbut an be reovered by an inverse transform.A Galerkin projetion maps a full set of variables onto a redued set ofvariables that make up the redued model. For BCM, the Galerkin projetionis a set of vetors that optimally aptures the highest degree of input-outputdynamis. For POD, the Galerkin projetion is a set of orthogonal vetors butaptures the highest degree of input-state dynamis. Eah suessive vetor isthe diretion that maximizes the amount of variane in the model states while46



maintaining orthogonality to the previous diretions. For the semi-expliitODE model form _x(t) = f(x(t)) (3.4)the Galerkin projetion ( ~P ) is applied by de�ning a redued set of variablesx(t) = ~P T �x(t) + r(t) (3.5)where r(t) is a state residual to aount for the inauray of the reduedmodel. The redued model exatly represents the original model when theresidual is retained. _�x(t) = ~Pf( ~P T �x(t) + r(t)) + ~P _r(t) (3.6)At this point the residual and its derivative are typially set to zero and someof the system dynamis are neessarily lost due to the redued order of themodel. _�x(t) = ~Pf( ~P T �x(t)) (3.7)Two tehniques for obtaining a Galerkin projetion are desribed in setions3.1.1.1 and 3.1.1.2. POD is optimal in apturing input-state e�ets while BCMis optimal for input-output e�ets.3.1.1.1 Proper Orthogonal DeompositionPOD is performed by analyzing the variane among the system states.This is aomplished by deomposing the ovariane matrix of the states intoeigenvetors and eigenvalues. The eigenvetors assoiated with the m largest47



eigenvalues beome the priipal diretions in the redued model. Here m isthe order of the redued model and n is the order of the original model. TheGalerkin projetion onsists of the similarity transform (T ) and a projetionmatrix (P ). The projetion matrix onsists of the top m rows of an iden-tity matrix. For POD, the similarity transform (T ) is the transpose of theeigenvetor matrix. ~P = PT (3.8)The Galerkin projetion takes a linear ombination of states to form a reduedset. The model an either be redued through trunation or residualization[34℄. Trunation assumes that the transformed states orresponding to thelowest (n � m) eigenvalues are onstant (see Equation 3.9). Trunated re-dued models perform better than residualized models with high frequenyperturbations. One disadvantage is that there is usually some steady stateo�set. 266666664
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377777775 (3.9)
Residualization assumes that the derivates of the transformed states orre-sponding to the lowest (n�m) eigenvalues are onstant (see Equation 3.10).Residualized redued models have no steady state o�set, but perform worsethan trunation for higher frequeny responses. Residualization is often notdesireable beause the redued model is a DAE of the same order as the orig-48



inal ODE. 266666664
_�x1..._�xm0...0
377777775 = 266666664

�f1(�x; u)...�fm(�x; u)�fm+1(�x; u)...�fn(�x; u)
377777775 (3.10)

These de�nitions of trunation and residualization are onsistent with thosegiven for linear systems. For linear system trunation, the redued statesare set to zero beause the variables are in deviation form. For linear sys-tem residualization, an expliit transformation of the redued variables an beobtained.3.1.1.2 Balaned Covariane MatriesNonlinear model redution using balaning of ovariane matries hasproven e�etive for sets of ODEs [33℄. This method redues the nonlinearmodel to a variable subspae that aptures the most important dynamis ofinput-output behavior. One system studied by Hahn and Edgar [?℄ is a binarydistillation olumn with the reux ratio (u) as the manipulated variable anddistillate omposition (x1) as the ontrolled variable. The simulated olumnontains 30 trays, a reboiler, and ondenser. The 32 states are the ompositionsof the liquid at eah stage. The ODE model is plaed in the general nonlinearform. _x = f(x; u) (3.11)y = h(x) (3.12)49



A similarity transform (T ) is omputed from the balaning of empirial grami-ans. The transformed variables are in order from most important to the leastimportant for input/output behavior. The transformed system is shown inEquation 3.13. The Galerkin projetion ( ~P ) is a ombination of the similaritytransform (T ) and a projetion matrix (P ). The projetion matrix onsistsof the top m rows of an identity matrix, where m is the order of the reduedmodel. _�x = PTf(T�1P T �x; u) (3.13)y = h(T�1P T �x) (3.14)The redued model is often written in a more onise form in terms of theredued variables ( _�x) _�x = �f(�x; u) (3.15)y = �h(�x; u) (3.16)Hahn and Edgar [33℄ showed that a redued system with 3 transformed vari-ables shows exellent agreement with the full 32 state model on step tests. Forexample, the �rst transformed state is shown as a linear ombination of theoriginal 32 states.
�x1 = � 9:7 4:0 3:4 � � � 0:08 0:07 0:24 �26666666664

x1x2x3...x30x31x32
37777777775 (3.17)
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As a physial interpretation, the relative importane of the 1st-3rd states(reux drum omposition and top reti�ation stages omposition) on in-put/output behavior is muh greater than the 30th-32nd states (lowest bot-toms stages and reboiler omposition). The relative weighting of stages 1-31monotonially dereases until stage 32 where there is a slight inrease from0.07 to 0.24. This inrease from stage 31 (sump) to stage 32 (the reboiler) anbe attributed to the reboiler vapor that drives the separation. The similar-ity transform from the balaning of empirial gramians on�rms that most ofthe important dynamis for ontrol are found in the states at the top of theolumn. With the transformation, the nonlinear system an be redued bytrunation or residualization. By reduing the number of dynami variablesthrough trunation, the omputational requirements are redued by � 40%.Equation 3.18 shows the form of the 3 state model by trunation.266666664
_�x1_�x2_�x3_�x4..._�x32
377777775 = 266666664

�f1(�x; u)�f2(�x; u)�f3(�x; u)0...0
377777775 (3.18)

The dyanami response of this redued system is shown in the subsequentsetion. It is also ompared to a trunated model by POD and linearization.3.1.1.3 Example Comparison of POD, BCM, and LinearizationPOD, BCM, and linearization are ompared for the 32 state binarydistillation olumn model. In the �rst omparison, truated models generated51



with POD and BCM are ompared in an open-loop step test. The step testis generated by simulating a derease in the reux ratio, thereby lowering thepurity of A in the distillate (see Figure 3.1). The response of the distillate

Figure 3.1: A step derease in reux ratio produes a orresponding dereasein the distillate omposition. A nonlinear 32 state model, a 3 state BCMredued model, and a 3 state POD model are shown.onentration is traed for 120 minutes. BCM and POD perform equivalentlyfor the 3 state redued model. Beause trunation was performed, instead ofresidualization, there is a slight steady state o�set.Model simpliation may inlude linearization. However, depending onthe degree of nonlinearity and the state deviation from the original linearizedvalues, a linear model may not apture the true dynamis. To illustrate thispoint, the 1 state trunated POD and BCM models are ompared with a52



linearized model of 32 states (see Figure 3.2). Interestingly, both 1 state

Figure 3.2: The same dynami response as Figure 3.1 is shown in this plot.Here a nonlinear 32 state model, 1 state BCM and POD models, and 32 statelinearized model are ompared.redued models outperform the 32 state linearized model in dynami responseand steady state o�set. This demonstrates the e�etiveness of nonlinear modelredution ompared to another model simpliation strategy. Beause PODand BCM are optimal in two unique ways, they will always outperform, withrespet to their objetives, all other redued or simpli�ed models with thesame or lower order.
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3.1.2 Redution of Algebrai EquationsNone of the previously mentioned model redution tehniques an re-due the number of algebrai equations in DAE models. Beause algebraiequations usually greatly outnumber the di�erential equations, redution ofthe di�erential equations often does little to redue the overall order (andalso omputational time) of a DAE model. Some attempts have been madeto redue the algebrai equations in a DAE model. These approahes searhfor an optimal preedene order and partitioning of the algebrai equationsand variables. Obtaining a preedene order and partitioning an be done us-ing a manual direted graph (digraph) as a graphial approah, using matrixmethods to produe a blok diagonal lower matrix [82℄, or through tearing[18℄. These tehniques attempt to maximize the number of algebrai variablesthat an be solved expliitly. However, this problem is NP omplete, meaningthat all possible ombinations of variables must be attempted to �nd a max-imum set of expliit equations [20℄. Another tehnique for order redution isthrough relaxation of the algebrai states [58℄. Relaxation diretly generates aGaussian elimination sheme when the algebrai equations are linear or madelinear.3.1.2.1 Pairing Variables to EquationsVariables and equations are paired by rearranging the sparsity matrixto a maximum transversal. All variables are paired to equations when problemis ompletely spei�ed (no degrees of freedom) and the maximum transversal is54



a zero-free diagonal [25℄. The sparsity matrix (J), also known as the inidenematrix, is generated by identifying the variables that are ontained in eahequation. The di�erential states are generally spei�ed for an initial valueproblem (IVP). The remaining variables are the di�erential state derivativesand the algebrai variables.Jij = � 1 if yj or _xj appears in fi0 otherwise (3.19)Computing a zero-free diagonal involves hanging the equation or variableorders. The order of the row and olumn are then mathed to give a vari-able/equation pairing.3.1.2.2 Appliation to Large Sale ProblemsAnother onsideration relevant to large sale DAE systems is the om-putational time that is required for the analysis. In this paper, n and � arethe order of the matrix and the number of non-zeros, respetively. The maxi-mum transversal algorithm has a worst ase bound of O(n�) although typialexamples are more like O(n) + O(�) [25℄. The lower blok triangular algo-rithm also exhibits exellent saling for large problems with an upper boundof O(n) +O(�) [26℄.3.1.2.3 Example: Flowsheet Model RedutionFlowsheet models typially onsist of many individual models linkedtogether by streams. If the model will be used in plant-wide ontrol, modelredution is desirable to redue the size of the model. In this example, there55



is a tank ontaining equal molar proportions of �ve liquid hydroarbons. Thestream exiting the tank is split into two with a splitter valve. The �rst streamis mixed with another feed stream of hydroarbons, and the seond streampasses through a heat exhanger. Overall the model inludes 12 di�erentialequations and 217 algebrai equations (see Figure 3.3). In this example, an

Figure 3.3: Flowsheet model involving equal molar feed streams of butane,pentane, hexane, heptane, and otane at 300 K and 1 ATM. The model has229 variables with 12 ODEs and 217 AEs.analysis of the algebrai equations was performed to determine independentsets of variables and equations and the solution order. The algebrai equationsdeomposed into 202 independent sets. There was one impliit set of 16 alge-brai equations from the ash olumn. With the exeption of this set, eahof the algebrai variables an be solved independently with a paired algebraiequation by following the preedene ordering. Expliitly transforming thealgebrai equations manually or with ISAT redues the model order from 22956



to 28. Details of the deomposition are given in Appendix C.3.1.2.4 Expliit Transformation of Impliit SetsOne the suessive independent sets are identi�ed, a storage and re-trieval tehnique an be used to store and retrieve solutions to the groups ofalgebrai variables and equations. ISAT is a storage and retrieval algorithmthat builds pieewise linear regions of the solution. ISAT ontrols the pre-dition error by de�ning an ellipsoid of auray (EOA) that spei�es a loalregion about whih the linear approximation is valid. If a query point is a-essed outside of the EOA, the linear predition error is exatly alulated.When the predition error is above a spei�ed tolerane, a new linear region isadded to the database. Adding linear regions involves a sensitivity alulationand a onservative estimate of the new EOA. ISAT is used here to store andretrieve solutions to impliit bloks of variables and equations. An externalstatistial approximation of the sensitivity through linear regression is givenas an alternative when an internal sensitivity alulation is not available.3.2 Adaptive Redution of DAEsThe total degrees of freedom (DOF) are equal to the order of the DAEmodel. The dynami degrees of freedom (DDOF) are de�ned as the minimumorder of a redued model that shows good agreement with the full model. TheDDOF are the underlying ombination of variables that ontrol the dynamisof the proess. A more preise de�nition of the DDOF is the minimum order57



of a redued order model (ROM) that meets auray riteria.jxROM � xj � �tol (3.20)The proposed adaptive redution of DAEs iteratively adjusts the order of theROM to meet the auray riteria. The adaptive approah onsists of 3suessive steps appliable to any DAE of index-1 or index-2. The approahmay also be appliable to higher index DAEs, although this idea has not beenexplored. With a few exeptions, many of the models enountered in pratieare index-1 DAEs. In addition, a variety of tehniques have been developedto transform higher index DAEs to lower index form, but that work is beyondthe sope of this hapter.1. Redution of the di�erential equations2. Partitioning and preedene ordering of the algebrai equations3. Expliit transformation of algebrai/di�erential equationsAs an index-1 DAE, the equations an be divided into di�erential and algebraisets of equations and variables. Any variable that is present in di�erentialform is lassi�ed a di�erential variable. Likewise, equations that are paired todi�erential variables in step 2 are lassi�ed as di�erential equations. Underthis de�nition algebrai equations may ontain di�erential variables. Eahstep is an extension of existing approahes, modi�ed to automatially ontrolthe ROM error. 58



3.2.1 Step 1: Redution of ODEsTo adaptively redue the order of the di�erential equations, a measureof the redued model auray must be introdued. When performing non-adaptive model redution, the training simulations are performed, similaritytransforms are generated, and singular values an be investigated to determinean aeptable number of states for the redued model. However, when thetraining data set does not over the entire nonlinear region of interest, thesingular values may be a poor indiation of redued model auray outside ofthe training domain. One possible solution is to diretly solve the full modeland redued model at various hekpoints to determine the auray of theredued model. Another option that avoids the periodi solution of the fullmodel is to ontrol the equation residuals. For linear systems at steady state,the equation residuals and variable residuals are exatly related. A linearizedmodel is used to predit the variable residuals from the equation residuals.3.2.1.1 Prediting Variable ErrorIdeally, one would like to adjust the order of the redued model to on-trol the variable errors diretly. Barring simultaneous solution of the reduedand full order model, the variable error annot be diretly alulated for non-linear systems. A new approah is to estimate the variable residual (r(t)) fromthe equation residual (R(t))._�x(t) = ~Pf( ~P T �x(t)) +R(t) (3.21)59



When the system is linear, the equation residuals are related to the variableresiduals by the state matrix (A)._x(t) = Ax(t) (3.22)with x(t) = ~P T �x(t) + r(t) (3.23)_x(t) = ~P T _�x(t) + _r(t) (3.24)the linear redued model beomes~P T _�x(t) = A� ~P T �x(t)� + Ar(t)� _r(t) (3.25)The equation residual and variable residual are related to eah other by thestate matrix and the variable residual derivative.R(t) = Ar(t)� _r(t) (3.26)By assuming that the variable residual is loally onstant, the variable residualderivative term an be ignored and an estimate of the variable residual an beobtained. r̂(t) = A�1 (R(t)) (3.27)By linearizing the nonlinear model, an estimate of the variable residuals an beobtained from the equation residuals. The preditive apability of this relationfor nonlinear models depends on the severity of nonlinearity and loseness tothe point of linearization. 60



3.2.1.2 Correting Variable ErrorA semi-expliit ODE model is a restrited form of the more generalopen equation format. f( _x; x) = 0 (3.28)Applying the Galerkin projetion to the open equation format hanges thesolution proedure. By reduing the number of variables and maintainingthe same number of equations, extra degrees of freedom arise. Physially,this is the result of giving up some of the least important dynami degreesof freedom. The redued order model is solved by minimizing the residualsinstead of �nding equation roots.R = f( ~P T _�x; ~P T �x) (3.29)One a minimized residual solution is found, a variable orretion an be ap-plied from the predited variable error (see Equation 3.27). The orretionrelies on a linearized version of the ODE portion of the DAE model. Theorreted ROM is the sum of the ROM and the linear orretion term.xROM = xROM + A�1R(t) (3.30)The orretion is derived under the assumption that the linear model is loallyaurate and that the fast dynamis have deayed. The orretion may notperform well when either of these assumptions is not valid.
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3.2.1.3 Controlling Variable ErrorThe minimized equation residuals will generally be small for a goodROM. As the order of the ROM is dereased, the equation residuals will gen-erally inrease. The di�erential equation model redution approah is madeadaptive by inreasing or dereasing the number of states of the ROM to meetthe required variable toleranes. This approah also involves a periodi updateof the Galerkin projetion. The rank of the projetion matrix (P ) is adjustedto meet the desired order of the ROM. The similarity transform (T ) is pe-riodially reomputed as more training simulations beome available. Beforesimulations are added to the training set, the order of the ROM is equal tofull order model. As the simulations proeed, the ROM order is iterativelydereased until the training set is mature and the true number of DDOF aredetermined.3.2.2 Step 2: Partitioning and Preedene OrderingThe method proposed in this work di�ers from previous work by ana-lyzing a dependeny matrixMD instead of the inidene matrix J [26℄. It willbe shown that MD an reveal more information about variable dependenies.The dependeny matrix MD is derived by �rst linearizing the DAE.A _x0 +Bx0 + Cy0 + �t0 = 0 (3.31)Dx0 + Ey0 + �t0 = 0 (3.32)
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The prime indiates deviation from referene values. A, B, C, D, and E areoeÆient matries and � and � are oeÆient vetors. The referene valuesare seleted to give non-zero oeÆients for the deviation variables. Beausethe seletion of referene values is arbitrary, the oeÆients an be arbitrarilyseleted to be 1 if the equation ontains the variable and 0 otherwise. Inthis ase the matrix E is equivalent to the inidene matrix J . Rearrangingand ombining the linear di�erential and algebrai equations results in thefollowing matrix form:� A C0 E � � _x0y0 � = � � B �D � � � x0t0 � (3.33)The dependeny matrix MD reveals the solution dependenies among the lin-earized equations. MD = � A C0 E ��1 (3.34)The variable dependeny information in MD an be illustrated by a linearsystem of Ax = b. When A is invertible, the solution to x is A�1b. Eahelement of the vetor x is omputed from the orresponding row of A�1ij andthe vetor b. xi =Xj A�1ij bj (3.35)However, the solution to xi is independent of bj if A�1ij = 0 8 j 6= i. If xi isindependent of bj then it is also independent of equation j. The dependen-ies in the linear system also apply to the orresponding nonlinear system.Therefore, linearizing the DAE reveals the struture of the nonlinear systemdependenies. 63



The matrix MD an be onverted to lower triangular blok diagonalform with Tarjan's algorithm [82℄. Eah blok along the diagonal is a setof algebrai equations that require a simultaneous solution. The redutionof algebrai equations ours by expliitly solving for independent groups ofequations. Test ases with moderate sized DAE systems (< 300 states) showthat many of the equations inluded in the impliit set an be transformed forexpliit alulation. One an algebrai variable is expliitly alulated, it anbe removed from the model as a variable that the solver must alulate. Ex-pliit approximations to impliit solutions an be attempted to further reduethe DAE order as Bosley did for bath distillation [19℄.3.2.2.1 Example: Binary DistillationA binary distillation olumn model, desribed in Appendix A, is em-ployed to show a pratial appliation of DAE model redution. In this asethe model is redued to a set of ODEs, although the omplete removal of allalgebrai equations is not always possible. The DAE model has 52 di�erentialequations and 233 algebrai equations. The independent variables are shownin Table 3.1. During the linearization step, the referene values are seletedto give non-zero oeÆients for the deviation variables. Sine the referenevalues are arbitrary, the non-zero oeÆients are shown by X if the equation
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Table 3.1: Variables at eah stage of the distillation olumnDi�erential variablesSymbol Desription Units_xA Liquid mole fration none_h Spei� enthalpy JmolAlgebrai variablesSymbol Desription UnitsyA Vapor mole fration nonexL Liquid mole fration noneT Temperature K_nV Vapor molar ow rate molse_nL Liquid molar ow rate molsehV Spei� vapor enthalpy JmolhL Spei� liquid enthalpy JmolP sati Saturation pressure of ompound j Paontains the variable and 0 otherwise.
M � _xy �!

2666666666666664
X 0 X 0 0 X 0 0 0 00 X 0 0 0 X X X 0 00 0 X 0 0 0 0 0 X 00 0 0 X 0 0 X X 0 00 0 0 0 0 0 0 0 X X0 0 0 X 0 X 0 0 0 00 0 X 0 X 0 X 0 0 00 0 0 0 X 0 0 X 0 00 0 0 0 X 0 0 0 X 00 0 0 0 X 0 0 0 0 X

3777777777777775
2666666666666664

_xA_hyAxLT_nV or _nLhVhLP satAP satB
3777777777777775(3.36)The non-zero values of MD show the dependenies between the variables andequations. The non-zero values of MD in lower triangular blok diagonal form
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are shown below with the orresponding variable order.
MD =

2666666666666664
X X X 0 0 0 0 0 0 0X X X 0 0 0 0 0 0 0X X X 0 0 0 0 0 0 0X X X X 0 0 0 0 0 0X X X 0 X 0 0 0 0 0X X X 0 X X 0 0 0 0X X X X X X X 0 0 0X X X X X X X X 0 0X X X X X X X X X 0X X X X X X X X 0 X

3777777777777775 (3.37)
� y_x � =

2666666666666664
TP satAP satBhLyAhVxL_nV or _nL_xA_h

3777777777777775 (3.38)
The �rst three rows indiate that T , P satA , and P satB must be solved simulta-neously sine the orresponding equations form one blok. The equations forP satA and P satB an be expliitly substituted into the bubble point temperatureequation. P = xAP satA (T ) + (1� xA)P satB (T ) (3.39)For the ylohexane / heptane binary mixtures, an expliit temperature solu-tion is approximated by a seond order polynomial in omposition.T = 1 + 2xA + 3x2A (3.40)66



The vetor  was alulated with a least squares �t with data from the setsxA 2 � 0 1 � to be  = � 385.42 - 21.57 3.736 �T . The polynomial �t hasa mean sample error of 0.012 K and a maximum sample error of 0.04 K.The molar ow rates form the last blok along the diagonal. Sine themolar ow rate equations are linear, they an be solved expliitly. After solvingthe ow rates the dependeny matrix indiates that the di�erential equationvariables an now be solved expliitly. If extraneous algebrai equations werepresent in the model, they ould be identi�ed at this point sine the equationsfor _xA and _h have no further dependenies. By expliitly solving all of thealgebrai equations, the model is in an ODE form. In this form, nonlinearmodel redution tehniques an be applied to further redue the number ofdi�erential states.As an ODE, the distillation olumn model is available for further modelredution through BCM or POD. POD was hosen for this example and thenumber of di�erential states was redued to 26. Figure 3.4 shows the bottomsomposition after a 5% inrease in reboiler duty. The ODE model with 52states approximates the 285 state DAE very well. The ODE model with 26states also approximates the DAE model well but with a larger o�set in thesteady-state value of omposition. ODE models with fewer than 20 statesperformed poorly, indiating that there are at least 20 dynami degrees offreedom in the binary distillation olumn model.
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Figure 3.4: 5% Step Change in Reboiler Duty3.2.3 Step 3: Expliit Transformation of Algebrai/Di�erential Equa-tionsBeause the impliit solution of a large number of algebrai equations isomputationally expensive, variables that an be solved expliitly are removedfrom the set y [37℄. However, some algebrai variables annot be expliitlysolved or solved independently of other variables. The following tehniques anbe used to automatially identify independent sets of variables and equations.The sets that require an impliit solution are expliitly approximated withISAT. The proess is alled adaptive beause the ISAT database adaptivelyadds reords to the database to ontrol the approximation error.Chapter 4 introdues the storage and retrieval of di�erential equationswith ISAT. One the ISAT database is mature, meaning that mostly retrievals68



our, the di�erential equations are rarely solved. Expliit transformation ofthe di�erential equations refers to a mature database, not a mathematialreformulation of the equations.3.3 PDE Example: Unsteady Heat CondutionA simple partial di�erential equation (PDE) example demonstrates theredution approah with the number of redued states ontrolled by the equa-tion residuals. The example is an unsteady 1-D heat ondution problem usingphysial properties of aluminum (see Figure 3.5). The heat transfer dynamis
Figure 3.5: Graphial representation of a 1-D simulation of heat transfer in a1.0 m thih aluminum slab. The PDE is spatially disretized to a set of ODEs,one for every interior node.are modeled with one PDE. ��T�t = ��x �k�T�x� (3.41)The PDE is spatially disretized with the �nite element approah to give a setof ODEs. The total slab thikness is 1.0 m and node points were plaed every�4.8 m for a total of 20 equally spaed interior nodes. The temperature of
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the nodes on the boundaries are spei�ed by the boundary onditions.�(Ti)(Ti)�Ti�t = 1�x2 �khmi (Ti+1 � Ti)� khmi�1 (Ti � Ti�1)� (3.42)khmi = � 2k(Ti+1)k(Ti)k(Ti+1) + k(Ti)� (3.43)An estimate of the thermal ondutivity at eah �nite element interfae (khmiis obtained by the harmoni mean of the thermal ondutivities at the nodetemperatures. The slab of aluminum is initially at an ambient temperatureof 25ÆC. At the initial time the temperature on the left side of the slab isinreased to 100ÆC. After 100 minutes the temperature pro�le is nearly equalto the steady state linear temperature pro�le. Figure 3.6 shows the variousredued order models in omparison with the full state model. Any redued

Figure 3.6: Full 20 state model ompared with redued order models of 3, 2,and 1 states using POD.order model above 3 states �ts the orret solution well. The 2 state model70



deviates from the orret solution as does the 1 state model, but more sig-ni�antly. Singular values from POD, the 1-norm of the variable residuals,and 1-norm of the equation residuals are shown in Figure 3.7 on a semi-logplot. Singular values are generally used to determine the order of the redued

Figure 3.7: Equation residuals have a strong orrelation to the variable resid-uals. The singular values also derease with an inrease in model order, buthave limited ability to predit variable error.model for POD in the a posteriori approah. However, singular values havelittle preditive apability as to the absolute auray of the model states.Equation residuals are more diretly tied to variable error between the fullorder model states and redued order model states. The variable residuals anbe predited by linearizing the model about the atual solution (see Figure3.8). In this example, the �nite element disretized di�erential equations arenearly linear. The model nonlinearities are in the temperature dependene of71



Figure 3.8: The predited and atual variable errors are shown. The preditionis exellent for this example beause the model is near steady state and nearlylinear.the aluminum thermal ondutivity, heat apaity, and density. These prop-erties do not hange signi�antly in the temperature range of the simulation(25ÆC to 100ÆC). Beause of near-linearity and proximity to steady-state, theequation residuals are exellent preditors of the variable residuals (see Figure3.9). Further work needs to be done to validate the variable residual preditionwith models of varying degrees of nonlinearity and for simulations with fastdynamis that are not aptured by the redued model.3.4 Index-2 DAE Example: Large-Sale Distillation ModelThe PDE example of Setion 3.3 is a simple example to demonstratethe proposed model redution approah. A more omplex example is given in72



Figure 3.9: Using the equation residuals to predit variable error, the reduedmodels show improved auray. In this ase, the 1 state redued order modelis suÆiently aurate. Without the orretion, a 3 state model is required forsimilar auray (see Figure 3.6).
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this setion to demonstrate model redution of a large-sale DAE. The modeldeveloped for this example is more indiative of the omplexity of a real sim-ulation and ontrol problem for distillation. A diagram of the model is shownin Figure 3.10. The model is developed for a olumn of 22 trays, a ondenser,

Figure 3.10: The multi-omponent distillation olumn model onsists of 22trays, multiple sidedraws, a ondenser, a reboiler, and a sump at the olumnbase.a sump and reboiler, 2 sidedraws, and 1 feed stream. A linear paraÆn mixturebetween C7H16 and C22H46 is modeled by lumping suessive sets of 3 hy-droarbons into 5 pseudo-omponents. The lumping proedure substantiallyredues the model size by onsidering only 5 speies (C8H18, C11H24, C14H30,C17H36, C21H44) that approximate the thermo-physial properties of the entirerange. The simulated mixture is preheated and fed into the olumn at tray12. Sidedraws are taken from trays 5 and 16. The speies of interest for this74



study is C11H24 (approximates the C10H22 to C12H26 range), found in highonentration (>90% purity) in the sidedraw from tray 5 (Sidedraw 1).Construting a distillation olumn model from �rst priniples is ane�ort intensive task that an require months of work. Models an also beonstruted from proess simulators, suh as HYSYS, but the model equa-tions are not exposed. The approah taken in this example was to develop anobjet-oriented simulator that automatially onstruts the distillation modelvariables and equations from a subset of simpler models. This objet-orientedapproah is shown as a pyramid in Figure 3.11 with suessive objet layers.Moving up the pyramid indiates suessively more omplex models, formed

Figure 3.11: The distillation olumn model is onstruted from an objet-oriented simulator. More advaned models are simply ombinations of baselevel models onneted by streams.
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by ombining the basi models (vessels, splitters, mixers, ash olumns, distil-lation stages, et.). The objet-oriented modeling approah neessitates modelequations in the open equation format (0 = f( _x; x; u)). For the distillationolumn in this study, the model is an index-2 DAE with 3250 states. Theindex of a DAE refers to the number of times the algebrai equations mustbe di�erentiated to transform the model into an ODE. Only a small subset ofequations are index-2 with the majority being index-1. The index-2 equationsare the 22 bubble point temperature equations, with 1 in eah of the distil-lation stage sub-models. The model is redued in three steps. The �rst stepinvolves model redution at the most basi modular level. Eah stream (oraumulation) inludes pressure, temperature, mole frations, mass frations,onentrations, molar ow rate (or moles), mass ow rate (or mass), volu-metri ow rate (or volume), density, and enthalpy. Pressure, temperature,mole frations, and molar ow rate (or moles) are used to uniquely speify thestate of the mixture. All other variables are solved expliitly as a funtion ofthese variables and an be removed from the impliit set. Another redutionin variables is gained from the objet-oriented framework. Instead of de�ningonnetion equations, two onneting streams an be merged into one streamobjet. The expliit transformation and stream merging redues the modelsize from 3250 to 353 variables. The 353 variable model onsists of 107 di�er-ential variables and 246 algebrai variables. The index-2 DAE is onverted toindex-1 form by di�erentiating the index-2 algebrai equations. The di�erenti-ated bubble point temperature equations are used to remove the temperature76



derivative in the energy balane. By removing the temperature derivatives,the index-2 equations beome index-1 equations. In index-1 form, the alge-brai equations are expliitly solved at eah funtion all, thereby removingthe 246 algebrai variables from the impliit set. The remaining di�erentialvariables are redued with POD to 2, 5, or 8 ODEs. The reboiler heating rateis stepped by 25% from 2.0e7 Jmin to 2.5e7 Jmin at 10 minutes. The index-2DAE of 353 variables is numerially integrated with DASPK and omparedwith the redued order models (see Figure 3.12). The 2 state model shows

Figure 3.12: The redued models are ompared with the 353 state distillationmodel.signi�ant steady state o�set, ompared with the other redued models. The5 state model performs better in eliminating the o�set, but the dynami re-sponse deviates signi�antly. The 8 state model has exellent agreement withthe full 353 state model in both dynami response and gain. For this example,an 8 state model is reommended to approximate the full order model.77



Even though the model is drastially redued in size, no omputationaladvantage is ahieved. The 353 state model step test simulation required 41CPU seonds on a 2 GHz Celeron proessor, running FORTRAN. Based onLINPACK benhmarks for proessor MFLOPS (million oating point opera-tions per seond), the step test required approximately 30 billion oating pointoperations. Eah redued model step response was generated in MATLAB, re-quiring approximately 31 billion oating point operations.There are several reasons that the redued model does not substan-tially redue the omputational burden. The primary reason is that all theequation residuals must still be omputed to form the redued order modelequation residuals. The alulation of equation residuals requires 22 billionoating point operations for both the full and redued models. This is an ir-reduible overhead, regardless of model size. With eÆient DAE solvers, suhas DASPK, no omputational advantage is gained by solving the algebraiequations expliitly at eah residual evaluation. An amount of omputationaloverhead is also added in the index-2 to index-1 transformation.Clearly, model redution is not omputationally advantageous for thisexample. Fortunately, there are a variety of other justi�ations for modelredution. One reason is the insight that model redution provides. Eventhough the original model has thousands of variables, there are only 8 de-grees of freedom that ontrol the dynami response. Another reason is foro�-line storage and retrieval of ontrol solutions for eÆient on-line implemen-tation. O�-line storage and retrieval presented in Chapters 4 and 5 is more78



eÆient for smaller models, with an upper limit of about 100 states. Expliitmoving horizon estimation of Chapter 6 sales quadratially with states sosmaller models are more eÆient, although typial examples have negligibleomputational expense. The model redution strategies in this hapter arean important enabling step in ahieving omputationally feasible large-salemodel-based ontrol solutions.3.5 Summary and ConlusionsBeause many large sale DAE models onsist mostly of algebrai equa-tions, ODE model redution tehniques applied to DAE models are ine�etiveat signi�antly reduing the overall order of the model. An adaptive DAEmodel redution tehnique is outlined in this hapter with speial onsidera-tion for large sale models. The tehnique onsists of three steps:1. Adaptive POD redues the number of di�erential states.2. Algebrai states are partitioned into suessive impliit sets of variablesand equations by reonstruting the sparsity pattern into a lower trian-gular blok form.3. Expliit transformation of algebrai and di�erential equations.Large sale models are often expressed in the open equation format. PODis applied to the open equation format by minimizing the equation residualsinstead of �nding roots. One a minimized solution is found, the equation79



residuals provide an estimate of the variable auray. The di�erential vari-able auray is ontrolled by inreasing or dereasing the order of the reduedmodel. In this way, POD is made adaptive while dynamially onstruting thesimilarity transform. The estimate of the variable auray an also be usedto improve the redued model auray. In the 1-D unsteady heat ondutionproblem, it was shown that the orretion redued the DDOF from 3 statesto 1 state. To redue the algebrai variables, the variables and equationsare restrutured into suessively independent sets. These independent setsare expliitly approximated with ISAT. ISAT diretly ontrols the approxi-mation error by expanding or adding pieewise linear regions. A owsheetmodel example showed a redution of algebrai variables by a fator of 8. Amulti-omponent distillation olumn model is used todemonstrate redutiontehniques on a large-sale index-2 DAE model. The model is redued from3250 states to 8 states with little loss of auray.The expliit transformation of di�erential equations an be aom-plished by ISAT by storing and retrieving integration solutions. This topiis further disussed in Chapter 4 with some numerial examples with ISAT.None of the examples in this hapter used ISAT although the appliable meth-ods are disussed.
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Chapter 4Storage and Retrieval in Nonlinear ModelPreditive Control
Simulation of physial proesses desribed by di�erential-algebrai equa-tions (DAEs) often involves hundreds of di�erential equations and thousandsof algebrai equations. Storage and retrieval of these simulations may be de-sireable for a number of reasons. Some of these reasons inlude real-timeoptimization, real-time dynami data reoniliation, omputational redutionof omplex simulations with DAE sub-models, and omputational redution ofparameter sensitivity studies. Storing the simulations shifts the omputationalburden o�-line for a more eÆient on-line implementation.This hapter fouses on a method to redue the omputational require-ments of nonlinear model preditive ontrol (NMPC) in real-time ontrol ap-pliations. Nonlinear model identi�ation is generally seen as a major obstaleto implementing NMPC. However, one an aurate nonlinear model is iden-ti�ed, the omputational e�ort is often too great to implement the modelin a real-time appliation. The approah in this paper is a two step pro-ess, model redution followed by omputational redution. Model redutionis aomplished by omputing balaned ovariane matries for the dynami81



system. Computational redution is aomplished by using the method ofin situ adaptive tabulation (ISAT). ISAT was previously developed for om-putational redution of turbulent ame diret numerial simulations and isextended to the sequential NMPC framework in this work. A ase study isperformed with a binary distillation olumn model with 32 states. By om-puting balaned ovariane matries and using ISAT, the omputational speedis 85 times faster than the original NMPC while maintaining the auray ofthe nonlinear model. Beause ISAT is a storage and retrieval method, it isompared to arti�ial neural networks in another ase study, a dual CSTRmodel with 6 states. Open loop and losed loop step tests are performedto demonstrate the superior quality of ISAT in extrapolating outside of thetraining domain.The three most signi�ant obstales to NMPC appliations are non-linear model development, state estimation, and rapid, reliable solution ofthe ontrol algorithm in real time [68℄. This hapter outlines an attempt tooverome the last two obstales through a omputational redution tehniqueformerly developed for turbulent ombustion simulations [66℄. ISAT storesand retrieves open loop simulations and thereby redues the omputationale�ort of integrating ontinuous dynami �rst priniples models. In diret mul-tiple shooting implementations of NMPC [17℄ [83℄ open loop simulations areperformed many times until an optimal trajetory of manipulated variablesis found. Also, in sequential state estimation (dynami data reoniliation)many open loop simulations are performed until an approximation to the un-82



measured states is obtained [47℄. Beause the open loop simulations oupya majority of the omputational e�ort, ISAT has potential to greatly improvethe speed of state estimation and dynami optimization.An important assumption for ISAT is that nearby integrations willlikely be repeated. For storage and retrieval of a single step test or impulseresponse, very few integrations will likely be repeated and ISAT would likelyshow poor performane. In ontrol appliations, similar disturbanes to thesystem an our frequently or step hanges to swith between produt gradesan happen regularly. The ISAT method is a framework for the estimator andontroller to aess data from previous alulations.4.1 Diret Methods for Solving NMPC ProblemsThere are multiple methods for solving equivalent NMPC problems. Se-quential, hybrid, and simultaneous formulations are three popular numerialtehniques [17℄. The sequential approah minimizes an objetive funtion bymanipulating the deision variables over a �nite ontrol and predition horizon.The simultaneous approah aomplishes the same objetive by manipulatingboth the deision variables and the state values at olloation nodes. Thehybrid approah is a ompromise between sequential and simultaneous ap-proahes by allowing for the use of state of the art DAE solvers to ontroldisretization. A summary of the three approahes is given by Binder [17℄in Table 4.1. ISAT an be used to redue the omputational burden of se-quential and hybrid NMPC by storing and retrieving the DAE simulations.83



Table 4.1: Comparison of Diret Methods for NMPCSingle Shooting Multiple Shooting ColloationSolution approah sequential hybrid simultaneousUse of DAE solvers yes yes noSize of NLP small intermediate largeInitial guesses initial states all node values all node valuesSolves highly no yes yesunstable systemsDAE model ful�lled yes partially noin eah iteration stepBy expliitly transforming the DAE model, the integrations of the model areredued. Beause integrations of the model are the overwhelming majority ofomputational e�ort, a drasti redution in alulation time an be ahieved.In the setions 4.1.2 and 4.1.1 the sequential and hybrid NMPC approahesare summarized to reveal the appliation of ISAT.4.1.1 Hybrid NMPCHybrid NMPC is a ompromise between small NLP problem sizes ofthe sequential approah and the inorporation of state onstraints in the si-multaneous approah. Hybrid NMPC also permits the use of state of the artDAE solvers to ontrol disretization error. The state estimation and regulatoralgorithms an be formulated as NLP problems.
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4.1.1.1 EstimatorDynami data reoniliation (�ltering of data, state estimation, et.) isneessary for NMPC when modeled states are not diretly measured or dataunertainty is high due to noise [47℄. ISAT an be employed in a sequentialdiret multiple shooting approah to data reoniliation. The N -step �nite-horizon problem formulation is given by the following.minx;� �(x; �; y) def= �1Xk=�N [C(xk; yk; �k)℄ + C(x0; y0; �0) (4.1a)subjet to y given; u given; xk+1 = F (xk; uk); yk = G(xk; uk) (4.1b)where � is the ost funtion, x is the sequene of model states (x = x�N ,x�N+1,. . . ,x0), � is the sequene of state onstraint violations (� = ��N ,��N+1, . . . ,�0),y is the sequene of measurements (y = y�N ,y�N+1, . . . ,y0), u is the sequene ofinputs (u = u�N ,u�N+1, . . . ,u�1), and C is the ost funtion at eah samplinginstant. This formulation is similar to the dynami optimization problem butinstead of �nding optimal inputs, optimal states are found that agree with themeasured data (y). The terminal onstraint was added to allow a di�erentost funtion for the most urrent measurement. With model-plant mismath,the most urrent measurement is likely to be the most reliable and shouldtherefore reeive a greater weighting in the optimization.ISAT is used in the diret single and multiple shooting solution teh-niques to state estimation [17℄ by storing and retrieving integrations of the85



ontinuous dynami nonlinear model. Data reoniliation must our beforedynami optimization in order to provide an estimate of the urrent states(x0). It is ritial for the yle time of a real-time ontroller to operate fasterthan the response time of the proess it is ontrolling. Cyle time seletiondepends on many fators inluding plant/model mismath, stability marginsfor large disturbanes, onstraint violation tolerane, and eonomi fators.4.1.1.2 RegulatorThe N -step �nite-horizon NMPC regulator is given by the followingNLP problem. The length of the horizon, N , may be di�erent for the estimatorand regulator. minx;u;��(x; u; �) (4.2a)subjet tox0 given; xk+1 = F (xk; uk); Duk � d; Gxk � �k � g; �k � 0 (4.2b)In this problem formulation, � (the ost funtion) is typially quadrati in x(states), u (inputs), and � (state onstraint violations) and therefore stritlyonvex. The symbols x, u, � denote sequenes of vetors with x = (x1,x2,. . . ,xN ), u = (u0,u1, . . . ,uN�1), and � = (�1,�2, . . . ,etaN ). The soure ofnonlinearity omes from the model funtion F (xk; uk) that is solved by inte-grating the DAE model. ISAT �ts into the NMPC sheme by storing andretrieving integrations of the ontinuous dynami model. Typially the modelis expressed in the open equation ontinuous format F ( _x; x; u) = 0. ISAT86



numerially transforms the nonlinear model into a disrete semi-expliit formxk+1 = F (xk; uk). Details of this transformation are given in Chapter 24.1.2 Sequential NMPCSequential NMPC leads to the smallest NLP problems with the fewestnumber of optimization variables. In this approah, only the manipulated vari-ables are optimized while the state variables are expliitly alulated at eahiteration. In addition to size, sequential NMPC is the simplest to program andan be used with dense matrix solvers. In addition to hybrid NMPC, sequentialNMPC allows the use of DAE solvers to solve the model on the sub-node level.DAE solvers avoid the disretization hallenges of olloation approahes. Theestimator and regulator NLP problem formulations are inluded in this setionto show the appliability of ISAT in reduing the omputational burden.4.1.2.1 EstimatorThe optimization variables for sequential data reoniliation are thestates at N time steps bak from the urrent time (x�N ). The states at x�Nare manipulated to minimize the objetive funtion.minx�N �(x; y) def= �1Xk=�N [C(xk; yk)℄ + C(x0; y0) (4.3a)subjet to y given; u given; xk+1 = F (xk; uk) (4.3b)where y and u are sequenes of vetors given by y = (y�N ,y�N+1, . . . ,y0) andu = (u�N ,u�N+1, . . . ,u�1). ISAT is an integral part of the sequential NMPC87



estimator by integrating the nonlinear ontinuous dynami model, e�etivelytransforming the model into a disrete form (xk+1 = F (xk; uk)).4.1.2.2 RegulatorThe regulator formulation minimizes an objetive funtion by manip-ulating the deision variables (uk for k = 0; (N � 1)). Only manipulatedvariable onstraints are permitted in the sequential regulator. State variableonstraints an be posed as soft onstraints in the objetive funtion. In hybridNMPC the state onstraints are softened with the introdution of �, the stateonstraint violations. Without the softening of the state onstraints infeasiblesolutions may arise. One advantage of softening the state onstraints is thatproritization of the onstraints ours automatially. This may be desireableto meet safety onstraints while sari�ing less important objetives suh aseonomi onstraints. minu �(x; u; �) (4.4a)subjet to x0 given; xk+1 = F (xk; uk); Duk � d (4.4b)where x, u, and � represent the sequenes of vetors (x1,x2, . . . ,xN ), (u0,u1,. . . ,uN�1), and (�1,�2, . . . ,�N ). Again, ISAT an be applied for omputationalredution by storing and retrieving solutions to the initial value problems.Integrating the model for the sequential NMPC regulator requires about 99%of the omputational e�ort for the example problem shown in Setion 4.2.By reduing that omputational burden of integrating the model, the total88



NMPC yle time is redued by approximately 100 times. The omputationalredution is very problem dependent, but typial performane on a handful ofproblems tested have been in the range of 20-500 times faster.4.2 Example: Sequential NMPCCombining model redution and omputational redution through ISATexploits the strengths of both methods. Generally, the model redution stepdereases the number of dynami variables but does not have suÆient om-putational speed-up. Computational redution is more e�etive with a lownumber of dynami variables and an redue the omputational time signi�-antly. Figure 4.1 provides an overview of the ombined approah for the 32state distillation olumn model in Hahn and Edgar [34℄. A ase study has

Figure 4.1: Model and omputational redution owhart.been performed with the distillation olumn model omparing NMPC/LMPC89



for the following models.1. Nonlinear redued model with 5 dynami states and ISAT2. Nonlinear redued model with 5 dynami states3. Nonlinear model with 32 states4. Linear model with 32 statesModels 1 and 2 are from full state model with 32 dynami variables, reduedthrough trunation down to 5 dynami variables. Using the sequential ap-proah to MPC, the distillation olumn models are integrated multiple timesin order to �nd optimal ontrol moves that minimize a quadrati objetiveost funtion.Certain operational, safety, or eonomi onstraints must be onsideredwhen developing ontrol solutions to real systems. These limitations an beimplemented as either hard or soft onstraints in the MPC framework. Softonstraints are osts added to the objetive funtion. In the author's opinion,soft onstraints are the more intuitive method beause the solver an hooseto violate a onstraint if the eonomi performane of the entire plant willbe improved. In addition, the relative importane of eah soft onstraint isautomatially onsidered. Hard onstraints may be more desirable for somesituations suh as when safety is a onern. In this sequential NMPC approah,hard onstraints an be implemented on the manipulated variables.90



The nominal operating point for the reux ratio is 3. Soft onstraintslimit the operating region to between 2 and 4. The reux ratio (manipulatedvariable) is adjusted every 5 minutes. The ontrol horizon is 10 minutes (2time steps) and the predition horizon is 15 minutes (3 time steps). Typialindustrial MPC ontrol horizons are generally longer to approximate the in-�nite horizon solution. The oarse disretization and short time horizon inthis example are sub-optimal, but still show an instrutive omparison of theredued models in an MPC appliation. Longer time horizons should atuallyimprove ISAT's performane due to more model integrations with eah opti-mization. Beause ISAT stores and retrieves model integrations, an inreasein integrations will train the database faster. The main ISAT tuning param-eter, �tol, is set to 10�3 for good auray. Figure 4.2 shows the losed loopresponses. During the �rst ontrol move, all MPC results are at the reuxratio lower bound of 2. Figure 4.3 shows the speed-up fator (ompared to 32state NMPC) for the 5 optimization steps of Figure 4.2. The pu times shownon the graph are from omputations on a 2 GHz Celeron r proessor. Theresults from this simulation use a previously trained ISAT database with 169reords. Without a previously trained database ISAT averages 30 times fasterover the �rst 5 optimizations and adds 13 reords to the new database. Thisase study shows that ISAT an exhibit signi�ant omputational redutionwhile preserving the auray of the nonlinear model.Although applied with a model redued through balaned ovarianematries, ISAT for NMPC an be used with any model redution tehnique91



Figure 4.2: Closed loop response omparison for nonlinear MPC with ISATwith 5 states, nonlinear MPC with 5 states, nonlinear MPC with 32 states,and linear MPC.

Figure 4.3: Speed-up fator for eah of the optimizations shown in Figure 4.2.The number above eah urve indiates the average optimization pu time ona 2 GHz proessor. 92



that redues the number of dynami degrees of freedom. In the ase wherethe model already has a low number of variables, ISAT an be applied diretlywithout a model redution step.4.3 Example: ISAT vs. Neural Networks in ControlCalulationsAs mentioned previously, a neural net is a type of storage and retrievalmethod. Hene it is instrutive to ompare ISAT and a neural net in a ontrolappliation. The example model is a dual CSTR model (see Figure 11) withone manipulated variable (heat addition to the �rst tank), six states, and oneontrolled variable (temperature of the seond reator). The model was usedby Hahn and Edgar [34℄ as a benhmark model for nonlinear model redution(see Figure 4.4). The data were gathered from ISAT training. For the sake

Figure 4.4: Diagram of two CSTRs in series with a �rst order reation. Themanipulated variable is the heating rate to the �rst CSTR.of omparison, the neural net used the same 1609 ISAT reords for training.The neural net was onstruted with MATLAB's neural net toolbox as one93



nonlinear hidden layer and a linear output layer (see Figure 4.5). Before the
Figure 4.5: Neural net with one hidden layer and one output layer. The hiddenlayer is a hyperboli tangent funtion and the output layer is a linear funtion.This neural net relates 7 inputs to 6 outputs.training, the data were appropriately saled for eÆient implementation inthe neural net. Figure 4.6 shows a large open loop step test, one that isoutside those found in the training data. In this step test, the ooling isinreased to the point that the irreversible reation is extinguished and a largetemperature step results. Up to about 5 minutes of simulated time, the neuralnet and ISAT perform similarly. To this point both aessed data that werewithin the training domain. Beyond 5 minutes ISAT is superior in agreementwith the non-redued model due to a built in error heking strategy. Before5 minutes, the ISAT method performs mostly retrievals. One ISAT detetslarge errors from retrievals, it starts adding reords to the database. Whenthe temperature reahes steady state, the ISAT algorithm performs retrievalsagain. ISAT and the neural net were ompared in a losed loop simulationwith a small set point hange inside the training domain (see Figure 4.7). All94



Figure 4.6: Open loop step test for the dual CSTR model. The error ontrol ofISAT adds reords to the database when extrapolating outside of the trainingdomain.

Figure 4.7: Small losed loop set point hange within the training domain.
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three show exellent agreement as they reah the new set point along the sametrajetory. Next, a large set point hange was performed to aess a regionof state spae outside of the training domain (see Figure 4.8). For this step

Figure 4.8: Large losed loop set point hange outside of the training domain.hange, the neural net ontroller eventually beomes unstable. This is beausethe neural net does not have the apability to extrapolate outside of the datathat was used to train it. In this respet, the ISAT method is superior beauseit detets when it has gone outside of the training domain and integrates themodel to generate and add new data to the training set.ISAT outperforms neural nets beause of the internal error ontrol thatmanages the amount of error. The only tuning parameter for ISAT is theamount of permissible error, �tol. On the other hand, neural nets have multipletuning parameters suh as number and type of layers, number of nodes in eah96



layer, and a training optimization tolerane. ISAT requires no optimizationstep and an begin working in situ with no prior training set.4.4 Parameter Sensitivity StudiesThe dynamis of a ontrolled proess an hange due to fouling, distur-banes, unusual operating states, ambient variations, and hanges in produtspei�ations [76℄. When the proess dynamis hange signi�antly, an adap-tive model is automatially tuned to provide satisfatory losed loop perfor-mane. Adaptive ontrol an be ahieved in the NMPC framework with theaddition of adjustable parameters (�) in the nonlinear model.dxdt = f(x(t); u(t); �) (4.5)0 = g(x(t); u(t); �) (4.6)The adjustable parameters an be obtained from a �rst priniples model of thedisturbane or a least squares optimization of the model using plant historialdata. The addition of adjustable parameters poses an interesting hallengefor ISAT's error ontrol strategy. Beause ISAT is a storage and retrievalmethod, drastially hanging the parameters an invalidate the stored data.Therefore, a strategy will be devised to gradually hange the parameters andsimultaneously �lter out the unaessed data. By ontrolling the parametertransition, ISAT will still show signi�ant omputational redution over theoriginal NMPC. Another advantage of gradual parameter transition is thatit avoids possible instabilities that an our by swithing ontrollers on-line.97



Gradual parameter transition is a natural expression of the proess dynam-is when the system dynamis hange slowly, suh as for fouling or atalystdeativation.There may be some situations where the parameter transition shouldour quikly (i.e. grade hanges, large disturbanes). In these situations, agradual parameter transition is not appropriate. For a large hange in theparameters, the ISAT database provides a �rst order approximation to thenonlinear model integration while new sensitivities are omputed. In this waythe real-time ontroller requirements are automatially met with a simpli�edmodel. One the ISAT database is rebuilt, the ontroller will improve aord-ing to the preditive apabilities of the full nonlinear model.4.5 Summary and ConlusionsThis hapter outlines a new tehnique for omputational redution forNMPC. In this approah, model redution through balaned ovariane matri-es is followed by omputational redution through ISAT. Although previouslydeveloped for turbulent ame simulations, ISAT an be diretly applied be-ause many open loop simulations are performed to �nd optimal inputs to theontrol problem. A ase study with a binary distillation olumn model showeda speedup of 85 over the original NMPC. Like neural nets, ISAT redues theomputational ost through storage and retrieval. Another ase study with adual CSTR showed the advantage of using ISAT over neural nets when thesimulation aessed data outside the training domain.98



Chapter 5Nonlinear Model Preditive Control - TheExpliit Solution
Model preditive ontrol (MPC) has traditionally been an expensivetehnology, on�ned to appliations that justify substantial modeling e�ort,implementation osts, and omputational resoures (fast omputers). Theappliation of MPC has also been limited to proesses with slow yle times(slow proesses) beause it requires the solution to a onstrained �nite-horizonlinear programming (LP) or quadrati programming (QP) problem at eahsampling instant. The suess (or failure) of MPC is due to the auray of theunderlying model. This model is used to predit unmeasured or noisy states,oordinate multiple deision variables for optimal ontrol, and meet safetyand operational onstraints. MPC is a type of optimal ontrol beause theoptimization minimizes a ost funtion subjet to onstraints. At the solutionof the minimized objetive funtion the only way to get better performaneis to inrease the auray of the model, relax ontraints, or modify the ostfuntion to reet more realisti prie strutures.For some appliations linear models are not suÆiently aurate. Whenmodels or onstraints are nonlinear, a nonlinear programming (NLP) opti-99



mization must be solved at eah yle. Nonlinear MPC (NMPC) problems areoften signi�antly more diÆult to solve than QP problems solved in MPC.One diÆulty that non-onvex problems an lead to multiple loal minima.Global minimum solvers are still the subjet of ative researh. The inreasein problem diÆulty further restrits NMPC appliations to those with slowerproesses and faster omputers.PID ontrol, ompared to MPC, is a relatively heap tehnology thatan be applied with slow omputers to fast proesses. However, PID ontrolis not formulated to provide optimal model-based ontrol, e�etive handlingof onstraints, or oordination of multiple deision variables.5.1 Expliit MPC (Linear Models)MPC is now suggested as a andidate to replae PID ontrol thanksto reent developments in omputational redution of the MPC algorithm [56℄[61℄ [65℄. By omputing all possible LP solutions o�-line, the on-line portionis redued to some onditional heking and simple matrix multipliations.This modi�ation extends the potential of MPC to fast proesses and simpleomputers (e.g. integrated iruit hips).The linear quadrati regulator (LQR) with a linear model and quadratiobjetive funtion is a speial ase of MPC without onstraints. Withoutonstraints the linear solution of the Riati equation is optimal for all possibleinitial states. An on-line implementation of LQR would onsist of simplymultiplying the state vetor by the gain matrix to obtain the optimal ontrol100



vetor. With onstraints, the optimal solution is a pieewise aÆne (PWA)linear funtion of the initial states. The linear regions are often refered to asharateristi or ritial regions (CRs). Eah region is bounded by a set ofonstraints. When the onstraint boundary is rossed, the linear solution mayno longer be exat. On-line retrieval of expliit MPC with onstraints inludesone extra step: loation of the region with the orret ative set of onstraints.One this region is loated (via the heking of several onditions), the rest ofthe omputation is idential to the LQR implementation.5.1.1 Parameterization of Initial StatesThe development of multi-parametri linear programs (mp-LPs) startedwith the formulation of Gal and Nedoma [29℄ [28℄. Aevedo and Pistikopoulosextended sensitivity analysis to mixed-integer linear programming (MILP) bysolving mp-LP problems [2℄ [1℄. Dua and Pistikopoulos generalized the modelform by developing multiparametri analysis of mixed-integer nonlinear pro-gramming (MINLP) [24℄. Bemporad et al. applied the mp-LP work to MPCappliations with linear objetive funtions [10℄ [15℄ and mixed-integer models[11℄. Pistikopoulos et al. extended the theory of mp-LPs to inlude multi-parametri quadrati programs (mp-QPs) [64℄. This extension made possiblethe expliit LQR solution subjet to onstraints or in other words, expliitMPC [14℄ [12℄.Even though an exat expliit solution is possible in theory for onvexproblems, there were some serious implementational issues that limited appli-101



ations of expliit MPC to small systems, few onstraints, and short ontrolhorizons [65℄. A signi�ant e�ort has been exerted to redue these limitations.Bemporad and Filippi introdued suboptimal expliit MPC [13℄. Adjaentritial regions are merged when an error tolerane an be met. Rossiterand Grieder used an interpolation sheme to redue the storage requirementsby 2-3 times and redue the on-line omputational osts by 10 times [72℄.Johansen and Granharova proposed a tehnique to logrithmially limit theon-line searh times with a strutured binary tree [31℄ [44℄. O�-line, the re-gions are divided into suessively smaller hyperubes until the error toleranesare met at eah of the verties. Grieder and Morari performed a omplexityanalysis of the on-line implementation to redue the ontroller omplexity byorders of magnitude at a performane ost of <%1 [32℄. Tondel et al. in-reased the eÆieny of the o�-line alulation by deriving a new explorationstrategy for sub-dividing the parameter spae [86℄ [87℄. Even with all of theseimprovements, the largest MPC problem reported in the literature is ontrolof a laboratory model heliopter. The problem has 6 states, 2 manipulatedvariables, 8 onstraints, is disretized in 0.01 seond segments, has a ontrolhorizon of 0.5 seonds, and 4 input parameters [86℄.5.1.2 Parameterization of Ative SetsIn deriving state parameterized expliit MPC, the problem is trans-formed into a quadrati program form. In this form, Seron et al. suggestedthat the optimal ontrol an be parameterized by the ative set instead of102



urrent states [77℄. While Seron, et al. proposed an analytial solution, Pan-nohia et al. opened the approah to non-trivial problems by reating anumerial algorithm to solve the ative set parameterized problem [60℄. Eahof the onstraints an either be inative, at the lower bound, or at the up-per bound. O�-line a table of all possible solutions is generated. The on-lineportion onsists of �nding the table value that predits non-negative lagrangemultipliers and manipulated variables (MVs) inside the onstraint bounds.Storage and retrieval of a onstrained linear quadrati ontroller solution forSISO systems has been proposed to replae PID ontrol [61℄. Two limitationsof this algorithm are (1) onstraints are restrited to lower and upper boundson the MVs and (2) problem saling is 3N , where N is the horizon length. Thetheory for MIMO systems follows by simple extension, but full enumerationof all ative sets is prohibitive due to 3mN saling, where m is the number ofonstrained inputs.Muske and Badgwell developed o�set free ontrol in MPC by reat-ing input or output integrating disturbanes [57℄. Pannohia and Rawlingsshowed that an integrating disturbane must exist for every measurement toguarantee o�set free ontrol [59℄ [62℄. The o�set free ontrol is inluded in theonstrained LQ ontrol of Pannohia et al. [61℄. Sakizlis et al. followed byinorporating o�set free ontrol into state parameterized expliit MPC [73℄.
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5.2 Expliit NMPC (Nonlinear Models)Fiao developed the foundation for expliit NMPC with a sensitiv-ity analysis of nonlinear systems [27℄. Beause there is rarely an exat ex-pliit solution to NMPC, all omputational redution tehniques for NMPCare approximate. The e�etiveness of a partiular tehnique depends on theontrol of the approximation error, storage requirements, speed of the o�-linealgorithm, speed of the on-line algorithm, and guarantees of stability. An ex-pliit solution of NMPC in this setion refers to an expliit numerial solutionthrough storage and retrieval of previous omputed solutions. An analytiexpliit solution is not attempted.5.2.1 Dynami ProgrammingDynami programming was originally proposed by Bellman to solveoptimal ontrol problems [8℄. The goal of dynami programming is to �ndan optimal ost-to-go funtion, whih an be used to solve for an optimaltrajetory of inputs as a funtion of initial states. Reent approahes suhas sequential reinforement learning avoid dynami programming dimension-ality problems by operating on states as they our sequentially [6℄. Also,neuro-dynami programming [45℄ [16℄ overomes the urse of dimensionalityby approximating the ost-to-go funtion with a neural net. Yet another teh-nique that balanes auray with omputational speed is suboptimal dynamiprogramming with error bounds [48℄. In summary, dynami programming'surse of dimensionality has been partially remedied by algorithms that seek104



to redue the storage and searh times. However, appliations to large saleproblems are still infeasible.5.2.2 Arti�ial Neural NetworksNeural nets are an e�etive tool to represent nonlinear models. Neu-ral nets are networks of adaptable nodes whih, through a proess of learningfrom task examples, store experimental knowledge and make it available forlater use [5℄. The exibility and general appliability of neural nets have beendemonstrated by diverse appliations aross many �elds of study. Kohonennets are used in lassi�ation and fault detetion, n-tuple nets in image pro-essing and vision, and both multi-layer pereptrons and radial basis funtionsare used in signal proessing and ontrol [90℄. Neural nets are an e�etive toolto inorporate historial data for use in state estimation and ontrol, although�ltering and preonditioning the plant data are often time-onsuming tasks[67℄. Parisini and Zoppoli suggested that multilayered feedforward neural net-works ould store optimal ontrol (outputs) as a funtion of the urrent states(inputs) [63℄. One widely known limitation of neural nets is the inability toextrapolate outside the training domain. This is due to a lak of expliit errorontrol within the algorithm.5.2.3 Multiparametri NMPCFor multiparametri analysis, suboptimal expliit MPC tehniques havebeen developed to allow nonlinear models, nonlinear onstraints, and non-105



quadrati objetive funtions. Bemporad et al. introdued multiparametriapproximation of MINLP problems [9℄. Johansen formerly utilized an mp-QP approximation to solve the mp-NLP sub-problem[42℄ but later deided touse the inreased auray and omputational expense of NLP sub-problems[43℄. Hale and Qin [36℄ take a similar approah as Johansen but use simpliesinstead of hyperubes to map the nonlinear surfae. A preditor-orretormethod is used to obtain new points. The preditor is a linear extrapolationfrom an existing point to a new point of interest. If the ative set of on-straints hanges, a ondition is applied to �nd the ative set boundary [35℄.The orretor uses a Newton's method type algorithm to solve the NLP thatonverges rapidly beause of the linear preditor initialization. One drawbakis poor omputational saling with inreasing number of parameters (in thisase, number of states), but polynomial saling in other dimensions.5.3 Approximate Nonlinear MPCConsider the ontinuous-time nonlinear di�erential algebrai equation(DAE) system 0 = f( _x(t); x(t); u(t); �) (5.1)where _x(t) 2 Rp is the state derivative, x(t) 2 Rn is the state, u(t) 2 Rm isthe input, and � 2 Rq is a set of parameters. The dimension of _x is equal tothat of x for ODE models. The disrete-time nonlinear DAE system an beobtained by numerially integrating Equation 5.1 as an initial value problem(IVP), resulting in the expliit form that is solved sequentially on a sub-node106



level in optimal ontrol problemsxk+1 = f(xk; uk; �) (5.2)or by orthogonal olloation, reating an impliit form that is solved on asub-node level simultaneously in optimal ontrol0 = f(xk+1; xk; uk; �) (5.3)where xk 2 Rn and u(t) 2 Rm . The indies (k) refer to the disretized stepwith the urrent time being 0. In optimal ontrol, when a sampling instantours the urrent time is shifted to zero.5.3.1 NMPC FormulationFor the urrent state (x0) and parameters (�), a typial NMPC algo-rithm solves the optimization problem��(x0; u�1; �) = minx;u  NXi=1 fi(xi; ui�1; �)! (5.4a)subjet to x0 given (5.4b)u�1 given (5.4)0 = f(xk+1; xk; uk; �) k = 1; : : : ; N � 1 (5.4d)Dxk � d k = 1; : : : ; N (5.4e)Euk � e k = 0; : : : ; N � 1 (5.4f)107



G (uk � uk�1) � g k = 0; : : : ; N � 1 (5.4g)where D, E, and G are matries and d, e, and g are vetors of appropriate di-mension. The quantities x and u refer to the sequene of vetors (x1,x2,. . . ,xN )and (u0,u1,. . . ,uN�1), respetively. The optimal solution to the NMPC prob-lem is a unique funtion of the urrent states x0, previous input u�1, andthe adjustable parameters, �. The adjustable parameters an be feedforwardor feedbak model variables. An example of feedbak variables are input oroutput integrating disturbanes for o�set free ontrol [57℄ [62℄. Feedforwardparameters aommodate antiipated shifts in proess dynamis or multiplemodel swithing.After the optimal ontrol problem is solved the �rst input (u�0) is in-jeted into the proess. At the next sampling instant, a new estimate of theurrent states and parameters is obtained. NMPC is often referred to as reed-ing horizon ontrol (RHC) beause the horizon of the optimal ontrol problemshifts as time advanes. The same optimal ontrol problem is solved at ev-ery sampling instant, deterministially dependent on the updated variablesassembled in �. � = 24 x0u�1� 35 (5.5)Even though the entire trajetory of optimal inputs are solved (u� = fu�0; u�1; : : : ; u�N�1g),the only one required for optimal ontrol is the �rst input, u�0. The storageand retrieval of optimal ontrol an therefore be simpli�ed to u�0 as a uniquefuntion of �. 108



5.3.2 Sensitivity of Optimal Control to ParametersGanesh and Biegler developed a redued hessian strategy for sensitivityanalysis of optimal owsheets [30℄. A part of their sensitivity derivation is givenhere. Sensitivities loally approximate the optimal solution with a 1st ordersolution. NMPC an be expressed more ompatly with adjustable parameters�, inequality onstraints g, and equality onstraints h.��(�) = minx;u (�(x; u)) (5.6a)subjet to � given (5.6b)g(x; u; �) � 0 (5.6)h(x; u; �) = 0 (5.6d)where x and u refer to the sequene of vetors (x1,x2,. . . ,xN ) and (u0,u1,. . . ,uN�1),respetively. The NLP is solved by minimizing the Lagrangian LL(x; u; �) = �(x; u; �) + �g(x; u; �) + �h(x; u; �) (5.7)where � is the objetive funtion, � is the inequality onstraint multiplier,and � is the equality onstraint multiplier. The Karush-Kuhn-Tuker (KKT)onditions are satis�ed at the optimal solution.r�(x; u; �) +rg(x; u; �)�+rh(x; u; �)� = 0 (5.8a)�g(x; u; �) = 0 (5.8b)109



� � 0 (5.8)g(x; u; �) � 0 (5.8d)h(x; u; �) = 0 (5.8e)The solution sensitivity reveals how the optimal solution hanges with devia-tions in the the parameters �. In order for a loal sensitivity to exist, a fewonditions must be met. First, the Lagrangian must be twie ontinuouslydi�erential in x and u and one in �. Seond, the onstraint gradients mustbe linearly independent at the optimal solution. Finally, the seond-ordersuÆieny onditions must be met. In generating the loal sensitivities it isassumed that the ative set does not hange. The ative onstraints arerxL(x; u; �) = 0 (5.9a)ruL(x; u; �) = 0 (5.9b)gA(x; u; �) = 0 (5.9)h(x; u; �) = 0 (5.9d)where gAis the subset of g that are at the equality bound. The sensitivitiesare derived by taking the total derivative of the ative onstraints listed inEquation 5.9.d[rxL(x; u; �)℄ = rxxLdx +ruxLdu+rxgAd�+rxhd� +r�xLTd� = 0(5.10a)d[ruL(x; u; �)℄ = rxuLdx +ruuLdu+rugAd�+ruhd� +r�uLTd� = 0(5.10b)110



dgA(x; u; �) = rxgTAdx +rugTAdu+r�gTAd� = 0 (5.10)dh(x; u; �) = rxhTdx +ruhTdu+r�hTd� = 0 (5.10d)Eah of the equations in 5.10 is divided by d�. In the limit as d� shrinks tozero the loal sensitivities beome (with some rearrangement)2664 r�xTr�uTr��Tr��T 3775 = �2664 rxxL rxuL rxgA rxhruxL ruuL rugA ruhrxgTA rugTA 0 0rxhT ruhT 0 0 3775�1 2664 r�xLTr�uLTr�gTAr�hT 3775 (5.11)where r�x is the state sensitivity, r�u is the input sensitivity, r�� is theative inequality onstraint multiplier sensitivty, and r�� is the equality on-straint multiplier sensitivity. Equation 5.11 shows that the only elements re-quired for a sensitivity alulation are the exat hessian and Lagrangian seondpartials with respet to the parameters. With analytial derivatives throughautomati di�erentiation the sensitivity alulation speed an be greatly im-proved [91℄.5.3.3 De�ning the Critial RegionFor unonstrained LQ problems the loal sensitivity gives an exat op-timal solution over all state spae. In this ase, the sensitivity is equivalent tothe unonstrained LQR gain matrix. For onstrained LQ problems the opti-mal solution is linearly dependent on the adjustable parameters � within thesame ative onstraint region. An individual query point �q an be tested todetermine if it lies within this ritial region (CR). A 1st order approximation111



of optimal variables at �q is determined.xq = x +r�x (�q � �) (5.12a)uq = u+r�u (�q � �) (5.12b)�q = �+r�� (�q � �) (5.12)Equation 5.13 gives the quali�ations for a point within the CR.gI(xq; uq; �q) � 0 (5.13a)�q � 0 (5.13b)where gI is the set of inative inequality onstraints. If any of these quali�-ations are not met it indiates that the ative set hanged and the point liesoutside the CR.5.3.4 ISAT Approximate ControlIn situ adaptive tabulation (ISAT) dynamially stores and retrievesnonlinear funtions with pieewise linear approximations. The error ontrolstrategy proposed in Pope [66℄ and with further details given by Hedengrenand Edgar [40℄ may be ine�etive for problems with onstraints. The on-straints an form a non-ontinuously di�erentiable or non-ontinuous fun-tion. This leads to regions of auray (ROA) that may not be ellipsoidal inthe limit as the error tolerane approahes zero. Modi�ations to the ISATalgorithm are made to maintain error ontrol for optimal ontrol storage and112



retrieval. Spei�ally, the initial estimate of the ROA is eliminated for nonlin-ear problems and restrited to the ative set onstraint region of onstrainedLQ problems. Additionally, ellipsoid of auray (EOA) expansions are madeonly after an expanded validity hek is performed. This setion is a tailoredversion of ISAT for reeeding horizon ontrol. A general exposition on ISATis found in Chapter 2, but in a formulation for general nonlinear funtion ap-proximation. The notation is adapted here for the ontrol problem and newISAT features are introdued to exploit the unique properties of LQ solutions.The basi unit of the ISAT database is the reord. An ISAT reord onsistsTable 5.1: Elements of the ISAT reord for NMPC storage and retrievalISAT Reord Element Symbol and DimensionIndependent variables � 2 Rn+m+qDependent variables u�0 2 RmSensitivity A 2 Rm x (n+m+q)Ellipsoid of auray M 2 R(n+m+q) x (n+m+q)Critial region (LQ only) CR 2 R(n+q) x (n+m+q)of the independent variables (�), the dependent variables (u�0), a sensitivitymatrix (�u�0�� ), an ellipsoid of auray (EOA), and a ritial region (CR) (seeTable 5.1). The memory required to store an individual ISAT reord saleswith O((n+m+ q)2).5.3.4.1 First Senario: RetrievalWhen ISAT reeives a database request, it performs one of three senar-ios. In the �rst senario, the query (�q1) is inside a region of auray termed113



the ellipsoid of auray (EOA), entered about a lose stored reord, �s (seeFigure 5.1). Retrievals are extremely fast beause omputations are limited to
Figure 5.1: A retrieval ours when the query point (�q1) is within the ellipsoidof auray (EOA)a binary tree searh, onditional heking, and matrix-vetor multipliations.When the ISAT database is mature most of the operations are retrievals.5.3.4.2 Seond Senario: EOA GrowthIn the seond senario, the query is outside the EOA but inside theerror tolerane for u�q and u�s�q. In this ase, the EOA is expanded to inludethe tested query point (see Figure 5.2). For the seond and third senarios,ISAT has no omputational advantage over diretly solving the original NLPproblem on-line. If real-time requirements prohibit an on-line NLP solution,an approximation to the optimal ontrol an be obtained by using û�q anyway,but no guarantees of auray or stability are provided.5.3.4.3 Third Senario: AdditionIn the �nal senario, the query is outside the EOA and outside the errortolerane for u�q or u�s�q. A new ISAT reord is added with an initial estimate of114



Figure 5.2: The EOA is grown when the query point is outside the EOA butwithin the error tolerane for u�0the ROA (see Figure 5.3). For onstrained LQ problems, the optimal ontrolsolution is linear with respet to �. Therefore, an initial estimate of the ROAis the ative set state spae. For nonlinear problems with onstraints, thereis no auray guarantee. In this ase, the initial estimate of the ROA is azero-volume ellipsoid entered at u�q.5.3.5 Summary of the ISAT AlgorithmISAT an be summarized in 13 steps. Steps 1-5 are the retrieval steps,6-11 attempt growth of the EOA, and 12 is a database addition. The last stepis to injet either u�0 or û�0 into the proess. Retrievals produe approximateoptimal ontrol within the desired error tolerane �tol whereas growths andadditions produe exat answers.1. loate nearby reords with multiple binary tree searhes115



Figure 5.3: A reord is added to the ISAT database when query point is outsidethe EOA and error tolerane for u�02. ompute û�q = us + A (�q � �s)3. (for QP problems) if �q � 0 and gI(xq; uq; �) � 0 go to 54. if �TqM�q � �tol go to 55. set û�0 = û�q, go to 136. solve the NLP (or QP) for �q7. if ��û�q � u�q�� > �tol, go to 128. solve the NLP (or QP) for (2�s � �q) to get u�2s�q9. ompute û�2s�q = us + A (�s � �q)10. if ��u�2s�q � û�2s�q�� > �tol, go to 1211. grow EOA, set u�0 = u�q, go to 13116



12. add a new reord to the database with a zero volume EOA (if QP, initialROA is given by �q � 0) and gI(xq; uq; �) � 013. injet u�0 for optimal ontrol or û�0 for approximate optimal ontrol5.4 Temperature Control of an Exothermi CSTRA simple aademi problem is onsidered to show the appliability ofISAT to storage and retrieval of optimal ontrol. A perfetly mixed, adiabatiCSTR has an exothermi reation of ompound A transformed into ompoundB. Temperature ontrol of the reator is a hallenge due to the highly exother-

Figure 5.4: Diagram of the exothermi CSTR. The two state variables rea-tor onentration A and temperature T are ontrolled by the jaket oolingtemperature Tmi reation (�Hrxn = 50,000 Jmol ). The temperature of the uid in the jaketsurrounding the CSTR is manipulated to ontrol the temperature of the re-ator uid. The dynamis of the reator are desribed by a set of ODEsgenerated from a mole balane on A and an energy balane on the reator.117



At a onstant ooling temperature of 305 K, the reator temperaturespikes ontinuously as the reator goes through yles of onentration buildupfollowed by moments of intense reation (see Figure 5.5). The unsteady re-

Figure 5.5: Unsteady response of the reator temperature due to moments ofintense reation followed by periods of gradual ooling.sponse of the reator with a onstant ooling jaket temperature suggests thatunsteady ontrol may be neessary when pushing the reator to the stabilitylimit. A sequential diret single shooting approah to dynami optimizationis used as the ontrol algorithm. The N -step �nite horizon NMPC is given bythe following NLP problem.��(x0; Tsp) = minx;u  NXi=1 (xi � �)T Q (xi � �)! (5.14a)subjet to x0 given (5.14b)xk+1 = f(xk; uk) k = 1 : : :N (5.14)118



Euk � e k = 0 : : :N � 1 (5.14d)whereN = 40 Q = � 0 00 1 � E = � 1�1 � e = � 320�280 � � = � 0Tsp �(5.14e)Here x and u refer to the sequene of vetors (x1,x2,. . . ,xN ) and (u0,u1,. . . ,uN�1),respetively. In this problem formulation, � (the ost funtion) is quadratiin x (states) and therefore stritly onvex. The soure of nonlinearity omesfrom the model funtion f(xk; uk) that is solved by integrating the ODEmodel.With a onstant reator temperature set point, the �rst optimal ontrol stepu�0 is a unique funtion of the urrent onentration and temperature of thereator. The optimal ooling jaket temperature (u�0 = T � ) to drive the reatortemperature to 320 K was alulated for reator onentrations between 0 and1 molm3 and reator temperatures between 310 and 330 K (see Figure 5.6). Eventhough the model is highly nonlinear (reation rate depends exponentially ontemperature), the optimal ontrol surfae is surprisingly linear with respet to�. With lipping of the ISAT predited value to meet the ontrol onstraints,only one ISAT reord is required to store all of the optimal ontrol solutionswith an error tolerane of 1.0 K (see Table 5.2). A realisti ontrol problemwas set up to test ISAT for a few set point hanges. The ontrol horizon isdisretized into 1 minute segments. The estimator horizon is 40 minutes andthe regulator horizon is 60 minutes. The temperature is sampled every 5 se-onds and inludes gaussian distribution noise with a standard deviation of 2K. Conentration is sampled every 10 seonds with a standard deviation of119



Figure 5.6: The optimal jaket temperature (T � ) is a unique funtion of reatoronentration (A), reator temperature (T ), and reator temperature set point(Tsp). In this �gure, the set point is �xed (Tsp = 320K) and A and T arevaried.
Table 5.2: Elements of the ISAT reord for the CSTR exampleElement Value�T [A T Tsp℄ = [0:9 315:0 318:0℄u�0 T = 306:8A [�A�T �T�T �Tsp�T ℄ = [�6:227 � 4:081 4:889℄M 03 x 3CR N=A
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0.1 molm3 . Plant-model mismath is introdued by using an ativation energy ofthe �rst order (A ! B) reation of 8750 Jmol for the model and 8740 Jmol forthe plant. At the �rst sampling time the plant state is 0.951 molm3 and 312.8K. The estimated model states are 0.9 molm3 and 300 K. The initial set pointis 315 K. At 50 minutes the set point hanges to 300 K, an unreahable setpoint. At 100 minutes the set point hanges to 328 K, lose to the NMPClosed loop stability limit. At 150 minutes the set point hanges to 308 K (seeFigure 5.7). While the two ontrol performanes are virtually indistinguish-able, ISAT performane is atually slightly better beause there is no timedelay assoiated with omputing the optimal ontrol solution. Beause ISAToperates one step ahead, it responds faster to set point hanges and distur-banes. This, however, is not the main advantage of using ISAT. The mainadvantage is that NMPC an be applied to proesses with fast sampling times(<1 �se) or simple omputers (IC hips). In addition, enumerating the entireontrol solution o�-line an reveal infeasible regions, stability limits, and otherlosed loop properties. For this example, the CPU times are shown in Figure5.8. NMPC onsists of at least two priipal alulations: estimation and reg-ulation. The estimator and regulator alulations averaged under 0.1 seondswith maximum alulation time of about 0.3 seonds. Both the estimator andregulator NLPs were solved with the VF13 SQP solver in FORTRAN usinga diret single shooting solution approah. All alulations were performedon a 2.0 GHz Celeron proessor. The estimation problem is not redued withISAT. Parameterizing the urrent states with all previous measurements is one121



Figure 5.7: Control performane of ISAT ompared to NMPC. The ontrolledvariable (CV) is the reator temperature, the state variable (SV) is the reatoronentration, and the manipulated variable (MV) is the temperature of theooling jaket.
122



Figure 5.8: Computational times of the estimator and regulator at eah sam-pling instant. ISAT is fast beause omputation is limited to a matrix multi-pliation.possible solution. Another solution improves the solution speed but does noteliminate the on-line omplexity of solving a NLP problem at every samplinginstant [39℄.5.5 Summary and ConlusionsMPC is now suggested as a andidate to replae PID ontrol thanks toreent developments in o�-line alulations for eÆient on-line implementation.Up to this point, the proposed algorithms su�er from dimensionality problems.For state parameterization, ontrol appliations are limited to small modelsand short ontrol horizons. For onstraint parameterization, ontrol applia-tions are limited to short ontrol horizons and low number of inputs. TheISAT algorithm proposed in this work overomes the dimensionality problems123



by adaptively storing only those regions aessed in pratie. ISAT eÆientlyhandles both NLP problems and onstrained LQ problems. ISAT redues toan adaptive version of state parameterized onstrained LQ when the errortolerane is redued to zero. Future work is needed to eÆiently solve theestimation problem on-line.
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Chapter 6Moving Horizon Estimation - The ExpliitSolution
Estimation of model states and parameters from proess measurementsbridges the gap between the theoretial realm of mathematial models andthe realisti realm of physial proesses. Many approahes have been sug-gested to aomplish the reoniliation of model and proess, with a range oftradeo�s [80℄. Generally, the tradeo�s are entered on model form and size,omputational expense, ease of implementation, robustness to proess/modelmismath, and ultural fators suh as understanding and aeptane.The reoniliation proess is an important preursor to other ativitiessuh as fault detetion, produt quality assurane, manual ontrol, and model-based ontrol. These model-based tehniques need an aurate estimate of theurrent system variables to perform well. Without aurate state estimation,many of these tools would perform poorly or fail.6.1 Previous WorkFor dynami nonlinear model-based ontrol of hemial proesses, themost popular feedbak strategies in pratie are the extended Kalman �lter125



and a onstant or integrating output disturbane variable [68℄. The Kalman�lter is optimal for unonstrained, linear systems subjet to known normallydistributed state and measurement noise [38℄. The Kalman �lter sequentiallyupdates state estimates based on the magnitude of the error between the mea-surements and the model variables. The extended Kalman �lter is an extensionof the Kalman �lter, developed for unonstrained, nonlinear DAE systems [7℄.By linearizing the model about updated state estimates, the extended Kalman�lter is able to predit the nonlinear state evolution, although sub-optimally[38℄. Vahhani et al. proposed EKF with onstraints, although the stateaugmentation strategy for parameter estimation is still a limitation [88℄.State estimation of real systems may inlude hanging measurementfrequenies, multiple measurements at di�erent sampling frequenies, mea-surement delay, large-sale nonlinear models, and onstraints. Moving horizonestimation (MHE) is an optimization based approah that predits state tra-jetories by using a time window that inludes the most reent measurements[41℄ [54℄ [55℄ [71℄. MHE is also known as nonlinear dynami data reoniliation(NDDR) [47℄ [79℄. MHE is a omputationally tratable approximation to theoptimal in�nite horizon estimation [70℄. All of the hallenges of real systemstate estimation are naturally handled in the MHE framework. An estimateof the urrent states is typially obtained by solving a least squares optimiza-tion problem subjet to the model onstraints and inequality onstraints thatrepresent bounds on variables or equations. Most of the published work en-ters around di�erent tehniques that solve the same minimization problem.126



Jang et al. iteratively linearized the nonlinear ODE model about a refer-ene trajetory by omputing sensitivities [41℄. Liebman et al. �rst proposeda simultaneous NLP solution approah where the di�erential equations aretransformed into algebrai equations through orthogonal olloation on �niteelements [47℄. Ramamurthi et al. proposed a two step proess to impliitly es-timate the input disturbanes while expliitly alulating state estimates [69℄.Albuquerque and Biegler exploited the MHE SQP struture to ahieve linearomputational saling with horizon length for ODE models [3℄. They laterextended the tehnique to DAE systems [4℄.A number of enhanements have extended the theoretial basis andfuntionality of MHE. MBrayer and Edgar proposed a bias detetion andestimation strategy to improve state estimation [53℄. O�set free estimationand ontrol is ahieved by augmenting the model with a number of disturbanevariables equal to the number of measurements [57℄ [59℄. Rao et al. derivedsuÆient onditions for MHE with linear systems subjet to onstraints [70℄.They also suggested an in�nite horizon approximation by weighting previousstate estimates in the least squares problem.A number of ritial evaluations of the extended Kalman �lter andMHE for nonlinear systems have been reported [38℄ [41℄ [71℄ . Eah groupdetermined that MHE onsistently outperforms the Kalman �lter and that itexhibits greater robustness to both poor initial state guesses and sub-optimalestimator tuning parameters. Their unanimous onlusion was that the onlyprie of improvement is the greater omputational expense required to solve127



the MHE optimization. The ontribution in this work is to eliminate thegreater omputational expense by developing an expliit solution to the MHEoptimization problem. Unlike the impliit optimization approah, the expliitsolution result is guaranteed in a highly preditable omputational time thatis minimal even for large-sale nonlinear models. For state estimation prob-lems with inequality onstraints, an iterative proedure is added to determinethe set of ative onstraints. An augmented objetive funtion monitors thesolution progression to guarantee onvergene.6.2 Moving Horizon Estimation Problem FormulationThe objetive funtion of the MHE problem is a least squares fun-tion that seeks to minimize the di�erene between the model values and themeasurements. minx J = (Ys � Ym)TQy(Ys � Ym)s:t: 0 = f( _x; x; u; p)ys = g(x; u; p)a � h(x; u; p) � b (6.1)where J is the objetive funtion value, Ys is a vetor of measurements at allnodes, Ym is a vetor of model values at the sampling times, Qy is the inverseof the measurement ovariane, f is a vetor of model equation residuals, x isthe vetor of model states, u is the vetor of model inputs, p is the vetor ofmodel parameters, ys is a vetor of measurements, g is an output funtion, his an inequality onstraint funtion, and a and b are lower and upper limits,respetively. The optimization found in Equation 6.1 an be solved with avariety of numerial approahes [17℄. The approah taken in this work is diret128



single shooting formulation where all future states in the horizon are uniquelyspei�ed by the initial state x0, given sequene of inputs u = (u0,u1,. . . ,un�1),and given set of parameters p. At every iteration, the model equations areexatly satis�ed.Sensitivities of the initial onditions are omputed to disretize the non-linear model. In pratie, this disretization step is the most omputationallyexpensive part of the MHE alulation. For this study, it is assumed thatthe disrete model is readily available. The vetors ym and ys are suessivelystaked to form Ym and Ys where the horizon length is n.Ym = 264 ym;0...ym;n 375 ; Ys = 264 ys;0...ys;n 375 (6.2)An in�nite horizon approximation is added by inorporating a penalty on thedeviation from previous model estimates. This penalty is added by augmentingthe objetive funtion with the least squares ontribution of previous modelestimates X̂m, weighted with a forgetting fator �. Disturbane variables(shown here as input disturbanes), d, are inluded as state variables to ahieveo�set free estimation and ontrol. The nonlinear inequality onstraints aresimpli�ed by de�ning new states zk = h(xk; uk; pk) and imposing inequality
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onstraints on zk.minx0 J = (Xs �Xm)TQx(Xs �Xm) + � �X̂m �Xm�T �X̂m �Xm�s:t: 24 xk+1dk+1pk+1 35 = 24 Ak Bk Pk0 I 00 0 I 3524 xkdkpk 35+ 24 Bk00 35 ukys;k = � Ck 0 0 �24 xkdkpk 35+Dkukzk = h(xk; uk; pk) a � zk � b (6.3)
The vetors X̂m and Xm are omposed of model vetors x̂m and xm. Also,Xs is onstruted from the measurements (see Equation 6.4b) and Qx;k =�CTk Qy;kCk�. Xm = 264 xm;0...xm;n 375 ; X̂m = 264 x̂0...̂xn 375 (6.4a)Xs = 264 �CT0 C0��CT0 (ys;0 �D0u0)...�CTnCn�� CTn (ys;n �Dnun) 375 (6.4b)Solution of this optimization problem is typially aomplished with an im-pliit solution tehnique. The next setion develops an expliit solution to thisproblem.6.3 The Expliit MHE SolutionFor simpliity of the derivation, the augmented state matrix is reduedto a generi linear time-varying form of xk+1 = Akxk +Bkuk and yk = Ckxk +Dkuk. All variables are in deviation form although not expliitly indiated130



here. The model evolution is a unique funtion of the initial states.!k = k�1Qj=0Aj  k = kPj=1 �j�1Qi=1Ai�k�j�Bk�juk�j
 = 26664 IA0...An�1 : : : A0
37775 = 26664 I!1...!n�1

37775	 = 26664 0B0u0...An�2 � � �A1B0u0 + � � �+Bn�1un�1
37775 = 26664 0 1... n�1

37775Xm = 
x0 +	
(6.5)

The equations of Xm and Ym are substituted into the objetive funtion, mak-ing it a unique funtion of x0. The expliit solution to the minimizationproblem is obtained by di�erentiating the objetive funtion with respet tox0, setting the di�erentiated funtion equal to zero, and algebraially manip-ulating the equation to solve for the estimated x0 (x̂0) expliitly.x̂0 = �
T (Qx + �I)
��1 �
T (QxXs + �Xm � (Qx + �I)	)� (6.6)The expliit solution an be alulated when the inverse of 
T (Qx + �I) 
exists. The inverse exists when previous estimates are used to approximatethe in�nite horizon solution (� > 0). An expliit solution does not exist whenthe system is unobservable and � = 0. This property is onsistent with thefat that an unobservable system possesses extra degrees of freedom leadingto states that annot be estimated from the available measurements. A moredetailed de�nition of neessary and suÆient onditions for onvergene isprovided below. 131



Conditions for a unique solution are given separately for observableand unobservable systems. Also, the onditions apply equally for linear andnonlinear systems. Observability of nonlinear systems is established by ana-lyzing the loal observability along a referene trajetory [84℄. As long as loalobservability is maintained, the nonlinear system is also ompletely observable.6.3.1 Fully observable systemsTo obtain a unique solution for fully observable systems, the followingneessary onditions must be met:1. Qy has non-zero eigenvalues2. The number of measurements is greater than or equal to the number ofstates, nWithout an in�nite horizon approximation (� = 0), the expliit solution re-dues to the form derived in Ramamurthi et al. [69℄. When the number ofmeasurements is less than n, ! beomes rank de�ient. With ! rank de�ient,the produt !TQy! is also rank de�ient. Also, the produt !TQy! beomesrank de�ient when Qy has at least one zero eigenvalue. Qy an have a zeroeigenvalue when zero weighting is given to a measurement. This situation mayarise when partiular measurements are eliminated from the optimization dueto temporary faults in the sampling equipment or transmission delay.SuÆient onditions guarantee a unique solution and onsist of:132



1. Qy is positive de�nite2. The estimation horizon is greater than or equal to the number of states,nFor observable systems, the observability matrix is full rank. When the horizonis equal to n, ! is exatly the observability matrix and therefore, full rank.When Qy is positive de�nite, the produt !TQy! is also positive de�nite. Apositive de�nite matrix is invertible, so a unique solution exists to the eMHEproblem.6.3.2 Partially observable systemsFor systems with unobservable states, onvergene is guaranteed whenthe following onditions are met:1. Qy is positive de�nite2. The objetive funtion is augmented with an in�nite horizon approxima-tion (� > 0)3. ! is full rankWhen Qy is positive de�nite, Qx is positive semi-de�nite. Adding an in�nitehorizon approximation inreases by � the singular values (equivalent to theeigenvalues for symmetri positive semi-de�nite matries) of Qx + �I. With! full rank, the produt !T (Qx + �I)! is positive de�nite and onvergene isguaranteed. 133



6.3.3 Example 1: Expliit versus Impliit MHE SolutionThis �rst example is used to illustrate that expliit and impliit solu-tions of the MHE problem give the same results. A single input, single output(SISO) seond order model with stable roots is spei�ed as the system.G (s) = 1s2 + 2s+ 1 (6.7)A onversion to disrete time is performed with a sampling frequeny of 0.1seonds. Normally distributed measurement noise with mean of zero and stan-dard deviation of 0.1 is added to the output.xk+1 = � :8144 �0:09050:0905 0:9953 �xk + � 0:09050:0047 �ukyk = � 0 1 �xk + vk (6.8)The �rst state x1 is unmeasured, but observable. The seond state, x2, is mea-sured but orrupted by measurement noise. The states are both initially atzero while the initial guesses of the states are both set to one. A forgetting fa-tor of 0.5 is added to the initial state in the time horizon. Figure 6.1 shows theresults of 49 separate optimizations for both expliit MHE and optimizationbased MHE (labeled as MHE). Starting at time zero, every sampling instantMHE realulates a new estimate of the urrent states. The expliit solutionsagree losely with the impliit solutions. State x1 onverges quikly to theatual system values. State x2 also gradually onverges to the orret solutionbeause of the forgetting fator that plaes weight on the erroneous initialguess. The omputational e�ort required to ompute a solution is drastiallydi�erent. The expliit solution required 2506 oating point operations. On a134



Figure 6.1: The expliit and impliit MHE solutions produe the same results.Substantial omputational redution is obtained with the expliit solution ap-proah.
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modern day omputer operating at 103 million oating point operations perseond (MFLOPS), the solution would require 0.0003 seonds. The impliit so-lution required 785,716 oating point operations for the last optimization witha horizon of 50 measurements, or roughly 0.08 seonds on modern omputers.For this example, the expliit solution redues omputational requirements ofMHE by 314 times.6.4 Inequality Constraints in Expliit MHERamamurthi et al. [69℄ did not inlude inequality onstraints in deriv-ing an expliit MHE solution. Inequality onstraints represent physial limitson state variables or ombinations of state variables. For example, mole fra-tions are always between 0 and 1. If the state estimation predited a molefration outside of this range, that mole fration would have little physialmeaning and would derease the redibility of the other results. Inequalityonstraints add valuable information to the state estimation. For systemsthat are partially unobservable, the inequality onstraints bound the unob-servable states, thereby inreasing the level of system observability. However,an unobservable system annot be made ompletely observable with inequal-ity onstraints. Additional atual measurements are the only way to make anunobservable system ompletely observable.As previously mentioned, the inequality onstraints a � h(xk; pk) � bare simpli�ed by reating new variables zk and adding zk = h(xk; pk) to the setof state equations. Equivalent onstraint information is retained by imposing136



inequality onstraints on zk (a � zk � b). Imposing onstraint informationleads to a possible infeasible solution. To overome this possibility, the inequal-ity onstraints are ranked aording to the order of importane. This rankingis aomplished by softening the onstraints and imposing suessively higherweighting on more important onstraints. Softening the onstraints guaranteesa feasible solution beause the inequality onstraints may be violated to meetthe state equality onstraints. Softening of the onstraints is performed inpratie by adding a penalty to the objetive funtion for onstraint violation.minXm J + sTaQasa + sTb Qbsbs:t:; 0 = f( _x; x; u; p)ys = g(x; u; p)sa = a�Xmsb = Xm � b (6.9)The matries Qa and Qb have diagonal elements that turn on (weighting > 0)or o� (weighting = 0) to ontrol the set of ative onstraints. A MHE problemwith inequality onstraints is iterative beause the �nal set of ative on-straints is not known a priori. However, the predition of states, disturbanes,and parameters is still an expliit solution for a known set of ative inequalityonstraints. The omputational time required to solve a problem with inequal-ity onstraints is variable, equal to the time required for one expliit solutionmultiplied by the number of iterations. The expliit solution subjet to theset of ative inequality onstraints is given in Equation 6.10.x̂0 = T�1 �
T (QxXs + �Xm +Qaa +Qbb� R	)�with R = (Qx + �I +Qa +Qb) and T = �
TR
� (6.10)
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Convergene is guaranteed by rejeting iterations that do not produe a suf-�ient derease in the objetive funtion. Eah iteration yields a new setof ative onstraints that are predited to give a derease in the objetivefuntion. The initial set of ative onstraints is determined by omputing anunonstrained MHE solution. Weighting is added to Qa and Qb for statesthat violate the inequality onstraints. In suessive iterations, weighting isremoved for onstraints with negative Lagrange multipliers (�a = �2Qasa and�b = 2Qbsb. If the new set of ative onstraints does not give a suÆientderease in the objetive funtion, the algorithm adjusts the weights on theative onstraints. The parameter � in Equation 6.11 is redued until a de-rease in the objetive funtion is obtained. An objetive funtion dereaseis always possible until onvergene. However, a full step (� = 1) may notgive a derease in the objetive funtion beause of the nonlinear nature ofonstrained systems. The Lagrange multipliers are loally aurate, linearpreditions of ative onstraint e�ets on the objetive funtion. In the limitas beta approahes zero, the linear approximation beomes exat and there-fore, a derease in the objetive funtion is guaranteed. Convergene of MHEwith onstraints is guaranteed by suessively dereasing � until a suÆientderease in the objetive funtion is obtained at every iteration.Qa = �Qa;k + (1� �)Qa;k�1Qb = �Qb;k + (1� �)Qb;k�1 (6.11)One a derease in the objetive funtion is obtained, the optimizer aeptsthe iteration and moves on to �nd a new searh diretion (new ative set ofonstraints that is predited to produe a derease of the objetive funtion).138



This iterative sequene is terminated when the ative set does not hange fromone iteration to the next.6.4.1 Example 2: Constrained Version of Example 1Constraints are added to the Example 1 problem to demonstrate theative set strategy. State x1 is arbitrarily onstrained between 0 and 0.2. Statex2 is not onstrained. An input disturbane variable x3 is added to ahieveo�set free estimation. Figure 6.2 shows the results of MHE with and with-out inequality onstraints. The unonstrained solution is the �rst iteration

Figure 6.2: Variable x1 is onstrained between 0 and 0.2. The unonstrainedsolution violates the upper bound onstraint on x1. By inorporating theonstraints the solution is improved.for expliit MHE alulation. After 5 iterations (for eah of the 49 separate139



optimizations), onstrained expliit MHE (CE MHE) agrees losely with theimpliit solution (MHE) as seen in Figure 6.3. Using the ative set strategy

Figure 6.3: Results for onstrained expliit MHE (CE MHE) ompared to opti-mization based MHE (labeled as MHE). Note that x1 now meets the onstraintondition.proposed in this setion, expliit MHE onverges to the onstrained solution.The details of the onvergene are not obvious beause the only values reportedin Figure 6.3 are the �nal predited values. An iteration by iteration sequeneis informative to show the onvergene properties. The last optimization istaken as a example using all 50 data points with a horizon of 49. Figure 6.4shows the �rst iteration. The third state (x3) is the input disturbane variable.At the �rst iteration, the upper bound of x1 is violated by the unonstrainedexpliit MHE solution. One the unonstrained solution is omputed, a searh140



Figure 6.4: First iteration of the expliit MHE solution. State x1 violates theupper bound onstraint of 0.2.
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is performed to identify all of the onstraint violations. For the next iteration,penalties are added to the objetive funtion for eah of the violations. Figure6.5 shows the results of the expliit solution with weighting plaed at the formeronstraint violations. Negative Lagrange multipliers are identi�ed for the next

Figure 6.5: Seond iteration for expliit MHE. Weighting is added to matrixQb where the x1 trajetory formerly violated the upper bound onstraint of0.2. The onstraint information is indiated as �titious measurements eventhough x1 is not atually measured.iteration to determine the equality onstraints that should be removed from theative set. Negative Lagrange multipliers are found between 0:0 � time � 0:2and 1:3 � time � 1:9. For the next iteration these onstraints are removedfrom the ative set. No additional onstraint violations are identi�ed so no142



onstraints are added to the ative set. A derease in the augmented objetivefuntion indiates that the iteration should be aepted. Figure 6.6 shows thethird iteration. After the third iteration, negative Lagrange multipliers are

Figure 6.6: Third iteration of expliit MHE. The expliit MHE solution is ap-proahing the impliit MHE solution as the ative set of onstraints is re�ned.found between 0:3 � time � 0:4 and 1:1 � time � 1:2. For the next itera-tion these onstraints are removed from the ative set and the expliit MHEis realulated, resulting in a suÆient derease in the augmented objetivefuntion. Figure 6.7 displays the fourth iteration. After the fourth iteration,negative Lagrange multipliers are found between 0:5 � time � 0:6. Theseonstraints are removed from the ative set for the �nal iteration. Again, theaugmented objetive funtion dereases. Figure 6.8 displays the �nal iteration.143



Figure 6.7: Fourth iteration of expliit MHE. The expliit MHE solution al-most agrees exatly with the impliitMHE solution. The �nal solution requiresone more iteration for onvergene.
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The �nal iteration of expliit MHE shows exellent agreement between both

Figure 6.8: Final iteration of expliit MHE. In all, the expliit solution se-quene required 5 iterations for onvergene.solutions. The input disturbane variable x3 is de�ned as onstant over theentire time horizon. This example shows the development of MHE for a on-strained linear system, making the problem nonlinear. The MHE frameworknaturally inorporates onstraints into the problem formulation. The expliitsolution required approximately 2500 oating point operations per iterationfor a total of 12,500. The impliit solution required approximately 122 millionoating point operations before the optimizer reahed the default maximumnumber of iterations. The inability of the impliit solution to onverge quiklyis most likely due to the de�ienies of diret single shooting with softened145



onstraints. A more robust approah obtained by diret multiple shooting orolloation of the state equations would undoubtedly improve the impliit so-lution omputational e�ort, but not to the level of the expliit MHE approah.6.5 Example 3: Flash Column Composition EstimationThis setion shows an example of MHE, but for a physially realis-ti proess, a 17 state model of a ash olumn (see Figure 6.9. The unknownompositions are estimated from the temperature and ow rate measurements.When the liquid stream enters the olumn at a pressure below the liquid's va-por pressure, a fration of the stream instantaneously ashes into the vaporphase. A rigorous nonlinear model of mass, energy, and thermodynami equi-librium relationships predits the dynami behavior of the olumn. A diagramof the model is presented in Figure 6.9. The feed tank ontains an equimolar
Figure 6.9: Flow sheet diagram of the ash olumn model. The ash olumnonsists of a feed tank with unknown speies ompositions, a ash olumn,and vapor and liquid outlet streams.hydroarbon mixture of C4H10, C5H12, C6H14, C7H16, and C8H18. The feedand ash temperatures are measured as are the vapor and liquid ow rates.146



Noise is added to the measurements with mean zero and standard deviation 0.5for the temperatures and 0.02 for the ow rates. The objetive is to estimatethe feed tank ompositions from the temperature and ow rate measurements.Figure 6.10 shows the measurements taken over the time horizon of interest.The 17 state model has 5 di�erential states and 12 algebrai states. For full

Figure 6.10: The estimated states onverge quikly to the real system eventhough the initial guess is poor.observability, the observability matrix must have rank � 5. For this exam-ple, the observability matrix is rank de�ient at 3. This analysis reveals thattemperature and ow measurements of a ash olumn an only be used to ex-atly estimate ompositions of mixtures with � 3 omponents. Alternatively,2 additional ompositions ould be measured to make the system observable.147



However, even if the system is not fully observable, some information an bereonstruted that an be better than the initial omposition estimates. Forthis example, the ompositions are initially estimated as 0.3 whereas the a-tual ompositions are all loated at 0.2. Figure 6.11 shows the estimation ofthe ompositions over a 100 seond time horizon. A forgetting fator of 0.5 on

Figure 6.11: Estimated ompositions of C4H10, C5H12, and C6H14 approahthe atual values of 0.2. The other two ompositions of C7H16 and C8H18deviate signi�antly beause the system is not fully observable.the initial state was used to inorporate previous estimates. The estimation isable to reonstrut the ompositions of C4H10, C5H12, and C6H14. However,the other two ompositions, C7H16 and C8H18, deviate signi�antly from theorret solution. This deviation is a result of an unobservable system.148



Inequality onstraints an bound unobservable states to inrease theauray of the estimation. For this example, suppose it is known that theomposition of C7H16 should not be above a omposition of 0.22. This on-straint information an be inorporated into the expliit MHE formulation toprovide a better estimate of ompositions. Figure 6.12 shows the results ofbounding the C7H16 omposition. At the �nal solution the ative onstraint

Figure 6.12: The omposition estimation is greatly improved by adding aninequality onstraint to C7H16. Even though the system is not fully observable,the omposition estimates losely approximate the atual values.on C7H16 omposition has a Lagrange multiplier of +0.02, on�rming that theonstraint should be ative. The estimation of the omposition is greatly im-proved by inorporating additional information about the proess in the formof an inequality onstraint. 149



6.5.1 Expliit MHE Saling with Model SizeAn important property of expliit MHE is omputational saling tolarge-sale problems. To test the salability to large-sale problems, a series of17 state ash olumns are ombined to form larger models. These suessivelylarger models are solved for the linear and nonlinear ase as seen in Figure6.13. A horizon of 50 samples is used for all of the simulations. Both linear

Figure 6.13: Expliit MHE saling to large-sale model size. Both the nonlin-ear and linear approahes sale O(x2) in the number of oating point opera-tions, where x is the number of variables in the model.and nonlinear expliit MHE sale O(x2) in the number of oating point oper-ations, although the linear approah sales approximately 6 times better thanthe nonlinear method. With omputers that operate in the Gigahertz range,the omputational feasibility of expliit MHE is exellent even for large-sale150



problems (10,000+ variables).6.5.2 Expliit MHE Saling to Long Time HorizonsSome estimation problems require long time horizons (> 100 samplingintervals). Long time horizons may be neessary when the measurements havelow signal to noise ratios, proess measurements our muh faster than theproess dynamis, or there is a large di�erene among the sampling frequen-ies of multiple measurements. Another reason for a long time horizon is forparameter estimation where a few parameters are estimated from a long timeperiod of historial data. Figure 6.14 displays the e�et of time horizon lengthon the number of oating point operations for the 17 state ash olumn model.For nonlinear models, the saling is quadrati for inreasing horizon length.For linear models the saling is linear for inreasing horizon length. The linearmodel saling is partiularly amenable for problems that may require a verylong time horizon.6.6 Example 4: Two State CSTRState estimation of a CSTR is a popular benhmark test problem asfound in Albuquerque and Biegler [3℄ and Haseltine and Rawlings [38℄, interalii. A desription of the model, variables, and equations is given in AppendixB. The purpose of this example is to estimate the omputational load fordi�erent estimation strategies.A realisti estimation problem was devised to test eMHE for a sequene151



Figure 6.14: Expliit MHE saling to horizon length. For nonlinear models,saling is O(x2) in the number of oating point operations. For linear models,saling is O(x) where x is the horizon length.of step responses. The estimator horizon is set to 60 minutes and divided into1 minute segments. The temperature is sampled every minute and orruptedby normally distributed noise with a standard deviation of 5 K. Conentrationis sampled every 10 minutes with a standard deviation of 0.01 molm3 . Plant-model mismath is introdued by using an ativation energy of the �rst order(A! B) reation of 8750 Jmol for the model and 8740 Jmol for the plant. Theplant-model mismath is introdued to ause deviation of the estimated re-sponse from the atual proess. The steady state deviation an be eliminatedby inluding parameter estimation or a disturbane variable. At the �rst sam-pling time the plant is assumed to be at steady state with a jaket oolingtemperature of 300 K. At 20 minutes the ooling temperature is set to 290 K,152



followed by a step to 310 K at 60 minutes. At 70 minutes the ooling tem-perature returns to 290 K. Figure 6.15 shows the results of the MHE study.The eMHE solution averaged approximately 22,000 oating point operations

Figure 6.15: Estimation performane of the expliit solution MHE (eMHE)versus MHE. The state variable (SV) estimation is diÆult to distinguishon the graph beause the preditions are virtually idential for the two ap-proahes. The only di�erene is the substantially lower omputational e�ortrequired to reah a solution.to ompute a solution. The diret single shooting optimization MHE solutionaveraged approximately 40 million oating point operations. The CPU timeresults from Liebman et al. were performed on a omputer that delivers ap-proximately 1 MFLOPS with LINPACK benhmark tests [47℄. He reportedin 1992 solution times in the range of 1-100 seonds giving approximate om-153



putational e�ort in the range of 1-100 million oating point operations forsparse solvers and orthogonal olloation on �nite elements. The expliit so-lution approah o�ers improved omputational performane that is insensitiveto onvergene tolerane, poor initial onditions, strong nonlinearities, andother fators that inuene the impliit solution approah.6.7 ConlusionsMoving horizon estimation has been demonstrated to be a superiorstate estimation tehnique ompared with the extended Kalman �lter. Theonly disadvantage is the additional omputational expense needed to solvethe MHE optimization problem. This hapter outlines an expliit solutiontehnique that removes the omputational disadvantage for large sale non-linear DAE systems that is guaranteed to onverge when the system is fullyobservable or when previous estimates are inorporated into the optimiza-tion. Inequality onstraints add variable bounds that an improve the stateestimation, espeially for systems that are not fully observable. An iterativeapproah is neessary to determine an ative set of equality onstraints fromthe full set of inequality onstraints. The iterative solution has guaranteedonvergene by seleting new ative sets that generate a suÆient derease inthe augmented objetive funtion. The omputational expense of the mosthallenging problem in this hapter required 22,000 oating point operations,only a few miro-seonds with modern omputational power. The ompu-tational expense of impliit optimization MHE is signi�antly more, with a154



possibility of onvergene failure depending on the initial onditions seleted,problem nonlinearity, hoie of optimizer, et.
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Chapter 7Conlusions and Reommendations7.1 Summary of ContributionsThe main fous of this dissertation is to redue the omputational re-quirements for large-sale DAE model-based estimation and ontrol. Thisobjetive is aomplished by a variety of strategies that are ombined in ane�etive way to meet real-time onstraints with limited omputing resoures.The prinipal strategies are storage and retrieval o�-line to enable eÆienton-line ontrol, nonlinear DAE model redution, and development of expliitoptimization solutions. Both moving horizon estimation and reeeding horizonontrol are developed to meet real-time onstraints.7.1.1 Development of a Superior Alternative to Neural Networksfor Nonlinear Funtion ApproximationISAT, as formerly applied in ombustion appliations, was infeasibleas a general nonlinear funtion approximator beause it required sensitivityinformation. A statistial approximation to the sensitivity allows ISAT tostore and retrieve any linear or nonlinear funtion with error ontrol.
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7.1.2 Automati, Iterative DAE Model RedutionAutomati order redution of the di�erential equations is made possibleby introduing a variable error preditor that iteratively determines the orderof the redued model. This variable error preditor an also be used to furtherredue the model order by inreasing the redued order model auray. Forthe algebrai equations, a partitioning and preedene ordering is performedto divide the equations and variables into suessively independent sets. Onepartitioned, ISAT stores and retrieves solutions to the subsets of equations.By building a database of solutions, the equations are automatially expliitlytransformed. The automati transformation avoids the suseptability to errorthat would ome from a manual expliit transformation on an equation byequation basis.7.1.3 Redued Computational E�ort for Nonlinear MPCThe two most omputationally expensive parts of nonlinear MPC arestate estimation and regulation. Redution by up to 100 times is possible bystoring and retrieving the ontinuous nonlinear DAE integrations.The state estimation is a dynami data reoniliation of the model pre-dition and plant measurements. State estimation is a neessary step whenfull state feedbak is impossible, plant-model mismath is present, or mea-surements are orrupted with noise. By storing and retrieving DAE modelintegrations and sensitivities, the estimator alulation speed is greatly im-proved. 157



The regulator uses the results of the estimator to determine a set ofoptimal inputs that will minimize an objetive funtion. By using ISAT toompute the model state evolution onstraints, the omputational time ofISAT is redued by up to 100 times.7.1.4 Development of Expliit Nonlinear MPCBy storing and retrieving optimal ontrol solutions, an approximateexpliit NMPC ontroller is developed. The error ontrol embedded in ISATensures that variable error toleranes are not exeeded. For onstrained QPproblems, the initial estimate of the ROA is restrited to the state spae withthe same ative set of onstraints. In the limit as �tol goes to zero, the algo-rithm yields the exat expliit MPC solution. The dimensionality problems ofprevious approahes is overome by only storing and retrieving solutions thatare aessed in pratie.7.1.5 Development of Expliit Moving Horizon EstimationMoving horizon estimation requires a solution to a NLP problem om-parable in omputational omplexity to the ontrol formulation. In order formodel-based ontrol to funtion, a urrent estimate of the states is neessarybefore every ontrol optimization. An expliit solution to the MHE problemis developed for nonlinear ODE or DAE models. Inequality onstraints anbe enfored by iteratively de�ning the ative set of variables at the onstraintbounds. An expliit solution is guaranteed by weighting previous estimates158



in the objetive funtion. Disturbanes and parameters are simultaneouslyestimated with the states in one expliit solution.7.2 Future WorkSeveral extensions of this work are possible. The proposed future workinvolves model redution for the non-expert user, new appliations for modelredution, a few suggested developments for ISAT, and expliit MHE for pa-rameter estimation.7.2.1 Model Redution for the Non-Expert UserAutomated model redution for non-expert users an be inorporatedinto popular DAE solvers with the new tehniques presented in Chapter 3. Auser would speify an error tolerane for the original model variables and thesolver ould iteratively determine the redued model size. Model redutionwas not found to signi�antly redue the omputational expense of simulatinga dynami system. However, large omputational advantages may exist forredued model sensitivity analysis as explained in Setion 7.2.2.7.2.2 Model Redution for Sensitivity AnalysisFor initial states sensitivities, an additional n2 variables are solved si-multaneously with the original n variables. By reduing the model order tor states, the number of sensitivity variables is redued to r2. For parametersensitivities, an additional nxp variables are solved simultaneously with the159



original variables. A model order of r states redues the number of sensitivityvariables to rxp. EÆient sensitivity alulations are important for the sin-gle and multiple shooting solution tehniques for nonlinear MPC, MHE, andmodel parameter estimation.7.2.3 Model Redution with the Open Equation FormatChapter 3 shows tehniques for redution of models in the open equa-tion format (0 = f( _x; x; u)). The simultaneous optimization approah requiresa disretization sheme suh as orthogonal olloation on �nite elements toonvert the di�erential equations into the NLP form. A numerial exampleof model redution using the simultaneous approah was never developed.Instead, the sequential solution approah was used beause of programmingsimpliity. However, in order to use the sequential approah, the model mustbe onverted to the semi-expliit form ( _x = f(x; u)). This onversion waspossible for all models that are shown in this dissertation, however, it maybe neessary to work with the open equation form diretly. An interestingstudy would be to ompare the omputational and theoretial properties ofthe simultaneous and sequential solution approahes for redued models insimulation and ontrol.7.2.4 Higher Order Pieewise Approximations in ISATISAT approximates nonlinear funtions by building multi-dimensionalpieewise linear loal approximations. The storage and retrieval performane160



ould be inreased by developing higher order loal approximations. For someappliations, it is desirable for the funtion approximation to be ontinuousor ontinuously di�erentiable. A higher order approximator may inrease theregions that meet these onstraints. Another method to approximate ontinu-ously di�erentiable funtions may be to retrieve multiple nearby linear reordsto generate higher order approximations.7.2.5 Parameter EstimationChapter 6 demonstrates a very eÆient implementation of MHE to es-timate the states, parameters, and disturbane variables from an advaninghorizon of measurements. Periodially, it may be desirable to estimate newmodel parameters from a long history of normal operating data. In pratie,this is usually aomplished by seleting a few points at steady state opera-tion, setting the derivatives in the model to zero, and solving an optimizationproblem to minimize the di�erene between the model and data. The draw-baks to this approah stem from limiting the parameter estimation to steadystate data. Optimal parameter estimation would inlude all historial datathat are deemed valid. These data sets may inlude produt grade transitionsor be segmented by periods of shut-down or orrupted measurements. ExpliitMHE was shown to sale quadratially with respet to model size and horizonlength and may o�er a superior alternative to optimization-based parameterupdates.
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Appendix ABinary Distillation Column Model

Figure A.1: Diagram of a dynami binary distillation olumn model withequilibrium stages
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Table A.1: VariablesManipulated variablesSymbol Desription Units_mF Feed rate gmse_mR Reux rate gmse_Q Reboiler heating rate JseVariables at eah of the 26 stagesDi�erential variablesSymbol Desription Units_xA Liquid mole fration none_h Spei� enthalpy JmolAlgebrai variablesSymbol Desription UnitsyA Vapor mole fration nonexL Liquid mole fration noneT Temperature K_nV Vapor molar ow rate molse_nL Liquid molar ow rate molsehV Spei� vapor enthalpy JmolhL Spei� liquid enthalpy JmolP sati Saturation pressure of ompound j PaOther variablesSymbol Desription UnitsnL Liquid molar holdup molMWF (xA) Moleular weight of feed stream gmmolMWR(xA) Moleular weight of reux stream gmmolP Stage pressure PahVj (T ) Spei� vapor enthalpy of ompound j JmolhLj (T ) Spei� liquid enthalpy of ompound j Jmol
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Table A.2: EquationsDi�erential EquationsComponent A mole balane at eah stage_xA = 1nL �yAin _nVin + xAin _nLin � yAout _nVout � xAout _nLout + �xAfeed _mfeedMWfeed(xA)��Energy balane at eah stage_h = 1nL �hVin _nVin + hLin _nLin � hVout _nVout � hVout _nLout + �hLfeed _mfeedMWfeed(xA)�+ _Q�Algebrai EquationsRaoult's law for VLEyA = xAP satAPLiquid mole fration equationxL = h�hVhL�hVBubble point temperature equationP = xAP satA + (1� xA)P satBVapor molar ow rate equation_nVout = ( _nVin + _nLin) (1� xL)Liquid molar ow rate equation_nLout = ( _nVin + _nLin) xLVapor enthalpy equationhV = yAhV A(T ) + (1� yA)hV B(T )Liquid enthalpy equationhL = xAhLA(T ) + (1� xA)hLB(T )Pure omponent j saturated vapor pressure equation (DIPPR database)P satj = exp �A+ BT + C ln(T ) +DTE�
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Appendix BDual CSTR Model

Figure B.1: This model is a dual CSTR with an exothermi �rst-order reation.It is the same model as the one used by Hahn [34℄, but with some minormodi�ations.
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Table B.1: VariablesManipulated variablesSymbol Desription Unitsu Valve position at the outlet of reator #2 dimensionlessQ Cooling heat ow from reator #1 JseState variablesSymbol Desription UnitsV1 Volume of reator #1 m3CA1 Conentration of A in reator #1 molm3T1 Temperature of reator #1 KV2 Volume of reator #2 m3CA2 Conentration of A in reator #2 molm3T2 Temperature of reator #2 KOther parametersSymbol Desription UnitsCAF Conentration of A in the feed molm3TF Feed temperature KqF Feed ow rate molseq1 Flow rate out of reator #1 molseq2 Flow rate out of reator #2 molsek0 Pre-exponential fator molm3�seE Ativation energy JmolR Universal gas onstant (8.31451) Jmol�K� Density of the liquid kgmolp Heat apaity of the liquid Jkg�K�H Energy of reation Jmol Constant relating valve position to ow rate molse�m3=2
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Table B.2: EquationsEquation(s)Flow ratesq1 = pV1 � V2q2 = pV1uVolume balanesdV1dt = qF � q1dV2dt = q1 � q2Component balanesd(V1CA1)dt = qFCAF � q1CA1 � k0CA1V1 exp �� ERT1�d(V2CA2)dt = q1CA1 � q2CA2 � k0CA2V2 exp �� ERT2�Energy balanesd(V1T1)dt = qFTF � q1T1 + �H�p �k0CA1V1 exp �� ERT1��� Q�pd(V2T2)dt = q1T1 � q2T2 + �H�p �k0CA2V2 exp �� ERT2��
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Appendix CFlowsheet Model

Figure C.1: Diagram of the owsheet model involving equal molar feed streamsof butane, pentane, hexane, heptane, and otane at 300 K and 1 ATM. Themodel has 229 variables with 12 ODEs and 217 AEs.Tables C-1 - C-5 are a listing of all of the variables in the owsheetmodel. The tables are divided by the model units. Table C-6 shows the irre-dueable portion from the partitioning and preedene ordering of the variablesand equations. This is the only set involving more than one variable and oneequation and it onsists of 16 variables and 16 equations from the ash olumn.
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Table C.1: Feed VariablesName Name Unitsfeed1.(C4H10) feed2.(C4H10) kmolm3feed1.(C5H12) feed2.(C5H12) kmolm3feed1.(C6H14) feed2.(C6H14) kmolm3feed1.(C7H16) feed2.(C7H16) kmolm3feed1.(C8H18) feed2.(C8H18) kmolm3feed1.dens feed2.dens kmolm3feed1.h feed2.h Jkmolfeed1.ndot feed2.ndot kmolsefeed1.vdot feed2.vdot m3sefeed1.x(C8H18) feed2.x(C8H18) nonefeed1.y(C4H10) feed2.y(C4H10) nonefeed1.y(C5H12) feed2.y(C5H12) nonefeed1.y(C6H14) feed2.y(C6H14) nonefeed1.y(C7H16) feed2.y(C7H16) nonefeed1.y(C8H18) feed2.y(C8H18) none
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Table C.2: Flash Column VariablesName Unitsash.outlet liq.(C4H10) ash.outlet vap.(C4H10) kmolm3ash.outlet liq.(C5H12) ash.outlet vap.(C5H12) kmolm3ash.outlet liq.(C6H14) ash.outlet vap.(C6H14) kmolm3ash.outlet liq.(C7H16) ash.outlet vap.(C7H16) kmolm3ash.outlet liq.(C8H18) ash.outlet vap.(C8H18) kmolm3ash.outlet liq.dens ash.outlet vap.dens kmolm3ash.outlet liq.h ash.outlet vap.h Jkmolash.outlet liq.mdot ash.outlet vap.mdot kgseash.outlet liq.ndot ash.outlet vap.ndot kmolseash.outlet liq.p ash.outlet vap.p Paash.outlet liq.t ash.outlet vap.t Kash.outlet liq.vdot ash.outlet vap.vdot m3seash.outlet liq.x(C4H10) ash.outlet vap.x(C4H10) noneash.outlet liq.x(C5H12) ash.outlet vap.x(C5H12) noneash.outlet liq.x(C6H14) ash.outlet vap.x(C6H14) noneash.outlet liq.x(C7H16) ash.outlet vap.x(C7H16) noneash.outlet liq.x(C8H18) ash.outlet vap.x(C8H18) noneash.outlet liq.y(C4H10) ash.outlet vap.y(C4H10) noneash.outlet liq.y(C5H12) ash.outlet vap.y(C5H12) noneash.outlet liq.y(C6H14) ash.outlet vap.y(C6H14) noneash.outlet liq.y(C7H16) ash.outlet vap.y(C7H16) noneash.outlet liq.y(C8H18) ash.outlet vap.y(C8H18) none
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Table C.3: Heat Exhanger VariablesHeat Exhanger Outlet Units Name Unitshx.outlet.(C4H10) kmolm3 hx.reserve.(C4H10) kmolm3hx.outlet.(C5H12) kmolm3 hx.reserve.(C5H12) kmolm3hx.outlet.(C6H14) kmolm3 hx.reserve.(C6H14) kmolm3hx.outlet.(C7H16) kmolm3 hx.reserve.(C7H16) kmolm3hx.outlet.(C8H18) kmolm3 hx.reserve.(C8H18) kmolm3hx.outlet.dens kmolm3 hx.reserve.dens kmolm3hx.outlet.h Jkmol hx.reserve.h Jkmolhx.outlet.mdot kgse hx.reserve.m kghx.outlet.ndot kmolse hx.reserve.n kmolhx.outlet.p Pa hx.reserve.p Pahx.outlet.t K hx.reserve.t Khx.outlet.vdot m3se hx.reserve.v m3hx.outlet.x(C4H10) none hx.reserve.x(C4H10) nonehx.outlet.x(C5H12) none hx.reserve.x(C5H12) nonehx.outlet.x(C6H14) none hx.reserve.x(C6H14) nonehx.outlet.x(C7H16) none hx.reserve.x(C7H16) nonehx.outlet.x(C8H18) none hx.reserve.x(C8H18) nonehx.outlet.y(C4H10) none hx.reserve.y(C4H10) nonehx.outlet.y(C5H12) none hx.reserve.y(C5H12) nonehx.outlet.y(C6H14) none hx.reserve.y(C6H14) nonehx.outlet.y(C7H16) none hx.reserve.y(C7H16) nonehx.outlet.y(C8H18) none hx.reserve.y(C8H18) none
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Table C.4: Splitter VariablesSplit Outlet 1 Split Outlet 2 Unitssplit.fra2 nonesplit.outlet1.(C4H10) split.outlet2.(C4H10) kmolm3split.outlet1.(C5H12) split.outlet2.(C5H12) kmolm3split.outlet1.(C6H14) split.outlet2.(C6H14) kmolm3split.outlet1.(C7H16) split.outlet2.(C7H16) kmolm3split.outlet1.(C8H18) split.outlet2.(C8H18) kmolm3split.outlet1.dens split.outlet2.dens kmolm3split.outlet1.h split.outlet2.h Jkmolsplit.outlet1.mdot split.outlet2.mdot kgsesplit.outlet1.ndot split.outlet2.ndot kmolsesplit.outlet1.p split.outlet2.p Pasplit.outlet1.t split.outlet2.t Ksplit.outlet1.vdot split.outlet2.vdot m3sesplit.outlet1.x(C4H10) split.outlet2.x(C4H10) nonesplit.outlet1.x(C5H12) split.outlet2.x(C5H12) nonesplit.outlet1.x(C6H14) split.outlet2.x(C6H14) nonesplit.outlet1.x(C7H16) split.outlet2.x(C7H16) nonesplit.outlet1.x(C8H18) split.outlet2.x(C8H18) nonesplit.outlet1.y(C4H10) split.outlet2.y(C4H10) nonesplit.outlet1.y(C5H12) split.outlet2.y(C5H12) nonesplit.outlet1.y(C6H14) split.outlet2.y(C6H14) nonesplit.outlet1.y(C7H16) split.outlet2.y(C7H16) nonesplit.outlet1.y(C8H18) split.outlet2.y(C8H18) none
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Table C.5: Mixer and Tank VariablesMixer Tank Outlet Tank Holdup Unitsmixer1.outlet.(C4H10) tank.outlet.(C4H10) tank.reserve.(C4H10) kmolm3mixer1.outlet.(C5H12) tank.outlet.(C5H12) tank.reserve.(C5H12) kmolm3mixer1.outlet.(C6H14) tank.outlet.(C6H14) tank.reserve.(C6H14) kmolm3mixer1.outlet.(C7H16) tank.outlet.(C7H16) tank.reserve.(C7H16) kmolm3mixer1.outlet.(C8H18) tank.outlet.(C8H18) tank.reserve.(C8H18) kmolm3mixer1.outlet.dens tank.outlet.dens tank.reserve.dens kmolm3mixer1.outlet.h tank.outlet.h tank.reserve.h Jkmolmixer1.outlet.mdot tank.outlet.mdot tank.reserve.m (kg) kgsemixer1.outlet.ndot tank.outlet.ndot tank.reserve.n (kmol) kmolsemixer1.outlet.p tank.outlet.p tank.reserve.p Pamixer1.outlet.t tank.outlet.t tank.reserve.t Kmixer1.outlet.vdot tank.outlet.vdot tank.reserve.v (m3) m3semixer1.outlet.x(C4H10) tank.outlet.x(C4H10) tank.reserve.x(C4H10) nonemixer1.outlet.x(C5H12) tank.outlet.x(C5H12) tank.reserve.x(C5H12) nonemixer1.outlet.x(C6H14) tank.outlet.x(C6H14) tank.reserve.x(C6H14) nonemixer1.outlet.x(C7H16) tank.outlet.x(C7H16) tank.reserve.x(C7H16) nonemixer1.outlet.x(C8H18) tank.outlet.x(C8H18) tank.reserve.x(C8H18) nonemixer1.outlet.y(C4H10) tank.outlet.y(C4H10) tank.reserve.y(C4H10) nonemixer1.outlet.y(C5H12) tank.outlet.y(C5H12) tank.reserve.y(C5H12) nonemixer1.outlet.y(C6H14) tank.outlet.y(C6H14) tank.reserve.y(C6H14) nonemixer1.outlet.y(C7H16) tank.outlet.y(C7H16) tank.reserve.y(C7H16) nonemixer1.outlet.y(C8H18) tank.outlet.y(C8H18) tank.reserve.y(C8H18) none
174



Table C.6: Partitioning and Preedene Ordering Impliit BlokVariable Eqn #ash.outlet vap.x(C8H18) 203ash.outlet vap.h 214ash.outlet liq.h 195ash.outlet liq.x(C8H18) 192ash.outlet vap.x(C7H16) 191ash.outlet liq.x(C7H16) 199ash.outlet vap.x(C6H14) 190ash.outlet liq.x(C6H14) 198ash.outlet liq.ndot 194ash.outlet vap.x(C4H10) 188ash.outlet vap.ndot 196ash.outlet vap.x(C5H12) 197ash.outlet liq.x(C5H12) 189ash.outlet liq.x(C4H10) 218ash.outlet liq.t 229ash.outlet vap.t 193
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