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Abstract

Linear models are applied in many applications of industrial Advanced Pro-
cess Control (APC) and a large user base of control engineers and consultants
has grown to deploy and sustain these applications. Although project efficiency
is increasing and implementation time is decreasing, there remains an art of
applying linear Model Predictive Control (MPC) applications. This undocu-
mented art is especially employed when the linear technology is extended to
systems that have nonlinear characteristics. This paper describes methods to
apply nonlinear models in adaptive model identification and control. This tuto-
rial overview guides the user through a small multivariable level control problem
that has a number of common characteristics to larger controllers seen in prac-
tice. The overview reveals additional fundamental capabilities by employing
nonlinear models in applications of industrial relevance.

Keywords: advanced process control, differential algebraic equations, model
predictive control, dynamic parameter estimation

1. Introduction1

Applications of Model Predictive Control (MPC) are ubiquitous in a number2

of industries such as refining and petrochemicals. Applications are also some-3

what common in chemicals, food manufacture, mining, and other manufacturing4

industries [1]. A majority of the applications employ linear models that are con-5

structed from empirical model identification, however, many of these processes6

have either semi-batch characteristics or nonlinear behavior. To ensure that7

the linear models are applicable over a wider range of operating conditions and8

disturbances, the linear models are retrofitted with elements that approximate9

nonlinear control characteristics. Some of the nonlinear process is captured10

by including gain scheduling, switching between multiple models depending on11

operating conditions, and other logical programming when certain events or12

conditions are present. The art of using linear models to perform nonlinear13
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control has been refined by a number of control experts to extend linear MPC14

to a wider range of applications. While this approach is beneficial in deploying15

applications, maintenance costs are increased and sustainability is decreased16

due to the complexity of the heuristic rules and configuration.17

The purpose of this article is not to detail the best practices with linear18

models, but instead to give practical guidance on using nonlinear models in the19

typical steps of an MPC project. Recent advancements in numerical techniques20

have permitted the direct application of nonlinear models in control applica-21

tions [2], however, many nonlinear MPC applications require advanced training22

to build and sustain an application. Perhaps the one remaining obstacle to fur-23

ther utilization of nonlinear technology is the ease of deploying and sustaining24

applications by practitioners. Up to this point, there remain few actual indus-25

trial applications of control based on nonlinear models. The objective of this26

paper is to reduce the barriers to implementation of nonlinear advanced control27

applications. This is attempted by giving a practical guide and providing details28

on the following topics:29 � nonlinear model development combining empirical and first principles el-30

ements31 � parameter estimation from dynamic data32 � advanced process control with large-scale nonlinear models33 � conversion of differential equations into algebraic equations for efficient34

solution by nonlinear programming solvers35

In addition to the theoretical underpinnings of the techniques, a practical36

application with process data is used to demonstrate model identification and37

control. The application used in this paper is a simple level control system that38

was selected to illustrate the concepts without burdening the reader with model39

complexity. In practice, much larger and more complex systems can be solved40

using these techniques. An illustration of scale-up to larger problems gives an41

indication of the size that can be solved with current computational resources.42

The example problems are demonstrated with the APMonitor software, a freely43

available package for solution of differential and algebraic equation (DAE) sys-44

tems. Specific examples are included in the appendices with commands to re-45

produce the examples in this paper.46

This paper includes a number of innovative techniques for solving large-47

scale control and optimization problems. One novel contribution of this paper48

is modified L1-norm objective forms for estimation and control. These objective49

forms have a number of advantages over traditional squared-error or L2-norm50

objectives that are often reported in the literature. Another contribution is51

the tutorial nature of the article with concise source code that can be used to52

reproduce the results or develop further applications. The target audience is53

the practitioner or researcher interested in applying nonlinear estimation and54

control to challenging applications of industrial relevance.55
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2. Model Identification with Nonlinear Equations56

A critical aspect of any control project is reliable model identification. Linear57

model identification used in practice is typically with Finite Impulse Response58

(FIR) or State Space (SS) forms. Nonlinear model identification also involves59

adjustment of parameters to fit process data. Linear model identification is60

often an empirical approach while nonlinear models have some structure that61

results from material and energy balances, reaction kinetic mechanisms, or other62

pre-defined model structure. As a result of the model structure, there are fewer63

parameters that need to be adjusted to fit the process response. Model struc-64

ture may also include constraints such as fixed gain ratios, zero lower limits on65

compositions, or other bounds that reflect physical realism.66

Along with model form, the form of the identification objective function is67

important to ensure desirable results. The most common objective form is the68

least squares form: (ymodel − ymeas)
2

(see Equation 1). Although intuitive and69

simple to implement, the squared error form has a number of challenges such as70

sensitivity to bad data or outliers. The sensitivity to outliers is exacerbated by71

the squared error objective, commonly proposed for dynamic data reconciliation72

[3] [4] [5] [6] [7].73

Table 1 details the equations of the typical squared error norm and the novel74

L1-norm objective. A new form of the identification objective improves some75

of the problems with the L2 form. The L1-norm formulation in Equation 2 is76

less sensitive to data outliers and better rejects measurement noise. The form77

is similar to an absolute value function but is instead solved with inequality78

constraints and slack variables. The absolute value operator is not continuously79

differentiable which can cause convergence problems for Nonlinear Programming80

(NLP) solvers. On the other hand, the L1-norm slack variables and inequalities81

create an objective function that is smooth and continuously differentiable.82

Other challenges in aligning the model to measured values (data reconcili-83

ation) include lack of data diversity to obtain certain constants or co-linearity84

of parameters. The sensitivity of parameters to the objective function can help85

guide which parameters have a significant effect on the outcome [8]. One so-86

lution to automatically eliminate parameters with little sensitivity to objective87

is to impose a small penalty on parameter movement from a nominal value88

[9]. This approach automatically prevents unnecessary movement of parameter89

values that have little effect on the results of the parameter estimation. Histor-90

ically, most of the techniques for parameter estimability rely on steady-state or91

statistical analysis of linearized systems. The approach in this article extends92

the linear or steady-state analysis to dynamic and nonlinear systems.93

3. Application: Quadruple Tank Level Control94

A quadruple tank process shown in Figure 1 has been the subject of the-95

oretical [10] and practical demonstrations [11] [12] [13] [14] of a multivariable96

and highly coupled system [12]. The four tank process has also been a test97

application for application of decentralized and coordinated control techniques98
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Table 1: Estimation: Two Forms for Dynamic Data Reconciliation

Estimation with a Squared Error Objective (Most Common)

min
d

Φ = (yx − ym)
T

Wm (yx − ym) . . . + (∆d)
T

c∆d

. . . + (ym − ŷm)
T

Wp (ym − ŷm)
s.t. 0 = f(ẋ, x, u, p, d)

0 = g(yx, x, u, d)
a ≥ h(x, u, d) ≥ b

(1)

Estimation with an L1-norm Objective (Better Outlier Rejection)

min
d

Φ = wT
m (eU − eL) + wT

p (cU + cL) + (∆d)
T

c∆d

s.t. 0 = f(ẋ, x, u, p, d)
0 = g(yx, x, u, d)
a ≥ h(x, u, d) ≥ b

eU ≥ yx − yU

eL ≥ yL − yx

cU ≥ yx − ŷm

cL ≥ ŷm − yx

eU , eL, cU , cL ≥ 0
(2)

Nomenclature for Equations 1 and 2

Φ objective function

yx measurements (ys,0, . . . , ys,n)
T

ym model values (ym,0, . . . , ym,n)
T

ŷm prior model values (ŷm,0, . . . , ŷm,n)T

wm, Wm penalty outside measurement dead-band
wp, Wp penalty from the prior solution
c∆d penalty from the prior disturbance values
f equation residuals
x states
u inputs
d parameters or unmeasured disturbances
∆d change in parameters
g output function
h inequality constraints
a lower limits
b upper limits
eU slack variable above the measurement dead-band
eL slack variable below the measurement dead-band
cU slack variable above the previous value
cL slack variable below the previous value
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[15] [16]. A number of other interesting characteristics of this process include99

configurations that cause the system to go unstable. This can be observed by100

showing that there are right-hand plane (RHP) zeros. Another challenge is the101

nonlinear tendency of the system. For example, this can be characterized by102

variable gains of the manipulated variables (MVs) to the controlled variables103

(CVs).104

Figure 1: Diagram of the quadruple tank process. Pump 1 supplies tanks 1 and 4 while pump
2 supplies tanks 2 and 3.

The four tank process has two pumps that are adjusted with variable voltage105

to pump 1 (v1) and pump 2 (v2)). A fraction of water from pump 1 is diverted106

to tank 1 proportional to γ1 and to tank 4 proportional to (1 − γ1). Similarly,107

a fraction of water from pump 2 is diverted to tank 2 proportional to γ2 and108

to tank 3 proportional to (1 − γ2). The valves that determine γ1 and γ2 are109

manually adjusted previous to the experiment and are held constant through-110

out a particular period of data collection. All tanks are gravity drained and tank111

3 outlet enters tank 1. Tank 4 outlet enters tank 2, creating a coupled system112

of manipulated and controlled variables. For (γ1 + γ2) ∈ (0, 1), the linearized113
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system has no RHP zeros with for (γ1 + γ2) ∈ (1, 2), the linearized system has114

one RHP zero [10]. A RHP zero indicates that there may either be overshoot115

or an inverse response to a step change in the manipulated variable.116

A combination of material balances and Bournoulli’s law yields the process117

model for the four tank process as shown in Equation 3. The equations are also118

displayed in Appendix A in the APMonitor Modeling Language.119

qa = kmv1 + kb

qb = kmv2 + kb

q1,in = γ1qa + q3,out

q2,in = γ2qb + q4,out

q3,in = (1 − γ2) qb

q4,in = (1 − γ1) qa

q1,out = c1

√
2gh1

q2,out = c2

√
2gh2

q3,out = c3

√
2gh3

q4,out = c4

√
2gh4

A1
∂h1

∂t
= q1,in − q1out

A2
∂h2

∂t
= q2,in − q2out

A3
∂h3

∂t
= q3,in − q3out

A4
∂h4

∂t
= q4,in − q4out

(3)

where120

γ1 split factor for tanks 1 and 4
γ2 split factor for tanks 2 and 3
ci outflow factor for tank i
km valve linearization slope
kb valve linearization intercept
qa flow from pump 1
qb flow from pump 2
qi,in inlet flow to tank i

qi,out outlet flow from tank i

Ai cross-sectional area of tank i

hi height of liquid in tank i

121

The process model is nonlinear because the outlet flow is proportional to the122

square root of the liquid level. In this experiment, tanks 1 and 3 and tanks 2123

and 4 have the same outlet diameter making c1 = c3 and c2 = c4. Additionally,124

tanks 1 and 3 have a cross-sectional area of 28cm2 while tanks 2 and 4 have a125

cross-sectional area of 32cm2. Unknown parameters include γ1, γ2, c1,3, c2,4,126

km, and kb. The unknown parameters are determined from dynamic data.127

3.1. Parameter Estimation from Dynamic Data128

Pseudo-random binary signals (PRBS) are a popular technique to generate129

linear plant response models from data [17]. This section demonstrates that130

PRBS-generated data can be used to determine optimal parameters for nonlin-131

ear dynamic models as well. Another technique for fitting model parameters to132
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process data is the use of multiple steady-state data sets [18]. Control engineers133

identify steady-state periods that cover the major process operating regions of134

interest. One of the drawbacks to fitting a model with steady-state data is135

that dynamic parameters cannot be fit from the data. Dynamic parameters136

are those values that are multiplied by the derivatives with respect to time in137

the equations. In the case of a linear first order system
(

τ ∂y
∂t

= −y + Ku
)

the138

dynamic parameter is τ . However, process time constants can typically be es-139

timated from process fundamentals such as vessel holdups and flow rates. In140

many cases, the time constants can be approximated reasonably well. However,141

using only steady-state data for fitting parameters can limit the observability of142

certain parameters that can only be determined with dynamic data. If nonlinear143

MPC is to be used to the full potential, dynamic data must be used to fit the144

models.145

Using dynamic data to fit nonlinear dynamic models has a number of chal-146

lenges. One of the challenges is that the data reconciliation problem can be147

very large. The data reconciliation problem is large because an instance of the148

model must be calculated at every time instant where a measurement is avail-149

able. Using the simultaneous optimization of model and objective function, the150

number of model states at a particular time is multiplied by the number of time151

steps.152

3.2. Quadruple Tank Parameter Estimation153

For the quadruple tank process the model has only 14 differential or algebraic154

states. When calculated over the PRBS data horizon the resulting optimiza-155

tion problem has 5766 to 11,526 variables, depending on the objective function156

form. There are no differential states in the optimization problem due to the157

orthogonal collocation transformation (see Section 5). Orthogonal collocation158

on finite elements is one of the methods to convert DAE systems into a Nonlin-159

ear Programming (NLP) problem [19]. This is accomplished by approximating160

time derivatives of the DAE system as algebraic relationships. Figure 2 shows161

the results of the reconciliation to the PRBS-generated data.162

Only levels for tanks 1 and 2 are measured as shown in Figure 2. For the163

quadruple tank process 6 parameters were estimated, namely γ1, γ2, c1,3, c2,4,164

km, and kb. The optimization problem overview is shown in Table 2 while165

initial and final values of the parameters are displayed in Table 3. An APM166

MATLAB script for configuring and solving this problem is shown in Appendix167

B. The MATLAB script uses the APMonitor Modeling Language [20] model (see168

Appendix A) to create the differential and algebraic (DAE) model. APMonitor169

translates the problem into an NLP and IPOPT, an interior point large-scale170

nonlinear programming solver [21], is used to solve the resulting optimization171

problem. A summary of the optimization problem and the solution is shown in172

Table 2.173

Using different objective function forms resulted in similar parameter es-174

timates and comparable model predictions. As seen in Table 3, the optimal175

values for the parameters were well within the upper and lower constraints.176
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Figure 2: The results of the dynamic parameter estimation using PRBS generated data.

Table 2: Summary of the Dynamic Data Reconciliation

Optimization Problem Overview

Description L1-Norm Squared
Error

Iterations 33 10
CPU Time (2.5 GHz Intel i7 Processor) 32.5 sec 10.3 sec
Number of Variables 11,526 5,766
Number of Equations 11,520 5,760
Degrees of Freedom 6 6
Number of Jacobian Non-zeros 40,312 28,792
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These constraints were set based on knowledge of the process; a violation of177

these constraints would indicate unreasonable parameter values. In this case,178

the L1-Norm optimization problem was roughly twice the size and required 3179

times the amount of CPU time to find a solution. In this case, the increased180

computational time is additional cost associated with improved outlier rejection181

and parameter estimates.182

Table 3: Results of the Dynamic Data Reconciliation

Initial and Final Values of the Estimation Problem

Parameter Initial
Value

Lower
Bound

Upper
Bound

L1-Norm Squared
Error

γ1 0.43 0.20 0.80 0.627 0.585
γ2 0.34 0.20 0.80 0.591 0.548
c1,3 0.071 0.010 0.200 0.0592 0.0630
c2,4 0.057 0.010 0.200 0.0548 0.0582
km 10.0 3.0 20.0 3.543 3.444
kb 0.00 -2.00 2.00 -1.675 -0.810

4. Nonlinear Control and Optimization183

There are many challenges to application of Differential and Algebraic Equa-184

tions (DAEs) directly in nonlinear control and optimization. Enabling advances185

include simultaneous methods [22], decomposition methods [23] [24], efficient186

nonlinear programming solvers [21], improved estimation techniques [25] [26] [27]187

[28], and experience with applications to industrial systems [9] [29]. In particu-188

lar, industrial applications require high service availability, reasonable extrapo-189

lation to operating conditions outside the original training set, and explanatory190

tools that reveal the rationale of the optimization results. Other motivating191

factors include consideration of lost opportunity during application develop-192

ment, sustainability of the solution, and ease of development and maintenance193

by engineers without an advanced training. In many instances non-technical194

challenges such as equipment and base-control reiability, operator training, and195

management support are critical factors in the success of an application [30].196

The most popular objective function form in academia and for industrial197

applications is the squared error or L2-norm objective (see Equation 4). In198

this form, there is a squared penalty for deviation from a setpoint or desired199

trajectory. The squared error objective is simple to implement, has a relatively200

intuitive solution, and is well suited for Quadratic Programming (QP) or Non-201

linear Programming (NLP) solvers.202

An alternative form of the objective function is the L1-norm objective (see203

Equation 5) that has a number of advantages over the squared error form similar204

to those discussed for the estimation case. For control problems, the advantage is205

not in rejection of outliers but in the explicit prioritization of control objectives.206
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The L1-norm simultaneously optimizes multiple objectives in one optimization207

problem as the solver manipulates the degrees of freedom selectively for the208

objective function contributions that have the highest sensitivity. For problems209

that have safety, environmental, economic, and other competing priorities, the210

L1-norm gives the most intuitive form that manages these trade-offs. Table 4211

details the square error and L1-norm objective functions.212

4.1. Nonlinear Control of the Quadruple Tank System213

Returning to the quadruple tank system, the squared error model parameters214

from Section 3.2 are used to update the model. Either the squared-error or the215

L1-norm objective estimation values can be used because of nearly equivalent216

results. Data reconciliation can either be performed once or repeatedly as new217

measurements arrive in a receding horizon approach. As new measurements218

arrive, the model is readjusted to fit the data and continually refine the model219

predictions. These updated parameters can then be used in the MPC application220

to better predict the future response.221

Once the model is updated, nonlinear control calculates the optimal trajec-222

tory of Manipulated Variables (MV). In this case, a future move plan of the223

voltage to the two pumps is calculated and displayed Figure 3. MV moves are224

constrained by change, upper, and lower limits. The change constraints are set225

to limit the amount that the MV can move for each control action step and in226

this case the move limit is set to |∆MV | ≤ 1. With a cycle time of 1 second,227

the rate that the voltage to the pump can change is ±1 V
sec

. The control action228

is also constrained by absolute minimum (MVL = 1) and maximum (MVU = 6)229

limits. The lower limit is reached for the first pump (v1) and remains at the230

lower limit for 30 seconds before settling at the steady state value at 1.41V .231

The upper limit is reached for second pump (v2) within two steps into the hori-232

zon and afterwards settles to a steady state value of 4.58V . This over-shoot233

or under-shoot of manipulated variables is typical for controlled variable (CV)234

tuning that is faster than the natural process time constant. The natural pro-235

cess time constant is the speed of response due to a step change in a process236

input. When requesting a response that is faster than this nominal step change,237

the manipulated variables must over-react to move the process faster. In most238

cases, steady state values of the manipulated variables are independent of the239

controller tuning.240

CV tuning is a critical element to achieving desirable control performance.241

Aggressive CV tuning is shown in this example, giving over- or under-shoot of242

the manipulated variables. For CV tuning that is equal to the natural process243

time constant, there will typically be a step to the new solution. For slower CV244

tuning, the MV ramps to the steady state value.245

There are many types of CV tuning options that are typical in linear or246

nonlinear control applications. In this case, an L1-norm with dead-band is247

demonstrated for the simulated controller. The speed of the CV response is dic-248

tated by an upper and lower first order reference trajectory with time constant249

τc. Only values that are outside this dead-band are penalized in the objective250
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Table 4: Control: Two Objective Forms for Nonlinear Model Predictive Control

Control Squared Error Objective

min
u

Φ = (ym − yt)
T

Wt (ym − yt) . . .

. . . + (ym)
T

cy + (u)
T

cu + (∆u)
T

c∆u

s.t. 0 = f(ẋ, x, u, p, d)
0 = g(yx, x, u, d)
a ≥ h(x, u, d) ≥ b

(4)

Control L1-norm Objective

min
d

Φ = wT
hi (ehi) + wT

lo (elo) . . .

. . . + (ym)T
cy + (u)T

cu + (∆u)T
c∆u

s.t. 0 = f(ẋ, x, u, p, d)
0 = g(yx, x, u, d)
a ≥ h(x, u, d) ≥ b

τc
∂yt,hi

∂t
+ yt,hi = sphi

τc
∂yt,lo

∂t
+ yt,lo = splo

ehi ≥ (ym − yt,hi)
elo ≥ (yt,lo − ym)

(5)

Nomenclature for Equations 4 and 5

Φ objective function

ym model values (ym,0, . . . , ym,n)
T

yt,hi, yt,lo desired trajectory dead-band
whi, wlo penalty outside trajectory dead-band
cy, cu,
c∆u

cost of y, u and ∆u, respectively

f equation residuals
x states
u inputs
d parameters or unmeasured disturbances
g output function
h inequality constraints
a lower limits
b upper limits
τ time constant of desired controlled variable re-

sponse
elo slack variable below the trajectory dead-band
ehi slack variable above the trajectory dead-band
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Figure 3: Optimal solution of the voltage input to the pumps 1 and 2.

function. The form of this controller objective is desirable for minimizing un-251

necessary MV movement to achieve a controller objective. In this form, MV252

movement only occurs if the projected CV response is forecast to deviate from253

a pre-described range. Figures 4 and 5 display the CV response along with the254

upper and lower trajectories that define the control objective.255

Figure 4: Height response in tank 1 and the associated controller objective.

5. Numerical Solution of DAE Systems256

The simultaneous solution of the model equations and objective function257

has a number of advantages over other techniques. Other methods include the258

direct shooting approaches [31] where the objective function and model equa-259

tions are solved separately and iteratively towards an optimal solution. With a260

simultaneous solution of the objective and model equations, there is improved261
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Figure 5: Height response in tank 2 and the associated controller objective.

computational performance with additional degrees of freedom. Another ad-262

vantage with a simultaneous solution is that a general DAE model form can be263

posed in open equation format (see Equation 6).264

0 = f
(

∂x
∂t

, x, y, p, d, u
)

0 = g(x, y, p, d, u)
0 ≤ h(x, y, p, d, u)

(6)

In open equation format, DAE models of index-1 or higher are solved without265

rearrangement. The solution of Equation 6 is determined by the initial state x0,266

a set of parameters p, a trajectory of disturbance values d = (d0,d1,. . . ,dn−1),267

and a sequence of control moves u = (u0,u1,. . . ,un−1). The values of the pa-268

rameters, disturbances, or decision variables (p, d, and u) are discrete values269

over the time horizon to make the problem tractable for numerical solution (e.g.270

Manipulated Variables in Figure 6). On the other hand, integrated variables are271

determined from differential and algebraic equations and generally have a con-272

tinuous profile (e.g. Controlled Variables in Figure 6). One solution approach to273

this dynamic system is the conversion of the DAE system to algebraic equations274

through direct transcription [2]. This technique is also known as orthogonal275

collocation on finite elements [32]. Converting the DAE system to a Nonlinear276

Programming (NLP) problem permits the solution by large-scale solvers [4] [33].277

Additional details of the simultaneous approach are shown in Section 5.1 and278

an example problem in Section 5.2.279

5.1. Derivation of Weighting Matrices for Orthogonal Collocation280

The objective is to determine a matrix M that relates the derivatives to the281

non-derivative values over a horizon at points 1,. . . ,n. In this case, four points282

are shown for the derivation. The initial value, x0, is a fixed initial condition.283





ẋ1

ẋ2

ẋ3



 = M









x1

x2

x3



 −





x0

x0

x0







 (7)
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Figure 6: Dynamic equations are discretized over a time horizon and solved simultaneously.
The solid nodes depict starting and ending locations for local polynomial approximations that
are pieced together over the time horizon. With one internal node for each segment, this
example uses a 2nd order polynomial approximation for each step.

The solution of the differential equations at discrete time points is approximated284

by a Lagrange interpolating polynomial as shown in Equation 8.285

x(t) = A + Bt + Ct2 + Dt3 (8)

Time points for each interval are chosen according to Lobatto quadrature. All286

time points are shifted to a reference time of zero (t0 = 0) and a final time of287

tn = 1. For 3 nodes per horizon step, the one internal node is chosen at t1 = 1
2 .288

An example of internal nodes are displayed in Figure 6 where the horizon is289

broken into multiple intervals of Lobatto quadrature with 3 nodes per horizon290

step (one internal node). In the case of 4 nodes per horizon step, the internal291

values are chosen at t1 = 1
2 −

√

5
10 and t2 = 1

2 +
√

5
10 . With 5 nodes, time values are292

1
2 −

√

21
14 , 1

2 , and 1
2 +

√

21
14 . At 6 nodes, time values are 1

2 −
√

7+2
√

7
42 , 1

2 −
√

7−2
√

7
42 ,293

1
2 +

√
7−2

√

7
42 , and 1

2 +

√
7+2

√

7
42 . In this derivation, a third-order polynomial294

approximates the solution at the four points in the horizon. Increasing the295

number of collocation points increases the corresponding polynomial order. For296

initial value problems, the coefficient A is equal to x0, when the initial time is297

arbitrarily defined as zero. To determine the coefficients B, C, and D, Equation298

8 is differentiated and substituted into Equation 7 to give Equation 9. Note that299

the A coefficient from Equation 8 is cancelled by x0 on the right-hand side of300

Equation 9.301





B + 2Ct1 + 3Dt21
B + 2Ct2 + 3Dt22
B + 2Ct3 + 3Dt23



 = M





Bt + Ct21 + Dt31
Bt + Ct22 + Dt32
Bt + Ct23 + Dt33









1 2t1 3t21
1 2t2 3t22
1 2t3 3t23









B

C

D



 = M





t1 t21 t31
t2 t22 t32
t3 t23 t33









B

C

D





(9)
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Finally, rearranging and solving for M gives the solution shown in Equation 10.302

M =





1 2t1 3t21
1 2t2 3t22
1 2t3 3t23









t1 t21 t31
t2 t22 t32
t3 t23 t33





−1

(10)

The final form that is implemented in practice is shown in Equation 11 by303

inverting M and factoring out the final time tn
(

tnN = M−1
)

). This form304

improves the numerical characteristics of the solution, especially as the time305

step approaches zero (tn → 0).306

tnN





ẋ1

ẋ2

ẋ3



 =









x1

x2

x3



 −





x0

x0

x0







 (11)

The matrices that relate ∂x
∂t

to x are given in Table 5 for intervals with 3 to 6307

nodes.308

5.2. Example Solution by Orthogonal Collocation309

A simultaneous solution demonstrates the application of orthogonal colloca-310

tion. In this case, the first order system τ ∂x
∂t

= −x is solved at 6 points from311

t0 = 0 to tn = 10 using Equation 18. In this case τ = 5 and the initial condition312

is specified at x0 = 1. For this problem, the time points for ∂x
∂t

and x are selected313

as 0, 1.175, 3.574, 6.426, 8.825, and 10. The value of x is specified at t0 = 0314

due to the initial condition. As a first step, equations for ∂x
∂t

are generated in315

Equation 20.316

∂x

∂t
=













ẋ1

ẋ2

ẋ3

ẋ4

ẋ5













= (tnN5x5)
−1

























x1

x2

x3

x4

x5













−













x0

x0

x0

x0

x0

























(20)

Substitution of Equation 20 into the derivatives of the model equation yields317

a linear system of equations as shown in Equation 21.318

τ
∂x

∂t
= − x

τ (tnN5x5)
−1

























x1

x2

x3

x4

x5













−













x0

x0

x0

x0

x0

























= −













x1

x2

x3

x4

x5













(21)

Equation 21 is rearranged and solved with a linear algebra as shown in319

Equation 22.320
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Table 5: Orthogonal Collocation on Finite Elements

Orthogonal Collocation Matrices

tnN2x2

[

ẋ1

ẋ2

]

=

([

x1

x2

]

−
[

x0

x0

])

(12) N2x2 =

[

0.75 −0.25
1.00 0.00

]

(13)

tnN3x3





ẋ1

ẋ2

ẋ3



 =









x1

x2

x3



 −





x0

x0

x0









(14)

N3x3 =





0.436 −0.281 0.121
0.614 0.064 0.046
0.603 0.230 0.167





(15)

tnN4x4









ẋ1

ẋ2

ẋ3

ẋ4









=

















x1

x2

x3

x4









−









x0

x0

x0

x0

















(16)

N4x4 =









0.278 −0.202 0.169 −0.071
0.398 0.069 0.064 −0.031
0.387 0.234 0.278 −0.071
0.389 0.222 0.389 0.000









(17)

tnN5x5













ẋ1

ẋ2

ẋ3

ẋ4

ẋ5













=

























x1

x2

x3

x4

x5













−













x0

x0

x0

x0

x0

























(18)

N5x5 =













0.191 −0.147 0.139 −0.113 0.047
0.276 0.059 0.051 −0.050 0.022
0.267 0.193 0.251 −0.114 0.045
0.269 0.178 0.384 0.032 0.019
0.269 0.181 0.374 0.110 0.067













(19)
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x1

x2

x3

x4

x5













=
(

τ (tnN5x5)
−1

+ I
)

−1

τ (tnN5x5)
−1













x0

x0

x0

x0

x0













=













0.791
0.489
0.277
0.171
0.135













(22)

The explicit solution x(t) = x0e
−

t
τ verifies that the numerical solution results321

are correct.322

6. Conclusions323

This tutorial paper serves as a guide to practitioners in relating the common324

steps typically deployed in linear MPC applications to a comparable procedure325

for nonlinear applications. The application in this paper is the quadruple tank326

process that is a basic example of multivariate modeling and control. As a first327

step, certain parameters of the model are adjusted to fit to PRBS data through328

dynamic data reconciliation. In a next step, the controller is tuned to provide329

desirable control responses for set point tracking and disturbance rejection. For330

both estimation and control cases, alternate squared error and L1-norm error331

forms are compared. While the L1-norm error uses additional variables and332

equations, it adds only linear equality and inequality constraints. As a final333

section of the tutorial, the process of converting differential equations into a set334

of algebraic equations is reviewed. This conversion step is necessary to solve335

the model and objective function simultaneously with NLP solvers. Along with336

the tutorial overview, example MATLAB scripts are given in the Appendix as337

a guide to implement the problems in the text. While this tutorial overview is338

not an exhaustive review of all available techniques or software, it provides a339

case study to advance the use of nonlinear models in control practice.340

Appendix A. Quadruple Tank Model341

The quadruple tank process is represented by 14 differential and algebraic342

equations (DAEs). The following model is expressed in the APMonitor Mod-343

eling Language. This file and others included in the paper are available at344

APMonitor.com.345

346

Model347

Constants348

% g ra v i t a t i o n a l constant (cm/ s ˆ2)349

g = 981350

% tank cross−s e c t i o n a l area (cmˆ2)351

Area [ 1 ] = 28352

Area [ 2 ] = 32353

Area [ 3 ] = 28354

Area [ 4 ] = 32355

% re l a t i o n o f l e v e l to vo l t age measurement (V/cm)356

kc = 0.50357

End Constants358
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359

Parameters360

% re l a t i o n o f input vo l t age to pump f low ra t e (cmˆ3/ sec / V)361

km = 10 . 0 , >=3.0, <=20.0 % s l ope362

kb = 0.0 , >=−20.0, <=20.0 % i n t e r c ep t363

% co r r e c t i o n f a c t o r s to f i t model to r e a l data364

c13 = 0.071 , >0.01 , <=0.2 % out l e t f l ow c o r r e c t i o n s365

c24 = 0.057 , >0.01 , <=0.2 % out l e t f l ow c o r r e c t i o n s366

% f r a c t i o n a l s p l i t to tank 1 vs . tank 4367

gamma [ 1 ] = 0 . 43 , >=0, <=1368

% f r a c t i o n a l s p l i t to tank 2 vs . tank 3369

gamma [ 2 ] = 0 . 34 , >=0, <=1370

% vo l tage to pump A371

v1 = 3 , >=0, <=10 % Volt372

% vo l tage to pump B373

v2 = 3 , >=0, <=10 % Volt374

End Parameters375

376

Variables377

% tank he ight − diameter = 6 cm, max he ight = 20 cm378

h [ 1 ] = 12 . 6 , >=1e−5379

h [ 2 ] = 13 . 0 , >=1e−5380

h [ 3 ] = 4 . 8 , >=1e−5381

h [ 4 ] = 4 . 9 , >=1e−5382

End Variables383

384

Intermediates385

% co r r e c t i o n f a c t o r s386

c [ 1 ] = c13387

c [ 2 ] = c24388

c [ 3 ] = c13389

c [ 4 ] = c24390

% pump f l ows391

qa = v1 * km + kb392

qb = v2 * km + kb393

% i n l e t f l ows from pumps394

q [ 1 ] = gamma [ 1 ] * qa395

q [ 2 ] = gamma [ 2 ] * qb396

q [ 3 ] = (1−gamma [ 2 ] ) * qb397

q [ 4 ] = (1−gamma [ 1 ] ) * qa398

% out l e t f l ows399

out [ 1 : 4 ] = c [ 1 : 4 ] * sq r t (2* g*h [ 1 : 4 ] )400

% t o t a l i n l e t f l ows401

in [ 1 ] = q [ 1 ] + out [ 3 ]402

in [ 2 ] = q [ 2 ] + out [ 4 ]403

in [ 3 ] = q [ 3 ]404

in [ 4 ] = q [ 4 ]405

End Intermediates406

407

Equations408

Area [ 1 : 4 ] * $h [ 1 : 4 ] = in [ 1 : 4 ] − out [ 1 : 4 ] % $ = d i f f e r e n t i a l409

End Equations410

End Model411
412

Appendix B. Parameter Estimation with a PRBS-Generated Signal413

The following MATLAB script details the commands necessary to repro-414

duce the parameter estimation case presented in this paper. The parameter415

estimation uses two elements including the model file (4tank.apm) and a data416

file (prbs360.csv). The model file is shown in Appendix A while the data417

file is available for download from APMonitor.com under the APM MATLAB418

examples section.419

18



420

% Add path to APM MATLAB l i b r a r i e s ( a v a i l a b l e at APMonitor . com)421

addpath ( ' . . / apm ' ) ;422

% Clear MATLAB423

c l e a r a l l ; c l o s e a l l ;424

% Server and Appl i cat ion name425

server = ' http : // xps . apmonitor . com ' ; app = ' prbs ' ;426

% Clear prev ious app l i c a t i o n427

apm ( server , app , ' c l e a r a l l ' ) ;428

% load model and data429

d i sp ( ' Loading model ' ) ; apm_load ( server , app , ' 4 tank . apm ' ) ;430

d i sp ( ' Loading data ' ) ; csv_load ( server , app , ' prbs360 . csv ' ) ;431

% Set up va r i a b l e c l a s s i f i c a t i o n s f o r data f low432

% Feedforwards − measured p roc e s s d i s tu rbanc e s433

apm_info ( server , app , 'FV ' , 'km ' ) ;434

apm_info ( server , app , 'FV ' , 'kb ' ) ;435

apm_info ( server , app , 'FV ' , 'gamma [ 1 ] ' ) ;436

apm_info ( server , app , 'FV ' , 'gamma [ 2 ] ' ) ;437

apm_info ( server , app , 'FV ' , ' c13 ' ) ;438

apm_info ( server , app , 'FV ' , ' c24 ' ) ;439

% State v a r i a b l e s ( f o r d i sp l ay only )440

apm_info ( server , app , 'SV ' , 'h [ 3 ] ' ) ;441

apm_info ( server , app , 'SV ' , 'h [ 4 ] ' ) ;442

% Contro l l ed v a r i a b l e s ( f o r c o n t r o l l e r des ign )443

apm_info ( server , app , 'CV ' , 'h [ 1 ] ' ) ;444

apm_info ( server , app , 'CV ' , 'h [ 2 ] ' ) ;445

% imode (1= ss , 2=mpu, 3=rto , 4=sim , 5=est , 6= c t l )446

apm_option ( server , app , ' n l c . imode ' , 5 ) ;447

% read csv f i l e448

apm_option ( server , app , ' n l c . c sv r e ad ' , 1 ) ;449

% est imated v a r i a b l e e r r o r type (1=L1−norm , 2=Squared Error )450

apm_option ( server , app , ' n l c . ev type ' , 2 ) ;451

% time un i t s (1= sec , 2=min , 3=hrs , 4=days , e t c )452

apm_option ( server , app , ' n l c . c t r l u n i t s ' , 1 ) ;453

apm_option ( server , app , ' n l c . h i s t u n i t s ' , 2 ) ;454

% parameters to ad just455

apm_option ( server , app , 'km. s ta tu s ' , 1 ) ;456

apm_option ( server , app , 'km. lower ' , 3 ) ;457

apm_option ( server , app , 'km. upper ' , 20) ;458

apm_option ( server , app , 'kb . s t a tu s ' , 1 ) ;459

apm_option ( server , app , 'kb . lower ' ,−2) ;460

apm_option ( server , app , 'kb . upper ' , 2 ) ;461

apm_option ( server , app , 'gamma [ 1 ] . s t a tu s ' , 1 ) ;462

apm_option ( server , app , 'gamma [ 1 ] . lower ' , 0 . 2 ) ;463

apm_option ( server , app , 'gamma [ 1 ] . upper ' , 0 . 8 ) ;464

apm_option ( server , app , 'gamma [ 2 ] . s t a tu s ' , 1 ) ;465

apm_option ( server , app , 'gamma [ 2 ] . lower ' , 0 . 2 ) ;466

apm_option ( server , app , 'gamma [ 2 ] . upper ' , 0 . 8 ) ;467

apm_option ( server , app , ' c13 . s t a tu s ' , 1 ) ;468

apm_option ( server , app , ' c13 . lower ' , 0 . 01 ) ;469

apm_option ( server , app , ' c13 . upper ' , 0 . 2 ) ;470

apm_option ( server , app , ' c24 . s t a tu s ' , 1 ) ;471

apm_option ( server , app , ' c24 . lower ' , 0 . 01 ) ;472

apm_option ( server , app , ' c24 . upper ' , 0 . 2 ) ;473

% measured va lues f o r model f i t t i n g474

apm_option ( server , app , 'h [ 1 ] . f s t a t u s ' , 1 ) ;475

apm_option ( server , app , 'h [ 2 ] . f s t a t u s ' , 1 ) ;476

% so l v e r (1=APOPT, 3=IPOPT)477

apm_option ( server , app , ' n l c . s o l v e r ' , 3 ) ;478

% Solve with APMonitor479

apm ( server , app , ' so l v e ' )480

% Open web−viewer481

apm_web ( server , app ) ;482

% Retr i eve s o l u t i o n ( c r e a t e s s o l u t i o n . csv l o c a l l y )483

solution = apm_sol ( server , app ) ;484
485
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Appendix C. Nonlinear Control of the Quadruple Tank Process486

The following MATLAB script details the commands necessary to reproduce487

the nonlinear controller presented in this paper. The model file is the same as488

is shown in Appendix A but updated with updated parameters from Table 3.489

The APM MATLAB libraries are available for download from APMonitor.com.490

491

% Add path to APM l i b r a r i e s492

addpath ( ' . . / apm ' ) ;493

% Clear MATLAB494

c l e a r a l l ; c l o s e a l l ;495

% Server and Appl i cat ion Name496

server = ' http : // xps . apmonitor . com ' ; app = ' n l c ' ;497

% Clear prev ious app l i c a t i o n498

apm ( server , app , ' c l e a r a l l ' ) ;499

% load model with updated parameters500

apm_load ( server , app , ' 4 tank . apm ' ) ;501

% load fu tu r e time hor i zon502

csv_load ( server , app , ' c on t ro l . csv ' ) ;503

% Set up va r i a b l e c l a s s i f i c a t i o n s f o r data f low504

% Feedforwards − measured p roc e s s parameters505

apm_info ( server , app , 'FV ' , 'gamma [ 1 ] ' ) ;506

apm_info ( server , app , 'FV ' , 'gamma [ 2 ] ' ) ;507

% Manipulated v a r i a b l e s ( f o r c o n t r o l l e r des ign )508

apm_info ( server , app , 'MV' , 'v1 ' ) ;509

apm_info ( server , app , 'MV' , 'v2 ' ) ;510

% State v a r i a b l e s ( f o r d i sp l ay only )511

apm_info ( server , app , 'SV ' , 'h [ 3 ] ' ) ;512

apm_info ( server , app , 'SV ' , 'h [ 4 ] ' ) ;513

% Contro l l ed v a r i a b l e s ( f o r c o n t r o l l e r des ign )514

apm_info ( server , app , 'CV ' , 'h [ 1 ] ' ) ;515

apm_info ( server , app , 'CV ' , 'h [ 2 ] ' ) ;516

% steady s t a t e i n i t i a l i z a t i o n517

% imode = 3 , steady s t a t e mode518

apm_option ( server , app , ' n l c . imode ' , 3 ) ;519

apm ( server , app , ' so l v e ' ) ;520

% imode = 6 , swi tch to dynamic c on t ro l521

apm_option ( server , app , ' n l c . imode ' , 6 ) ;522

% nodes = 3 , i n t e r n a l nodes in the c o l l o c a t i o n s t ru c tu r e (2−6)523

apm_option ( server , app , ' n l c . nodes ' , 3 ) ;524

% time un i t s (1= sec , 2=min , e t c )525

apm_option ( server , app , ' n l c . c t r l u n i t s ' , 1 ) ; % c o n t r o l l e r time un i t s526

apm_option ( server , app , ' n l c . h i s t u n i t s ' , 2 ) ; % un i t s f o r t rend ing527

% read csv f i l e528

apm_option ( server , app , ' n l c . c sv r e ad ' , 1 ) ;529

% Manipulated v a r i a b l e tuning530

apm_option ( server , app , ' v1 . s t a tu s ' , 1 ) ; % turn on v1531

apm_option ( server , app , ' v1 . upper ' , 6 ) ; % upper bound532

apm_option ( server , app , ' v1 . lower ' , 1 ) ; % lower bound533

apm_option ( server , app , ' v1 . dmax ' , 1 ) ; % max move per cyc l e534

apm_option ( server , app , ' v1 . dcost ' , 1 ) ; % movement pena l ty535

apm_option ( server , app , ' v2 . s t a tu s ' , 1 ) ; % turn on v2536

apm_option ( server , app , ' v2 . upper ' , 6 ) ; % upper bound537

apm_option ( server , app , ' v2 . lower ' , 1 ) ; % lower bound538

apm_option ( server , app , ' v2 . dmax ' , 1 ) ; % max move per cyc l e539

apm_option ( server , app , ' v2 . dcost ' , 1 ) ; % movement pena l ty540

% Contro l l ed v a r i a b l e tuning541

apm_option ( server , app , 'h [ 1 ] . s t a tu s ' , 1 ) ; % turn on h [ 1 ]542

apm_option ( server , app , 'h [ 1 ] . f s t a t u s ' , 0 ) ; % turn o f f feedback s ta tu s543

apm_option ( server , app , 'h [ 1 ] . sph i ' , 1 0 . 1 ) ; % se tpo in t high544

apm_option ( server , app , 'h [ 1 ] . sp l o ' , 9 . 9 ) ; % se tpo in t low545

apm_option ( server , app , 'h [ 1 ] . tau ' , 10) ; % speed o f re sponse546

apm_option ( server , app , 'h [ 2 ] . s t a tu s ' , 1 ) ; % turn on h [ 2 ]547

apm_option ( server , app , 'h [ 2 ] . f s t a t u s ' , 0 ) ; % turn o f f feedback s ta tu s548

apm_option ( server , app , 'h [ 2 ] . sph i ' , 1 5 . 1 ) ; % se tpo in t high549
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apm_option ( server , app , 'h [ 2 ] . sp l o ' , 1 4 . 9 ) ; % se tpo in t low550

apm_option ( server , app , 'h [ 2 ] . tau ' , 10) ; % speed o f re sponse551

% Set c o n t r o l l e r mode552

apm_option ( server , app , ' n l c . reqc tr lmode ' , 3 ) ;553

% Run APMonitor554

apm ( server , app , ' so l v e ' )555

% Open web−viewer556

apm_web ( server , app ) ;557

% Retr i eve s o l u t i o n ( c r e a t e s s o l u t i o n . csv l o c a l l y )558

solution = apm_sol ( server , app ) ;559
560
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