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Abstract

Moving horizon estimation consistently outperforms the Kalman filter with greater robustness
to both poor initial state guesses and sub-optimal estimator tuning parameters. The only price
of improvement is the greater computational expense required to solve the MHE optimization.
The contribution in this work is that the tradeoff of greater computational expense is elimi-
nated by developing an explicit solution to the MHE optimization problem. Unlike the implicit
optimization approach, the explicit solution result is guaranteed in a highly predictable compu-
tational time that is minimal even for large-scale nonlinear models with long time horizons. For
state estimation problems with inequality constraints, an iterative layer is added to determine
the set of active constraints. An augmented objective function monitors the solution progression

to guarantee convergence.
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Introduction

Estimation of a model states and parameters from pro-
cess measurements bridges the gap between the theo-
retical realm of mathematical models and the realistic
processes they represent. Many approaches have been
suggested to accomplish the reconciliation of model and
process, with a range of tradeoffs (Soroush, 1998). Gen-
erally, the tradeoffs are centered on model form and size,
computational expense, ease of implementation, robust-
ness to process/model mismatch, and cultural factors
such as understanding and acceptance.

The reconciliation process is an important precursor
to many other activities such as fault detection, prod-
uct quality assurance, manual control, and model-based
control. These model-based techniques need an accurate
estimate of the current system variables to perform well.
Without accurate state estimation, many of these tools
would perform poorly or fail.

Previous Work

For dynamic nonlinear model-based control of chemical
processes, the most popular feedback strategies in prac-
tice are the extended Kalman filter and a constant or
integrating output disturbance variable (Qin and Badg-
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well, 2000). The Kalman filter is optimal for uncon-
strained, linear systems subject to known normally dis-
tributed state and measurement noise (Haseltine and
Rawlings, 2004). The Kalman filter sequentially updates
state estimates based on the magnitude of the error be-
tween the measurements and the model variables. The
Kalman filter is simply an optimal proportional-only fil-
ter that proportionally corrects state values from the de-
viation of model values from measurements. The ex-
tended Kalman filter is an extension of the Kalman fil-
ter, developed for unconstrained, nonlinear DAE systems
(Becerra et al., 2001). By linearizing the model about
updated state estimates, the extended Kalman filter is
able to predict the nonlinear state evolution, although
sub-optimally (Haseltine and Rawlings, 2004). Vachhani
et al. (2005) proposed EKF with constraints, although
the augmentation strategy for parameter estimation is
still a limitation.

A number of critical evaluations have shown that mov-
ing horizon estimation (MHE) consistently outperforms
the extended Kalman filter (Haseltine and Rawlings,
2004) (Jang et al., 1986) (Robertson and Lee, 1995).
State estimation of real systems may include chang-
ing measurement frequencies, multiple measurements
at different sampling frequencies, measurement delay,
large-scale nonlinear models, and constraints. MHE is
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an optimization-based approach that is flexible to deal
with these complications (Michalska and Mayne, 1995)
(Moraal and Grizzle, 1995). MHE is also known as non-
linear dynamic data reconciliation (NLDDR) (Liebman
et al., 1992) (Soderstrom et al., 2000). MHE is a com-
putationally tractable approximation to the optimal in-
finite horizon estimation (Rao et al., 2001). All of the
challenges of real system state estimation are naturally
handled in the MHE framework. An estimate of the
current states is typically obtained by solving a least
squares optimization problem subject to the model con-
straints and inequality constraints that represent bounds
on variables or equations. Most of the published work
centers around different techniques that solve the same
minimization problem. Jang et al. (1986) iteratively lin-
earized the nonlinear ODE model about a reference tra-
jectory by computing sensitivities. Liebman et al. (1992)
first proposed a simultaneous NLP solution approach
where the differential equations are transformed into al-
gebraic equations through orthogonal collocation on fi-
nite elements. Ramamurthi et al. (1993) proposed a two
step process to implicitly estimate the input disturbances
while explicitly calculating state estimates. Albuquerque
and Biegler (1995) exploited the MHE SQP structure to
achieve linear computational scaling with horizon length
for ODE models. They later extended the technique to
DAE systems (Albuquerque and Biegler, 1997).

A number of enhancements have extended the theo-
retical basis and functionality of MHE. (McBrayer and
Edgar, 1995) proposed a bias detection and estimation
strategy to improve state estimation. Offset free estima-
tion and control is achieved by augmenting the model
with a number of disturbance variables equal to the num-
ber of measurements (Muske and Badgwell, 2002) (Pan-
nocchia, 2003). Rao et al. (2001) derived sufficient condi-
tions for MHE with linear systems subject to constraints.
They also suggested an infinite horizon approximation by
weighting previous state estimates in the least squares
problem.

Moving Horizon Estimation Problem For-
mulation

The MHE optimization is typically a minimization of a
least squares objective function to allign the model with
measured values.

min J = [[V; = Vullg,
st. 0= f(z,z,u,p) (1)
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where .J is the objective function value, Y is a vector
of measurements at all nodes, Y,,, is a vector of model
values at the sampling times, @, is the inverse of the
measurement covariance, f is a vector of model equation

residuals, = represents the model states, u is the model
inputs, p is the model parameters, y; is a vector of mea-
surements, ¢g is an output function, A is an inequality
constraint function, and a and b are lower and upper
limits, respectively. Sensitivities of the initial conditions
are computed to discretize the nonlinear model. In prac-
tice, this discretization step is the most computationally
expensive part of the MHE calculation. For this study,
it is assumed that the discrete model is freely available.
The vectors y,, and y, are successively stacked to form
Y., and Y, where the horizon length is n.

ym,O ys,O

Ym,n Ys.n

An infinite horizon approximation is added by incorpo-
rating a penalty on the deviation from previous model
estimates. This penalty is added by augmenting the ob-
jective function with the least squares contribution of
previous model estimates X'm, weighted with a forget-
ting factor a. Disturbance variables (shown here as in-
put disturbances), d, are included as state variables to
achieve offset free estimation and control. The nonlin-
ear inequality constraints are simplified by defining new
states z, = h(zy, pr) and imposing inequality constraints
on zj.

minJ = | X, — X%, +a|Xm - X ‘2
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The vectors X,,, and X,, are stacked model vectors Z,,
and z,,. Also, X, is constructed from the measurements

and Qg 1 = (Cng,ka)'
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Solution of this optimization problem is typically accom-

plished with an implicit solution technique. The next
section develops an explicit solution to this problem.
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The Explicit MHE Solution

For simplicity of the derivation, the augmented state ma-
trix is reduced to a generic linear time-varying form of
Thy1 = Az + Bruy and yr = Crzp + Dyug. All vari-
ables are in deviation form although not explicitly indi-
cated. The model evolution is a unique function of the
initial states.

k—1 k j—1
wp =TT A4 r =32 {H Aik.j}Bkjukj
j=0

j=1 Li=1
1 0
wy L (6)
Q= ) v = .
Wn—1 1/},17]

The equations of X, and Y}, are substituted into the
objective function making it a unique function of zy. The
explicit solution to the minimization problem is obtained
by differentiating the objective function with respect to
Zg, setting the differentiated function equal to zero, and
algebraically manipulating the equation to solve for the
estimated xg (Zg) explicitly.

Fo =T (27 (QuXs + aXy — (Qu + al) 1)) )
with T = QT (Q, + al)

The explicit solution can be calculated when the inverse
of T exists. T~ exists when previous estimates are used
to approximate the infinite horizon solution (a0 > 0). T'
is not invertible when the system is unobservable and
a = (0. This property is consistent with the fact that
an unobservable system possesses extra degrees of free-
dom leading to states that cannot be estimated from the
available measurements.

Inequality Constraints in Explicit MHE

Inequality constraints represent physical limits on state
variables or combinations of state variables. For ex-
ample, mole fractions are always between 0 and 1. If
the state estimation predicted a mole fraction outside
of this range, that mole fraction would have little phys-
ical meaning and would decrease the credibility of the
other results. Inequality constraints add valuable infor-
mation to the state estimation. For systems that are
partially unobservable, the inequality constraints bound
the unobservable states, thereby increasing the level of
system observability. However, an unobservable system
cannot be made completely observable with inequality
constraints. Additional actual measurements are the
only way to make an unobservable system completely
observable.

As previously mentioned, the inequality constraints
a > h(zg,pr) > b are simplified by creating new vari-
ables zp and adding zy = h(zg,pr) to the set of state

equations. Equivalent constraint information is retained
by imposing inequality constraints on z; (a > zp > b).
Imposing constraint information leads to a possible in-
feasible solution. To overcome this possibility, the in-
equality constraints are ranked according to the order
of importance. This ranking is accomplished by soft-
ening the constraints and imposing successively higher
weighting on more important constraints. Softening the
constraints guarantees a feasible solution because the in-
equality constraints may be violated to meet the state
equality constraints. Softening of the constraints is per-
formed in practice by adding a penalty to the objective
function for constraint violation.

min .J + saTQasa + stQbsb
s.t. thestateequations
So=a—X,,
Sp = Xm —b

(8)

The matrices (), and (), have diagonal elements that
turn on (weighting > 0) or off (weighting = 0) to con-
trol the set of active constraints. A MHE problem with
inequality constraints is iterative because the final set of
active constraints is not known a priori. However, the
prediction of states, disturbances, and parameters is still
an explicit solution for a known set of active inequality
constraints. The computational time required to solve a
problem with inequality constraints is variable, equal to
the time required for one explicit solution multiplied by
the number of iterations. The explicit solution given a
set of active inequality constraints is given in Equation
9.

2o =T (AT (QaXs + aXyy + Qaa + Qpb — RY))
with R = (Qz + al + Q. + Q) and T = (2T RQ)

(9)
Convergence is guaranteed by rejecting iterations that
give do not produce a sufficient decrease in the objec-
tive function. There are many strategies to accomplish
guaranteed convergence, although some strategies prove
superior to others. Each iteration is a new set of active
constraints that are predicted to give a decrease in the
objective function. The initial set of active constraints
is determined by computing an unconstrained MHE so-
lution. Weighting is added to @), and @ for states that
violate the inequality constraints. In successive itera-
tions, weighting is removed for constraints with negative
Lagrange multipliers (A, = —2Q 8, and Ay = 2Qpsp. If
the new set of active constraints does not give a sufficient
decrease in the objective function, the algorithm adjusts
the weights on the active constraints. The parameter
is decreased until a decrease in the objective function is
discovered.

Qa = BQa,k + (1 - B)Qa,kfl

Qb = PQux + (1= B)Qbx—1 (10)
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Once a decrease in the objective function is discovered,
the optimizer accepts the iteration and moves on to find
a new search direction (new active set of constraints that
is predicted to produce a decrease of the objective func-
tion). This iteration sequence is terminated when the
active set does not change from one iteration to the next.

Example 1:
Estimation

Flash Column Composition

This section shows an example of MHE, but for a phys-
ically realistic process. The third example is a 17 state
model of a flash column. The unknown compositions are
estimated from the temperature and flow rate measure-
ments. A flash column is an elementary separation unit
that is fed with a pressurized liquid stream. When the
liquid stream enters the column at a reduced pressure
that is below the liquid’s vapor pressure, a fraction of
the stream instantaneously flashes into the vapor phase.
A rigorous nonlinear model of mass, energy, and thermo-
dynamic equilibrium relationships predicts the dynamic
behavior of the column. A diagram of the model is pre-
sented in Figure 1. The feed tank contains an equimolar

Flash
column

Feed Tank

Figure 1: Flow sheet diagram of the flash column model.
The flash column consists of a feed tank with unknown
species compositions, a flash column, and vapor and lig-
uid outlet streams.

hydrocarbon mixture of C4H10, C5H127 CGH147 C7H167
and CgH,3. The feed and flash temperatures are mea-
sured as are the vapor and liquid flow rates. Noise is
added to the measurements with mean zero and stan-
dard deviation 0.5 for the temperatures and 0.02 for the
flow rates. The objective is to estimate the feed tank
compositions from the temperature and flow rate mea-
surements. Figure 2 shows the measurements taken over
the time horizon of interest. The 17 state model has 5
differential states and 12 algebraic states. For full ob-
servability, the observability matrix must have rank > 5.
For this example, the observability matrix is rank defi-
cient at 3. This analysis reveals that temperature and
flow measurements of a flash column can only be used to
exactly estimate compositions of mixtures with < 3 com-
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374 _ 06} , . Megsured
3 \ - — - Estimated
3 o 1
B 372 > 0.55
o =
* 8
370 L 05
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0
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0.6
343 o
< 3055
8 342 -
o 2 05
i
341 0.45
340 04
0 50 100 0 50 100

Time (sec) Time (sec)

Figure 2: The estimated states converge quickly to the
real system even though the initial guess is poor.

ponents. Alternatively, 2 additional compositions could
be measured to make the system observable. However,
even if the system is not fully observable, some infor-
mation can be reconstructed that can be better than the
initial composition estimates. For this example, the com-
positions are initially estimated as 0.3 whereas the actual
compositions are all located at 0.2. Figure 3 shows the
estimation of the compositions over a 100 second time
horizon. A forgetting factor of 0.5 on the initial state
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Figure 3: Estimated compositions of CyH1g, C5H12, and
Ce¢Hy4 approach the actual values of 0.2. The other two
compositions of CyHy and CgH1g deviate significantly
because the system is not fully observable.

was used to incorporate previous estimates. The estima-
tion is able to reconstruct the compositions of CyHq,
CsH,>, and CgHy4. However, the other two composi-
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tions, C7H16 and CgH;g, deviate significantly from the
correct solution. This deviation is a result of an unob-
servable system.

Inequality constraints can bound unobservable states
to increase the accuracy of the estimation. For this
example, suppose it is known that the composition of
C7H,g should not be above a composition of 0.22. This
constraint information can be incorporated into the ex-
plicit MHE formulation to provide a better estimate of
compositions. Figure 4 shows the results of bounding
the C7Hig composition. At the final solution the active
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Figure 4: The composition estimation is greatly im-
proved by adding an inequality constraint to CyHig.
Even though the system is not fully observable, the com-
positions closely approximate the actual values.

constraint on C7H,¢ composition has a Lagrange mul-
tiplier of +0.02, confirming that the constraint should
be active. The estimation of the composition is greatly
improved by incorporating additional information about
the process in the form of an inequality constraint.

Explicit MHE Scaling with Model Size

An important property of explicit MHE is computational
scaling to large-scale problems. To test the scalability to
large-scale problems, a series of 17 state flash columns
are combined to form larger models. These successively
larger models are solved for the linear and nonlinear case
as seen in Figure 5. A horizon of 50 samples is used for
all of the simulations. Both linear and nonlinear explicit
MHE scale O(x?) in the number of floating point opera-
tions, although the linear approach scales approximately
6 times better than the nonlinear method. With com-
puters that operate in the Gigahertz range, the compu-
tational feasibility of explicit MHE is excellent even for
large-scale problems (10,0004 variables).

900

O Linear Constrained Explicit MHE
800r| O Nonlinear Constrained Explicit MHE

700+
600t
500F  12.4x° + 12991x + 9.4
400}
300t
200}

Floating Point Operations (x105)

2.0x2 + 806x + 9.2
100}

0 500 1000 1500 2000 2500
model size

Figure 5: Explicit MHE scaling to large-scale model size.
Both the nonlinear and linear approaches scale O(z?) in
the number of floating point operations where z is the
number of variables in the model.

Explicit MHE Scaling to Long Time Horizons

Some estimation problems require long time horizons
(> 100 sampling intervals). Long time horizons may
be necessary when the measurements have low signal to
noise ratios, process measurements occur much faster
than the process dynamics, or there is a large differ-
ence among the sampling frequencies of multiple mea-
surements. Another reason for a long time horizon is for
parameter estimation where a few parameters are esti-
mated from a long time period of historical data. Figure
6 displays the effect of time horizon length on the number
of floating point operations for the 17 state flash column
model. For nonlinear models, the scaling is quadratic for
increasing horizon length. For linear models the scaling
is linear for increasing horizon length. The linear model
scaling is particularly amenable for problems that may
require a very long time horizon.

Example 2: Two State CSTR

State estimation of a CSTR is a popular benchmark test
problem as found in Albuquerque and Biegler (1995),
Haseltine and Rawlings (2004), Jang et al. (1986), Lieb-
man et al. (1992), McBrayer and Edgar (1995), Rama-
murthi et al. (1993), and Rao and Rawlings (2002) . The
purpose of this example is to estimate the computational
load for different estimation strategies.

A realistic estimation problem was devised to test
eMHE for a sequence of step responses. The estimator
horizon is set to 60 minutes and divided into 1 minute
segments. The temperature is sampled every minute and
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Figure 6: Explicit MHE scaling to horizon length. For
nonlinear models, scaling is O(z?2) in the number of float-
ing point operations. For linear models, scaling is O(z)
where 2 is the horizon length.

corrupted by normally distributed noise with a standard
deviation of 5 K. Concentration is sampled every 10 min-
utes with a standard deviation of 0.01 Tn—‘y Plant-model
mismatch is introduced by using an activation energy of
the first order (A — B) reaction of 8750 ﬁ for the
model and 8740 ﬁ for the plant. The plant-model mis-
match is introduced to cause deviation of the estimated
response from the actual process. The steady state de-
viation can be eliminated by including parameter esti-
mation or a disturbance variable. At the first sampling
time the plant is assumed to be at steady state with
a jacket cooling temperature of 300 K. At 20 minutes
the cooling temperature is set to 290 K, followed by a
step to 310 K at 60 minutes. At 70 minutes the cool-
ing temperature returns to 290 K. Figure 7 shows the
results of the MHE study. The eMHE solution averaged
approximately 22,000 floating point operations to com-
pute a solution. The direct single shooting optimization
MHE solution averaged approximately 40 million float-
ing point operations. The CPU time results from Lieb-
man et al. were performed on a computer that delivers
approximately 1 MFLOPS with LINPACK benchmark
tests (Liebman et al., 1992). He reported in 1992 solution
times in the range of 1-100 seconds giving approximate
computational effort in the range of 1-100 million float-
ing point operations for sparse solvers and orthogonal
collocation on finite elements. The explicit solution ap-
proach offers improved computational performance that
is insensitive to convergence tolerance, poor initial con-
ditions, strong nonlinearities, and other factors that in-
fluence the implicit solution approach.
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Figure 7: Estimation performance of the explicit solution
MHE (eMHE) versus MHE. The state variable (SV) es-
timation is difficult to distinguish on the graph because
the predictions are virtually identical for the two ap-
proaches. The only difference is the substantially lower
computational effort of eMHE.

Conclusions

Moving horizon estimation has been established as a
superior state estimation technique compared with the
extended Kalman filter. The only established tradeoff
is the additional computational expense need to solve
the MHE optimization problem. An explicit solution
removes the computational disadvantage for large scale
nonlinear DAE systems that is guaranteed when the sys-
tem is fully observable or when previous estimates are in-
corporated into the optimization. Inequality constraints
add variable bounds that can improve the state estima-
tion, especially for systems that are not fully observ-
able. An iterative approach is necessary to determine
an active set of equality constraints from the full set of
inequality constraints. The iterative solution has guar-
anteed convergence by selecting new active sets that gen-
erate a sufficient decrease in the objective function. The
computational expense of the most challenging problem
in this paper required 22,000 floating point operations,
only a few micro-seconds with modern computational
power. The computational expense of implicit optimiza-
tion MHE is significantly more, with a possibility of con-
vergence failure depending on the initial conditions se-
lected, problem nonlinearity, choice of optimizer, etc.

References

Albuquerque, J. and L. Biegler, “Decomposition Algo-
rithms for On-Line Estimation with Nonlinear Mod-



Moving Horizon Estimation - The Explicit Solution 7

”

els,” Computers and Chemical Engineering, 19(10)
1031 1039 (1995).

Albuquerque, J. and L. Biegler, “Decomposition Al-
gorithms for On-Line Estimation with Nonlinear
DAE Models,” Computers and Chemical Engineering,
21(3), 283299 (1997).

Becerra, V., P. Roberts, and G. Griffiths, “Applying
the Extended Kalman Filter to Systems Described by
Nonlinear Differential-Algebraic Equations,” Control
Engineering Practice, 9, 267-281 (2001).

Haseltine, E. and J. Rawlings, “Critical Evaluation of
Extended Kalman Filtering and Moving-Horizon Es-
timation,” Ind. Eng. Chem. Res. (2004).

Jang, S., B. Joseph, and H. Mukai, “Comparison of Two
Approaches to On-Line Parameter and State Estima-
tion of Nonlinear Systems,” Ind. Eng. Chem. Process
Des. Dev., 25, 809-814 (1986).

Liebman, M., T. Edgar, and L. Lasdon, “Efficient data
reconciliation and estimation for dynamic processes
using nonlinear programming techniques,” Computers
and Chemical Engineering, 16, 963 986 (1992).

McBrayer, K. and T. Edgar, “Bias detection and estima-
tion in dynamic data reconciliation,” Journal of Pro-
cess Control, 5(4), 285-289 (1995).

Michalska, H. and D. Mayne, “Moving Horizon Ob-
servers and Observer-Based Control,” IEEE Transac-
tions on Automatic Control, 40(6), 995 1006 (1995).

Moraal, P. and J. Grizzle, “Observer Design for Non-
linear Systems with Discrete-Time Measurements,”
IEEE Transactions on Automatic Control, 40(3), 395
404 (1995).

Muske, K. R. and T. A. Badgwell, “Disturbance Model-
ing for Offset-Free Linear Model Predictive Control,”
Journal of Process Control, 12, 617-632 (2002).

Pannocchia, G., “Robust disturbance modeling for
model predictive control with application to multi-
variable ill-conditioned processes,” Journal of Process
Control, 13(8), 693 701 (2003).

Qin, S. and T. Badgwell, Nonlinear Model Predic-
tive Control, chapter An overview of nonlinear
model predictive control applications, pages 369 392.
Birkhauser Verlag, Boston, MA (2000).

Ramamurthi, Y., P. Sistu, and B. Bequette, “Control-
Relevant Dynamic Data Reconciliation and Parame-

ter Estimation,” Computers and Chemical Engineer-
ing, 17(1), 41 59 (1993).

Rao, C. and J. Rawlings, “Contrained process moni-
toring: Moving-horizon approach,” AIChE Journal,
48(1), 97 109 (2002).

Rao, C., J. Rawlings, and J. Lee, “Constrained linear
state estimation - a moving horizon approach,” Auto-
matica, 37, 1619 1628 (2001).

Robertson, D. and J. Lee, “A Least Squares Formula-
tion for State Estimation,” Journal of Process Control,
5(4), 291-299 (1995).

Soderstrom, T., T. Edgar, L. Russo, and R. Young, “In-
dustrial Application of a Large-Scale Dynamic Data
Reconciliation Strategy,” Industrial and FEngineering
Chemistry Research, 39, 1683-1693 (2000).

Soroush, M., “State and parameter estimations and
their applications in process control,” Computers and
Chemical Engineering, 23, 229 245 (1998).

Vachhani, P., R. Rengaswamy, V. Gangwal, and
S. Narasimhan, “Recursive estimation in constrained
nonlinear dynamical systems,” AIChE Journal, 51(3),
946 959 (2005).



