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tMoving horizon estimation 
onsistently outperforms the Kalman �lter with greater robustnessto both poor initial state guesses and sub-optimal estimator tuning parameters. The only pri
eof improvement is the greater 
omputational expense required to solve the MHE optimization.The 
ontribution in this work is that the tradeo� of greater 
omputational expense is elimi-nated by developing an expli
it solution to the MHE optimization problem. Unlike the impli
itoptimization approa
h, the expli
it solution result is guaranteed in a highly predi
table 
ompu-tational time that is minimal even for large-s
ale nonlinear models with long time horizons. Forstate estimation problems with inequality 
onstraints, an iterative layer is added to determinethe set of a
tive 
onstraints. An augmented obje
tive fun
tion monitors the solution progressionto guarantee 
onvergen
e.KeywordsMoving Horizon Estimation, Kalman Filter, State and Parameter EstimationIntrodu
tionEstimation of a model states and parameters from pro-
ess measurements bridges the gap between the theo-reti
al realm of mathemati
al models and the realisti
pro
esses they represent. Many approa
hes have beensuggested to a

omplish the re
on
iliation of model andpro
ess, with a range of tradeo�s (Soroush, 1998). Gen-erally, the tradeo�s are 
entered on model form and size,
omputational expense, ease of implementation, robust-ness to pro
ess/model mismat
h, and 
ultural fa
torssu
h as understanding and a

eptan
e.The re
on
iliation pro
ess is an important pre
ursorto many other a
tivities su
h as fault dete
tion, prod-u
t quality assuran
e, manual 
ontrol, and model-based
ontrol. These model-based te
hniques need an a

urateestimate of the 
urrent system variables to perform well.Without a

urate state estimation, many of these toolswould perform poorly or fail.Previous WorkFor dynami
 nonlinear model-based 
ontrol of 
hemi
alpro
esses, the most popular feedba
k strategies in pra
-ti
e are the extended Kalman �lter and a 
onstant orintegrating output disturban
e variable (Qin and Badg-�edgar�
he.utexas.edu

well, 2000). The Kalman �lter is optimal for un
on-strained, linear systems subje
t to known normally dis-tributed state and measurement noise (Haseltine andRawlings, 2004). The Kalman �lter sequentially updatesstate estimates based on the magnitude of the error be-tween the measurements and the model variables. TheKalman �lter is simply an optimal proportional-only �l-ter that proportionally 
orre
ts state values from the de-viation of model values from measurements. The ex-tended Kalman �lter is an extension of the Kalman �l-ter, developed for un
onstrained, nonlinear DAE systems(Be
erra et al., 2001). By linearizing the model aboutupdated state estimates, the extended Kalman �lter isable to predi
t the nonlinear state evolution, althoughsub-optimally (Haseltine and Rawlings, 2004). Va
hhaniet al. (2005) proposed EKF with 
onstraints, althoughthe augmentation strategy for parameter estimation isstill a limitation.A number of 
riti
al evaluations have shown that mov-ing horizon estimation (MHE) 
onsistently outperformsthe extended Kalman �lter (Haseltine and Rawlings,2004) (Jang et al., 1986) (Robertson and Lee, 1995).State estimation of real systems may in
lude 
hang-ing measurement frequen
ies, multiple measurementsat di�erent sampling frequen
ies, measurement delay,large-s
ale nonlinear models, and 
onstraints. MHE is
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it Solution 2an optimization-based approa
h that is 
exible to dealwith these 
ompli
ations (Mi
halska and Mayne, 1995)(Moraal and Grizzle, 1995). MHE is also known as non-linear dynami
 data re
on
iliation (NLDDR) (Liebmanet al., 1992) (Soderstrom et al., 2000). MHE is a 
om-putationally tra
table approximation to the optimal in-�nite horizon estimation (Rao et al., 2001). All of the
hallenges of real system state estimation are naturallyhandled in the MHE framework. An estimate of the
urrent states is typi
ally obtained by solving a leastsquares optimization problem subje
t to the model 
on-straints and inequality 
onstraints that represent boundson variables or equations. Most of the published work
enters around di�erent te
hniques that solve the sameminimization problem. Jang et al. (1986) iteratively lin-earized the nonlinear ODE model about a referen
e tra-je
tory by 
omputing sensitivities. Liebman et al. (1992)�rst proposed a simultaneous NLP solution approa
hwhere the di�erential equations are transformed into al-gebrai
 equations through orthogonal 
ollo
ation on �-nite elements. Ramamurthi et al. (1993) proposed a twostep pro
ess to impli
itly estimate the input disturban
eswhile expli
itly 
al
ulating state estimates. Albuquerqueand Biegler (1995) exploited the MHE SQP stru
ture toa
hieve linear 
omputational s
aling with horizon lengthfor ODE models. They later extended the te
hnique toDAE systems (Albuquerque and Biegler, 1997).A number of enhan
ements have extended the theo-reti
al basis and fun
tionality of MHE. (M
Brayer andEdgar, 1995) proposed a bias dete
tion and estimationstrategy to improve state estimation. O�set free estima-tion and 
ontrol is a
hieved by augmenting the modelwith a number of disturban
e variables equal to the num-ber of measurements (Muske and Badgwell, 2002) (Pan-no

hia, 2003). Rao et al. (2001) derived suÆ
ient 
ondi-tions for MHE with linear systems subje
t to 
onstraints.They also suggested an in�nite horizon approximation byweighting previous state estimates in the least squaresproblem.Moving Horizon Estimation Problem For-mulationThe MHE optimization is typi
ally a minimization of aleast squares obje
tive fun
tion to allign the model withmeasured values.min J = kYs � Ymk2Qys:t: 0 = f( _x; x; u; p)ys = g(x; u; p)a � h(x; p) � b (1)where J is the obje
tive fun
tion value, Ys is a ve
torof measurements at all nodes, Ym is a ve
tor of modelvalues at the sampling times, Qy is the inverse of themeasurement 
ovarian
e, f is a ve
tor of model equation

residuals, x represents the model states, u is the modelinputs, p is the model parameters, ys is a ve
tor of mea-surements, g is an output fun
tion, h is an inequality
onstraint fun
tion, and a and b are lower and upperlimits, respe
tively. Sensitivities of the initial 
onditionsare 
omputed to dis
retize the nonlinear model. In pra
-ti
e, this dis
retization step is the most 
omputationallyexpensive part of the MHE 
al
ulation. For this study,it is assumed that the dis
rete model is freely available.The ve
tors ym and ys are su

essively sta
ked to formYm and Ys where the horizon length is n.Ym = 264 ym;0...ym;n 375 ; Ys = 264 ys;0...ys;n 375 (2)An in�nite horizon approximation is added by in
orpo-rating a penalty on the deviation from previous modelestimates. This penalty is added by augmenting the ob-je
tive fun
tion with the least squares 
ontribution ofprevious model estimates X̂m, weighted with a forget-ting fa
tor �. Disturban
e variables (shown here as in-put disturban
es), d, are in
luded as state variables toa
hieve o�set free estimation and 
ontrol. The nonlin-ear inequality 
onstraints are simpli�ed by de�ning newstates zk = h(xk; pk) and imposing inequality 
onstraintson zk.min J = kXs �Xmk2Qx + � 


X̂m �Xm


2s:t: 24 xdp 35k+1 = 24 A B P0 I 00 0 I 35k 24 xdp 35k + 24 B00 35k ukys;k = � C 0 0 �k 24 xdp 35ka � zk � b (3)The ve
tors X̂m and Xm are sta
ked model ve
tors x̂mand xm. Also, Xs is 
onstru
ted from the measurementsand Qx;k = �CTk Qy;kCk�.Xm = 264 xm;0...xm;n 375 ; X̂m = 264 x̂0...̂xn 375 (4)
Xs = 264 �CT0 C0�� CT0 (ys;0 �D0u0)...�CTn Cn�� CTn (ys;n �Dnun) 375 (5)Solution of this optimization problem is typi
ally a

om-plished with an impli
it solution te
hnique. The nextse
tion develops an expli
it solution to this problem.
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it Solution 3The Expli
it MHE SolutionFor simpli
ity of the derivation, the augmented state ma-trix is redu
ed to a generi
 linear time-varying form ofxk+1 = Akxk + Bkuk and yk = Ckxk +Dkuk. All vari-ables are in deviation form although not expli
itly indi-
ated. The model evolution is a unique fun
tion of theinitial states.!k = k�1Qj=0Aj  k = kPj=1 �j�1Qi=1 Ai�k�j�Bk�juk�j
 = 26664 I!1...!n�1 37775 	 = 26664 0 1... n�1 37775Xm = 
x0 +	 (6)The equations of Xm and Ym are substituted into theobje
tive fun
tion making it a unique fun
tion of x0. Theexpli
it solution to the minimization problem is obtainedby di�erentiating the obje
tive fun
tion with respe
t tox0, setting the di�erentiated fun
tion equal to zero, andalgebrai
ally manipulating the equation to solve for theestimated x0 (x̂0) expli
itly.x̂0 = T�1 �
T (QxXs + �Xm � (Qx + �I)	)�with T = 
T (Qx + �I) 
 (7)The expli
it solution 
an be 
al
ulated when the inverseof T exists. T�1 exists when previous estimates are usedto approximate the in�nite horizon solution (� > 0). Tis not invertible when the system is unobservable and� = 0. This property is 
onsistent with the fa
t thatan unobservable system possesses extra degrees of free-dom leading to states that 
annot be estimated from theavailable measurements.Inequality Constraints in Expli
it MHEInequality 
onstraints represent physi
al limits on statevariables or 
ombinations of state variables. For ex-ample, mole fra
tions are always between 0 and 1. Ifthe state estimation predi
ted a mole fra
tion outsideof this range, that mole fra
tion would have little phys-i
al meaning and would de
rease the 
redibility of theother results. Inequality 
onstraints add valuable infor-mation to the state estimation. For systems that arepartially unobservable, the inequality 
onstraints boundthe unobservable states, thereby in
reasing the level ofsystem observability. However, an unobservable system
annot be made 
ompletely observable with inequality
onstraints. Additional a
tual measurements are theonly way to make an unobservable system 
ompletelyobservable.As previously mentioned, the inequality 
onstraintsa � h(xk; pk) � b are simpli�ed by 
reating new vari-ables zk and adding zk = h(xk ; pk) to the set of state

equations. Equivalent 
onstraint information is retainedby imposing inequality 
onstraints on zk (a � zk � b).Imposing 
onstraint information leads to a possible in-feasible solution. To over
ome this possibility, the in-equality 
onstraints are ranked a

ording to the orderof importan
e. This ranking is a

omplished by soft-ening the 
onstraints and imposing su

essively higherweighting on more important 
onstraints. Softening the
onstraints guarantees a feasible solution be
ause the in-equality 
onstraints may be violated to meet the stateequality 
onstraints. Softening of the 
onstraints is per-formed in pra
ti
e by adding a penalty to the obje
tivefun
tion for 
onstraint violation.min J + sTaQasa + sTb Qbsbs:t: the state equationssa = a�Xmsb = Xm � b (8)The matri
es Qa and Qb have diagonal elements thatturn on (weighting > 0) or o� (weighting = 0) to 
on-trol the set of a
tive 
onstraints. A MHE problem withinequality 
onstraints is iterative be
ause the �nal set ofa
tive 
onstraints is not known a priori. However, thepredi
tion of states, disturban
es, and parameters is stillan expli
it solution for a known set of a
tive inequality
onstraints. The 
omputational time required to solve aproblem with inequality 
onstraints is variable, equal tothe time required for one expli
it solution multiplied bythe number of iterations. The expli
it solution given aset of a
tive inequality 
onstraints is given in Equation9. x̂0 = T�1 �
T (QxXs + �Xm +Qaa+Qbb�R	)�with R = (Qx + �I +Qa +Qb) and T = �
TR
� (9)Convergen
e is guaranteed by reje
ting iterations thatgive do not produ
e a suÆ
ient de
rease in the obje
-tive fun
tion. There are many strategies to a

omplishguaranteed 
onvergen
e, although some strategies provesuperior to others. Ea
h iteration is a new set of a
tive
onstraints that are predi
ted to give a de
rease in theobje
tive fun
tion. The initial set of a
tive 
onstraintsis determined by 
omputing an un
onstrained MHE so-lution. Weighting is added to Qa and Qb for states thatviolate the inequality 
onstraints. In su

essive itera-tions, weighting is removed for 
onstraints with negativeLagrange multipliers (�a = �2Qasa and �b = 2Qbsb. Ifthe new set of a
tive 
onstraints does not give a suÆ
ientde
rease in the obje
tive fun
tion, the algorithm adjuststhe weights on the a
tive 
onstraints. The parameter �is de
reased until a de
rease in the obje
tive fun
tion isdis
overed. Qa = �Qa;k + (1� �)Qa;k�1Qb = �Qb;k + (1� �)Qb;k�1 (10)
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it Solution 4On
e a de
rease in the obje
tive fun
tion is dis
overed,the optimizer a

epts the iteration and moves on to �nda new sear
h dire
tion (new a
tive set of 
onstraints thatis predi
ted to produ
e a de
rease of the obje
tive fun
-tion). This iteration sequen
e is terminated when thea
tive set does not 
hange from one iteration to the next.Example 1: Flash Column CompositionEstimationThis se
tion shows an example of MHE, but for a phys-i
ally realisti
 pro
ess. The third example is a 17 statemodel of a 
ash 
olumn. The unknown 
ompositions areestimated from the temperature and 
ow rate measure-ments. A 
ash 
olumn is an elementary separation unitthat is fed with a pressurized liquid stream. When theliquid stream enters the 
olumn at a redu
ed pressurethat is below the liquid's vapor pressure, a fra
tion ofthe stream instantaneously 
ashes into the vapor phase.A rigorous nonlinear model of mass, energy, and thermo-dynami
 equilibrium relationships predi
ts the dynami
behavior of the 
olumn. A diagram of the model is pre-sented in Figure 1. The feed tank 
ontains an equimolar
Figure 1: Flow sheet diagram of the 
ash 
olumn model.The 
ash 
olumn 
onsists of a feed tank with unknownspe
ies 
ompositions, a 
ash 
olumn, and vapor and liq-uid outlet streams.hydro
arbon mixture of C4H10, C5H12, C6H14, C7H16,and C8H18. The feed and 
ash temperatures are mea-sured as are the vapor and liquid 
ow rates. Noise isadded to the measurements with mean zero and stan-dard deviation 0.5 for the temperatures and 0.02 for the
ow rates. The obje
tive is to estimate the feed tank
ompositions from the temperature and 
ow rate mea-surements. Figure 2 shows the measurements taken overthe time horizon of interest. The 17 state model has 5di�erential states and 12 algebrai
 states. For full ob-servability, the observability matrix must have rank � 5.For this example, the observability matrix is rank de�-
ient at 3. This analysis reveals that temperature and
ow measurements of a 
ash 
olumn 
an only be used toexa
tly estimate 
ompositions of mixtures with � 3 
om-

Figure 2: The estimated states 
onverge qui
kly to thereal system even though the initial guess is poor.ponents. Alternatively, 2 additional 
ompositions 
ouldbe measured to make the system observable. However,even if the system is not fully observable, some infor-mation 
an be re
onstru
ted that 
an be better than theinitial 
omposition estimates. For this example, the 
om-positions are initially estimated as 0.3 whereas the a
tual
ompositions are all lo
ated at 0.2. Figure 3 shows theestimation of the 
ompositions over a 100 se
ond timehorizon. A forgetting fa
tor of 0.5 on the initial state

Figure 3: Estimated 
ompositions of C4H10, C5H12, andC6H14 approa
h the a
tual values of 0.2. The other two
ompositions of C7H16 and C8H18 deviate signi�
antlybe
ause the system is not fully observable.was used to in
orporate previous estimates. The estima-tion is able to re
onstru
t the 
ompositions of C4H10,C5H12, and C6H14. However, the other two 
omposi-
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it Solution 5tions, C7H16 and C8H18, deviate signi�
antly from the
orre
t solution. This deviation is a result of an unob-servable system.Inequality 
onstraints 
an bound unobservable statesto in
rease the a

ura
y of the estimation. For thisexample, suppose it is known that the 
omposition ofC7H16 should not be above a 
omposition of 0.22. This
onstraint information 
an be in
orporated into the ex-pli
it MHE formulation to provide a better estimate of
ompositions. Figure 4 shows the results of boundingthe C7H16 
omposition. At the �nal solution the a
tive

Figure 4: The 
omposition estimation is greatly im-proved by adding an inequality 
onstraint to C7H16.Even though the system is not fully observable, the 
om-positions 
losely approximate the a
tual values.
onstraint on C7H16 
omposition has a Lagrange mul-tiplier of +0.02, 
on�rming that the 
onstraint shouldbe a
tive. The estimation of the 
omposition is greatlyimproved by in
orporating additional information aboutthe pro
ess in the form of an inequality 
onstraint.Expli
it MHE S
aling with Model SizeAn important property of expli
it MHE is 
omputationals
aling to large-s
ale problems. To test the s
alability tolarge-s
ale problems, a series of 17 state 
ash 
olumnsare 
ombined to form larger models. These su

essivelylarger models are solved for the linear and nonlinear 
aseas seen in Figure 5. A horizon of 50 samples is used forall of the simulations. Both linear and nonlinear expli
itMHE s
ale O(x2) in the number of 
oating point opera-tions, although the linear approa
h s
ales approximately6 times better than the nonlinear method. With 
om-puters that operate in the Gigahertz range, the 
ompu-tational feasibility of expli
it MHE is ex
ellent even forlarge-s
ale problems (10,000+ variables).

Figure 5: Expli
it MHE s
aling to large-s
ale model size.Both the nonlinear and linear approa
hes s
ale O(x2) inthe number of 
oating point operations where x is thenumber of variables in the model.Expli
it MHE S
aling to Long Time HorizonsSome estimation problems require long time horizons(> 100 sampling intervals). Long time horizons maybe ne
essary when the measurements have low signal tonoise ratios, pro
ess measurements o

ur mu
h fasterthan the pro
ess dynami
s, or there is a large di�er-en
e among the sampling frequen
ies of multiple mea-surements. Another reason for a long time horizon is forparameter estimation where a few parameters are esti-mated from a long time period of histori
al data. Figure6 displays the e�e
t of time horizon length on the numberof 
oating point operations for the 17 state 
ash 
olumnmodel. For nonlinear models, the s
aling is quadrati
 forin
reasing horizon length. For linear models the s
alingis linear for in
reasing horizon length. The linear models
aling is parti
ularly amenable for problems that mayrequire a very long time horizon.Example 2: Two State CSTRState estimation of a CSTR is a popular ben
hmark testproblem as found in Albuquerque and Biegler (1995),Haseltine and Rawlings (2004), Jang et al. (1986), Lieb-man et al. (1992), M
Brayer and Edgar (1995), Rama-murthi et al. (1993), and Rao and Rawlings (2002) . Thepurpose of this example is to estimate the 
omputationalload for di�erent estimation strategies.A realisti
 estimation problem was devised to testeMHE for a sequen
e of step responses. The estimatorhorizon is set to 60 minutes and divided into 1 minutesegments. The temperature is sampled every minute and
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Figure 6: Expli
it MHE s
aling to horizon length. Fornonlinear models, s
aling is O(x2) in the number of 
oat-ing point operations. For linear models, s
aling is O(x)where x is the horizon length.

orrupted by normally distributed noise with a standarddeviation of 5 K. Con
entration is sampled every 10 min-utes with a standard deviation of 0.01 molm3 . Plant-modelmismat
h is introdu
ed by using an a
tivation energy ofthe �rst order (A ! B) rea
tion of 8750 Jmol for themodel and 8740 Jmol for the plant. The plant-model mis-mat
h is introdu
ed to 
ause deviation of the estimatedresponse from the a
tual pro
ess. The steady state de-viation 
an be eliminated by in
luding parameter esti-mation or a disturban
e variable. At the �rst samplingtime the plant is assumed to be at steady state witha ja
ket 
ooling temperature of 300 K. At 20 minutesthe 
ooling temperature is set to 290 K, followed by astep to 310 K at 60 minutes. At 70 minutes the 
ool-ing temperature returns to 290 K. Figure 7 shows theresults of the MHE study. The eMHE solution averagedapproximately 22,000 
oating point operations to 
om-pute a solution. The dire
t single shooting optimizationMHE solution averaged approximately 40 million 
oat-ing point operations. The CPU time results from Lieb-man et al. were performed on a 
omputer that deliversapproximately 1 MFLOPS with LINPACK ben
hmarktests (Liebman et al., 1992). He reported in 1992 solutiontimes in the range of 1-100 se
onds giving approximate
omputational e�ort in the range of 1-100 million 
oat-ing point operations for sparse solvers and orthogonal
ollo
ation on �nite elements. The expli
it solution ap-proa
h o�ers improved 
omputational performan
e thatis insensitive to 
onvergen
e toleran
e, poor initial 
on-ditions, strong nonlinearities, and other fa
tors that in-
uen
e the impli
it solution approa
h.

Figure 7: Estimation performan
e of the expli
it solutionMHE (eMHE) versus MHE. The state variable (SV) es-timation is diÆ
ult to distinguish on the graph be
ausethe predi
tions are virtually identi
al for the two ap-proa
hes. The only di�eren
e is the substantially lower
omputational e�ort of eMHE.Con
lusionsMoving horizon estimation has been established as asuperior state estimation te
hnique 
ompared with theextended Kalman �lter. The only established tradeo�is the additional 
omputational expense need to solvethe MHE optimization problem. An expli
it solutionremoves the 
omputational disadvantage for large s
alenonlinear DAE systems that is guaranteed when the sys-tem is fully observable or when previous estimates are in-
orporated into the optimization. Inequality 
onstraintsadd variable bounds that 
an improve the state estima-tion, espe
ially for systems that are not fully observ-able. An iterative approa
h is ne
essary to determinean a
tive set of equality 
onstraints from the full set ofinequality 
onstraints. The iterative solution has guar-anteed 
onvergen
e by sele
ting new a
tive sets that gen-erate a suÆ
ient de
rease in the obje
tive fun
tion. The
omputational expense of the most 
hallenging problemin this paper required 22,000 
oating point operations,only a few mi
ro-se
onds with modern 
omputationalpower. The 
omputational expense of impli
it optimiza-tion MHE is signi�
antly more, with a possibility of 
on-vergen
e failure depending on the initial 
onditions se-le
ted, problem nonlinearity, 
hoi
e of optimizer, et
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