
Chapter 1
Advanced Process Monitoring

John D. Hedengren

Abstract Measurement technology is advancing in the oil and gas industry. Inno-
vations such as wireless transmitters, reduced cost of measurement technology, and
increased regulations that require active monitoring havethe effect of increasing the
number of available measurements. There is a clear opportunity to distill the recent
flood of measurements into relevant and actionable information. Methods include
a filtered bias update, Implicit Dynamic Feedback, Kalman Filtering, and Moving
Horizon Estimation. The purpose of these techniques is to validate measurements
and align imperfect mathematical models to the actual process. The objective of
this approach is to determine a best estimate of the current state of the process and
any potential disturbances. The opportunity is in earlier detection of disturbances,
process equipment faults, and improved state estimates foroptimization and control.

1.1 Introduction

Over the past 10 years many sectors of the oil and gas industryhave seen a dra-
matic increase in the number and quality of available measurements. To capture
the benefits of increased available measurements, the information must be distilled
into relevant and actionable information. This chapter reviews the current state of
the art of industrial practice in the downstream area with a discussion of potential
opportunities to upstream.

One such opportunity is the increase in the available bandwidth to monitor up-
stream drill string dynamics. Recently, new technology hasbeen deployed to dras-
tically increase the data transmission rate to the Bottom Hole Assembly (BHA) or
along the drill string. Mud pulsing was previously the most common form of com-
munication where 3-45 bits per second could be transmitted from the BHA to the
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surface monitoring system via a series of pressure waves through the inner annular
pipe. In addition to providing a communication pathway, thepumped mud removes
tailings and cools the drill bit. As the depth of drilling increases, the attenuation of
mud pulses increases and mud pulse data is frequently unavailable. Recently, wire-
in-pipe technology, provided by NOV’s IntelliServ, has increased this rate by ap-
proximately 10,000 times (see Figure 1.1) [20]. This increase in information allows
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Fig. 1.1 Best available data transmission rates in upstream drill strings [15] [13]. The recent in-
crease in throughput and bi-directional communication hascreated a new opportunity for better
utilizing the information. Without interpretation, the increased data does not necessarily lead to
increased understanding or value.

two-way communication and presents opportunities for improved monitoring and
control of directional and under-balanced drilling. Similar improvements in mea-
surement technologies are occurring in other parts of the oil and gas industry. This
chapter is concerned with ways to better synthesize the datawith process knowledge
to capture the most benefit. These include a filtered bias update, Implicit Dynamic
Feedback, Kalman Filtering, and Moving Horizon Estimation.

Moving Horizon Estimation (MHE) is an optimization approach that aligns pro-
cess models with available measurements to determine a bestestimate of the current
state of the process and any potential disturbances. The opportunity is in earlier de-
tection of disturbances, process equipment faults, and improved state estimates for
process control. Explicit approaches commonly used in current practice, such as
measured variable bias updating and Kalman filters, are compared to the full op-
timization approach. Formerly, the downside to optimization approaches was the
increased computational load required to solve the problemand the difficulty to ob-
tain optimal tuning. This chapter discusses techniques to overcome both of these
obstacles to enable fast and reliable solutions that are tuned to optimally utilize
measurement information in model predictive applications.
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1.1.1 Time-Scales of Process Monitoring

Measurements of slow or fast processes pose unique challenges. For example the
slow fouling of a heat exchanger [33] or the fast build-up of hydrates [10] are two
examples of processes with different process time constants. With fouling or plug-
ging as one of the top loss categories industry-wide, there are many opportunities for
utilizing measurement technology to monitor the short or long term reliability [16].
In particular, deep-sea pipeline monitoring poses a challenge due to the remote en-
vironment, intermittent weather incidents, and gradual fatigue factors [4]. There is
a desire for improved monitoring of existing and new projects to give insight into
the conditions that lead to failure. Analytical models utilize the data to monitor the
operational integrity for flow assurance and riser integrity.

1.1.1.1 Frequency of Optimization Updates

Before discussing techniques for measurements, it is informative to review the cor-
responding optimization applications. Optimization can occur after a model is syn-
chronized to available process measurements or inputs. Process optimization is used
in the oil and gas industry at various phases of the process lifecycle. As shown in
Figure 1.2, optimization of process design occurs once at the beginning of the life-
cycle. This may include sizing of vessels, valves, etc. Optimization is also used
to guide flow of products with Supply Chain Optimization. This may occur on a
weekly to monthly basis. Dynamic optimization is concernedwith long time periods
as well and covers processes such as defouling, turn-aroundoperations, and produc-
tion scheduling. On an hourly basis Real-Time Optimization(RTO) with large-scale
steady state models is used to determine new targets for plant-wide operations [6]
[17]. On the second to minute time-scales, Model PredictiveControl (MPC) appli-
cations implement the steady-state targets.

Fig. 1.2 Time-scales of optimization technologies applied in oil and gas industry.
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1.1.1.2 Frequency of Model and Measurement Alignment

Just as optimization is applied at varying time-scales, measurement reconciliation is
performed at varying time-scales as well that are analogousto the optimization ap-
proaches (see Figure 1.3). A sufficiently accurate model is required to optimize the

Fig. 1.3 Time-scales of measurement reconciliation applied in the oil and gas industry.

design of a process. During the lifecycle of a facility, thismodeling activity is typ-
ically conducted during the design and start-up of a new process. Data from other
related processes are typically used to generate an initialprocess model which is
then refined after the process unit comes online. Supply chain reconciliation seeks
to align a model to the available inventories, capacities, and constraints [18]. Dy-
namic data reconciliation is used for large-scale dynamic models over long time
horizons [19] [21] [1]. It is used in conjunction with dynamic optimization to align
the model parameters with dynamic data [31]. For RTO applications, a precursor
step is to adjust fouling factors, tray efficiencies, and other parameters with a Model
Parameter Update (MPU) [6]. This MPU may include single or multiple steady-state
snapshots or the process measurements. One restriction is that the process must be
at steady-state for the MPU. Finally, Moving Horizon Estimation (MHE) is a multi-
variable approach for optimal measurement reconciliationin a dynamic model [29].
MHE applications are typically performed on a time-scale faster than that of the
process time constant of interest. It typically executes inthe range of seconds to
minutes and can be used to provide updates to MPC applications.

1.1.2 Overview of Chapter

This chapter is a review of strategies to incorporate measurements in optimization
and monitoring applications. The mathematical models usedin these applications
have unmeasured or unmodeled disturbances that cause the model predictions to
drift from actual values. This realignment of model and measurement can occur
with a variety of techniques ranging from simplified to sophisticated. When the
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application provides information in real-time, the results must be returned within
a specified cycle time. Details on efficient implement of the techniques are also
presented in this chapter with a practical guide that includes example applications.

The focus of this chapter is on measurement reconciliation for fast time pro-
cesses in the range of seconds to minutes. New and established techniques are
discussed that improve the information extraction from themeasurements to
allow fundamental understanding of a process.

1.2 Numerical Solution with Dynamic Models

The approach taken in this chapter is simultaneous solutionof the model equations
and objective function. The general model form consists of nonlinear differential
and algebraic equations (DAEs) in open equation format as shown in Equation 1.1.

0 = f
(

∂x
∂ t ,x,u,d

)

0 = g(y,x,u,d)
0≤ h(x,u,d)

(1.1)

The optimization calculates future states in the horizon that are uniquely specified
by the initial statex0, a given sequence of inputsu = (u0,u1,. . . ,un−1), and a calcu-
lated set of disturbancesd = (d0,d1,. . . ,dn−1). In Figure 1.4,u andd are shown as
discrete values over the horizon. Variables calculated from differential and algebraic
equations are continuous over the time horizon. The solution of the open equation

Fig. 1.4 Dynamic equations are discretized over a time horizon and solved simultaneously.

system is accomplished by converting the differential terms to algebraic equations
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with orthogonal collocation on finite elements [5] or also known as direct transcrip-
tion [7]. Order reduction may assist in understanding the most important states that
dominate the system dynamics [11], but in general the full system can be solved
directly.

The solution of the estimation problem is solved with an implicit solution tech-
nique such as large-scale NLP solvers [19] [2]. Other methods include the direct
shooting approaches [14] or the explicit solution [27] [12]for simplified problems.
The difference between competing implicit solution techniques is how the state
equations are satisfied. Direct single or multiple shootingsolves the state equations
to a convergence tolerance for every iteration. Using orthogonal collocation on fi-
nite elements, the state equations are only satisfied at a converged solution. This
generally leads to a more efficient solution, especially forlarge-scale problems with
many decision variables [9].

1.3 Review of Current Strategies

Advanced Process Control (APC) has produced significant benefits in many of the
oil and gas sectors, including upstream, refining, and chemicals production [26].
However, simpler control applications such as PID controllers are often preferred in
particular situations. Measurement reconciliation also ranges from simple to com-
plex [32]. Simple techniques include filtered bias updates or Implicit Dynamic Feed-
back (IDFTM). More complex strategies include Kalman filtering and Moving Hori-
zon Estimation (MHE). Each of these techniques are discussed below.

1.3.1 Filtered Bias Update

A predominant approach for measurement feedback into many of the popular APC
commercial packages continues to be a filtered bias update [26]. Adding an output
constant or integrating disturbance introduces insignificant computational overhead
and is easy to tune. In the case of a constant disturbance, an additive model biasb is
updated at iterationn with a filter α as shown in Equation 1.2

bn = α (zn − yn)+ (1−α)bn−1, 0≤ α ≤ 1 (1.2)

In this case, the difference between the measured statezn and the predicted model
yn is used to update the offset of a controlled variable initialcondition. With a weak
filter with α near 1, almost all of the measurement value is accepted for updating
the model predicted value. Strong filters that accept less ofthe measured value may
cause the corresponding APC application to respond slowly to unmodeled distur-
bances. The value ofα is typically chosen to balance noise rejection with speed of
reaction.
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Advantages of Filtered Bias Update

1. Incorporated with many popular APC commercial packages
2. Single tuning parameter,α, that balances noise rejection with measurement

tracking speed
3. Insignificant computational overhead

Disadvantages of Filtered Bias Update

1. No capability to estimate parameters or unmeasured disturbances
2. No consideration of multivariable effects
3. Offset is present for integrating disturbances
4. Physical constraints may be violated

In order for the bias to be updated, certain qualifications may also be set to de-
tect bad measurements. These qualifications are commonly upper and lower validity
limits as well as a rate of change validity limit. The validity limits are applied to ei-
ther the raw measurement or the raw bias. If any of the validity limits are violated,
the measurement is rejected and the bias value remains constant. Rate of change va-
lidity limits are frequently set too restrictively for upset conditions, necessitating the
need for operator intervention or automatic application switching to manual control.

1.3.2 Implicit Dynamic Feedback

Implicit Dynamic Feedback (IDFTM) estimates unmeasured disturbances related to
the predictions of the measured state variables. IDFTMpairs a single measurement
with a single unmeasured disturbance variable. The analogyto control is the Single
Input, Single Output (SISO) controllers such as the ubiquitous PID controller. In the
case of IDFTM the unmeasured disturbance variable is adjusted to align the model
with a process measurement. IDFTMconsists of two equations that can be solved
simultaneously with the control problem over a preceding horizon interval.

The IDFTMequations are similar to a proportional integral (PI) controller. The
IDFTM input is the difference between the measured statez and model statey. This
is similar to the PI controller with a setpoint(SP = z) and process variable(PV = y).
The output is an unmeasured disturbance variabled of the model and is analogous
to the PI controller as the manipulated variable. This disturbance variable is ad-
justed proportional to the current and integrated measurement error as shown in
Equation 1.3a. However, Equation 1.3a is not implemented inpractice because of
the integral term. To overcome this, the integral term ’I’ is differentiated and the
IDFTMequations are solved as two separate expressions (see Equation 1.3b).
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d = Kc (z− y)+
Kc

τI

T
∫

t=0

(z− y)dt (1.3a)

d = Kc (z− y)+
Kc

τI
I,

∂ I
∂ t

= (z− y) (1.3b)

The tuning parameters for IDFTMareKc andτI , the same as a PI controller. Using
a large value ofτI and smallKc has the effect of heavily filtering the error term
for feedback. In this case the algorithm will take longer to match the plant. Using
these tuning parameters and knowing the quality and types ofmeasurements enables
trading off ofspeed of tracking the process versusstability concerns.

Advantages of IDFTM

1. Only two differential equations are required to implement IDFTM

2. Similar tuning to a PID controller
3. Two intuitive parameters trade-off speed versus stability

Disadvantages of IDFTM

1. Restricted to one-to-one pairing of a measurement to an unmeasured dis-
turbance

2. Potential wind-up of the integral term
3. One step estimation horizon gives parameter values that may not project

into the future for predictive applications (e.g. MPC)
4. Physical constraints cannot be enforced

IDFTMhas been successfully used for many years to provide on-lineestimation
measurement biases, catalyst activities, kinetic parameter adjustment factors and
heat transfer coefficients. However, IDFTM is limited to a past horizon length of one,
pairing of only one measurement to one disturbance, and the inability to handle
constraints.

1.3.3 Kalman Filter

With a Kalman filter, sequential measurements are used to obtain the state of the
system with a linear model. To obtain this model, Jacobian information from Equa-
tion 1.1 are rearranged into the discrete state space form (see Equation 1.4) whereA,
B, C are constant matrices,u is the manipulated variable vector,x is the state vector,
y is the vector of model outputs. In this case, the subscriptn refers to the time step
at which the model is computed.
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xn+1 = Axn + Bun (1.4a)

yn = Cxn (1.4b)

The horizon of measurements is combined mathematically to generate the sys-
tem’s state at the current time with the Kalman filter as shownin Equation 1.5. The
Kalman filter is divided into 4 subsets of equations. In Equation 1.5a the states ¯x
and covariancēP are predicted in the absence of new measurement information. In
the next step (see Equation 1.5b), the predictions are compared to the measured val-
ues. The innovatioñδ and innovation covarianceS are the comparison of the model
predictions to the measured reality. The innovation covarianceS and covariance pre-
diction P̄ are then used to calculate the Kalman gainK in Equation 1.5c. As a final
step, the new state and covariance estimates are computed inEquation 1.5d. The
Kalman gain relates the fraction of the innovationδ̃ and state prediction ¯x that are
used to construct the new state estimatexn. Similarly, the Kalman gain relates the
predicted covariance prediction to the new covariance prediction. Note that the co-
variance update is independent of the measurement valueszn and the time evolution
is only a function of constant matrices.

x̄ = Axn−1+ Bun

P̄ = APn−1AT + Q
(1.5a)

δ̃ = zn −Cx̄
S = CP̄CT + R

(1.5b)

K = P̄CT S−1 (1.5c)

xn = x̄ + Kδ̃
Pn = (I−KC) P̄

(1.5d)

The Kalman filter is optimal for unconstrained, linear systems subject to known
normally distributed state and measurement noise [8]. The Extended Kalman Filter
(EKF) or Unscented Kalman Filter (UKF) are an attempt to extend these techniques
to nonlinear systems.

Advantages of the Kalman Filter

1. Optimal estimator for linear systems without constraints
2. Solution approach is accomplished through matrix multiplications, not an

iterative optimization solution that is not guaranteed to converge
3. Covariance estimate provides confidence interval for state estimate

Disadvantages of the Kalman Filter

1. Restricted to linearized model state updates
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2. Physical constraints cannot be enforced
3. Can only estimate model states, not model parameters
4. Cannot utilize infrequent measurements or those with variable time delay

EKF is able to predict the nonlinear state evolution by re-linearizing the model
at each time instant. Some effort has been made to incorporate constraints with
EKF although the state augmentation strategy for parameterestimation is still a
limitation [34]. Kalman based techniques suffer from a number of limitations. For
nonlinear or constrained systems, optimization techniques such as MHE are better
suited to providing an estimate of the true system state.

1.3.4 ℓ2-Norm Moving Horizon Estimation

Moving Horizon Estimation (MHE) outperforms the Extended Kalman Filter (EKF)
in the presence of constraints [8]. Recent advances in computational capability
and methods have improved the application of MHE to large-scale industrial sys-
tems [28]. Just as APC has demonstrated significant benefits by considering multi-
variate relationships, MHE is better able to utilize measurements and deliver a more
accurate description of the current state of the process anddisturbances [30].

By using an optimization framework the model and measurement values are
aligned and present detailed information about the system dynamics. This optimiza-
tion framework uses a receding horizon of process measurements. MHE attempts
to optimally estimate the true state of the dynamic system, given a real-time stream
of measurements and a model of the physical process. Offset free estimation and
control is achieved by adding as many disturbance variablesas the number of mea-
surements [22] [25] [24]. The MHE objective function is posed as a squared error
minimization ofℓ2-norm error to reconcile the model with measured values.

Advantages of ℓ2-Norm MHE

1. Least squares is intuitive and simple to implement
2. Model constraints can be added to model to improve the estimation accu-

racy
3. Optimal tuning has been established [23]

Disadvantages of ℓ2-Norm MHE

1. Poor rejection of outliers or infrequent bad values common with real data
2. Difficult to obtain good estimates ofP0, Q, andR
3. Dense tuning matrices impractical for large-scale systems
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4. Iterative optimization solution that may fail to converge in the required
cycle time

In a MHE form amenable to real-time solution, the unmeasureddisturbance vari-
ablesd are adjusted to match the continuous model to discrete measured values [28].

min
d

Φ =
∥

∥

∥

z−y
y

∥

∥

∥

2

Qy
+

∥

∥d− d̂
∥

∥

2
Qd

s.t. 0 = f (ẋ,x,u,d)
0 = g(z,x,u,d)
0≤ h(x,u,d)

(1.6)

in which Φ is the objective function value,z is a vector of measurements at all
nodes in the horizon (z0,. . . ,zn)T , y is a vector of model values at the sampling times
(y0,. . . ,yn)T , Qy is the inverse of the measurement error covariance,f is a vector
of model equation residuals,x represents the model states,u is the vector of model
inputs,d is the vector of model parameters or unmeasured disturbances, d̂ is the
vector of prior unmeasured disturbances,Qd is a matrix for the weight on changes
of disturbance variables,g is an output function, andh is an inequality constraint
function. A graphical representation of the MHEℓ2-norm reconciliation is
shown in Figure 1.5. The objective for this measured value isa quadratic function
with the minimum target between the previous model and measured values. The full

Fig. 1.5 Graphical representation of theℓ2-norm for a single measurement in the horizon.

estimation problem allows violation of the state constraints [30]. State equality con-
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straints are relaxed and violations are penalized in the objective function. Withoutd
the optimization problem found in Equation 1.6 does not allow state transition error
because the state equations are exactly satisfied at a converged solution [3]. This can
be overcome by creating a discontinuous statey and disturbanced with an additional
equationy = x + d for each state subject to state noise. This allows discontinuities
in the y states while preserving the continuity of thex states. However, allowing
state noise is undesirable when employing first principles models. For material and
energy balances, allowing state noise reduces the predictive potential of the model.
Instead, the only decision variables are selected asx0 andd instead of (x0,. . . ,xn, p)
as in the full MHE problem. As the estimation horizon increases, the sensitivity of
the solution atxn to x0 decreases. With a first-order approximation, the value of the
final statexn sensitivity decreases bye−

t
τ whereτ is the approximate process time

constant. For sufficiently long time horizons, it is then only d that has a significant
effect on the current model state. Thus, it is generally unnecessary to estimate the
initial statesx0 as degrees of freedom in the optimization problem.

1.3.5 ℓ1-Norm Moving Horizon Estimation

A new form of MHE has been used in industry for a number of yearsthat overcomes
some of the limitations of theℓ2-norm MHE approach [9]. The objective function
in Equation 1.7 is implemented in a form that is amenable to numerical solution
of large-scale models. The use of an absolute value functionis avoided by instead
solving inequality constraints with slack variables. The slack variables and inequal-
ities create an objective function that is smooth and continuously differentiable as a
requirement for large-scale Nonlinear Programming (NLP) solvers.

min
d

Φ = wT
m (eU − eL)+ wT

p (cU + cL)

s.t. 0 = f (ẋ,x,u, p,d)
0 = g(y,x,u,d)
0≤ h(x,u,d)

eU ≥ y− yU

eL ≥ yL − y
cU ≥ y− ŷ
cL ≥ ŷ− y
eU ,eL,cU ,cL ≥ 0

(1.7)

in which Φ is the objective function value,z is a vector of measurements at all
nodes in the horizon (z0,. . . ,zn)T , y is a vector of model values at the sampling
times (y0,. . . ,yn)T , ŷ is a vector of previous model values at the sampling times
(ŷ0,. . . ,ŷn)T , wm is a vector of weights on the model values outside a measurement
dead-band,wp is a vector of weights to penalize deviation from the prior solution, f
is a vector of model equation residuals,x represents the model states,u is the vector
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of model inputs,d is the vector of model parameters or unmeasured disturbances,
g is an output function,h is an inequality constraint function,eU andeL are slack
variables to penalize model values above and below the measurement dead-band,
andcU andcL are slack variables to penalize model value changes above and below
the previous values. A graphical representation of the MHEℓ1-norm reconciliation
is shown in Figure 1.6. Parameters are only adjusted if the measured value is more
than the half of the dead-band away from the previous model value. Otherwise,
the model is not adjusted because the measurement lies within the region of a flat
objective function. In the case of Figure 1.6, the optimal solution lies at the edge
of the measurement dead-band. This will always be the case for measurements that
are more than half the dead-band distance from the prior model value. The MHE

Fig. 1.6 Graphical representation of the MHEℓ1-norm for a single measurement in the horizon.

ℓ1-norm objective has a number of advantages and challenges compared with other
methods such as the Kalman filter or the MHEℓ2-norm. The next sections details
the trade-offs between the different techniques.

1.3.5.1 MHE ℓ1-Norm Advantages

An important MHEℓ1-norm advantage is less sensitivity to data outliers. This is im-
portant when dealing with industrial data where instruments drift or fail. Gross-error
detection can eliminate a majority of bad data. With MHEℓ1-norm, any data that
isn’t filtered by gross-error detection has less impact on the parameter estimation
and allows improved reliability of the solution. A squared error or ℓ2-norm objec-
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tive is more sensitive and will disproportionately weight values that are far from the
model predictions.

An additional advantage of the MHEℓ1-norm is that only linear equations are
added to the objective function. By not adding additional nonlinear expressions,
the solution is generally easier for numerical solvers to find an optimal solution. In
summary, the MHEℓ1-norm optimization problem with measurement noise dead-
band has a number of advantages over the MHEℓ2 or squared error form of the
objective function:

Advantages of MHE ℓ1-Norm

1. Low sensitivity to data outliers
2. Linear objective function and sparse tuning techniques improve scaling to

large-scale systems
3. Explicit measurement dead-band for improved noise rejection

Disadvantages of MHE ℓ1-Norm

1. Additional equality and inequality constraints and variables
2. No optimal theory on best tuning parameters
3. Requires an iterative solver to reliably converge in a specified cycle time

1.3.5.2 MHE ℓ1-Norm Challenges

The challenges with the MHEℓ1-norm optimization problem include increased
complexity and size. Although the MHEℓ1-norm uses only linear expressions in
formulating an objective function, there are additional slack variables and inequal-
ity expressions, which increases the size of the optimization problem.

Many of the MHEℓ1-norm challenges are due to the increased complexity in
the solution techniques. Commercial and academic softwarehas been developed
to meet this challenge. The software used to generate the results in this paper is
the APMonitor Modeling Language [?]. Filtered bias updating, Kalman filtering,
IDFTM, and MHE are implemented in this web-services platform through MATLAB

or Python.

1.4 Example Application

As an example application, consider the problem of determining the flow of mud
through the return annulus of a drilling pipe. In the return line, there is typically a
flow paddle that rotates proportional to the flow rate. This flow paddle measurement
is not very accurate so additional information such as pit tank level can be used to
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infer the return flow. Additionally, in Managed Pressure Drilling (MPD), a choke
valve is adjusted to maintain well pressure [?] as shown in Figure 1.7. The flow,

Fig. 1.7 Schematic of Managed Pressure Drilling.

pressure, and level measurements have noise, creating random fluctuations around
the true values. The flow through the choke valve can also be estimated from the
valve position and differential pressure across the valve (see Equation 1.8).

τ
∂q
∂ t

+ q = Cv f (l)

√

(

∆Pv

gs

)

(1.8)

For this example, the installed characteristic of the chokevalve is assumed to be
linear (f (l) = l) and the valve is fast acting (τ = 1sec). Both the state and measure-
ment noise are normally distributed with mean values of zero(see Figure 1.8). State
noise has a standard deviationσq = 0.1 and measurement noise has a standard de-
viation σr = 1.0. The Kalman filter updates the state estimates by operatingin two
phases: predict and update. In the prediction phase, the calculated flow is modified
according to the equation that relates flowq to the lift function f (l) and the differ-
ential pressure,∆Pv. For Kalman filters, the equation must first be linearized. With
Extended Kalman filters, the nonlinear equations are re-linearized about the current
state estimate. The other parameters includingτ, Cv, andgs are constants for a par-
ticular valve and fluid. For systems with multiple measurements, the covariance is
used to tune the Kalman filter. In this case with one measurement, the variance is
used instead. This information is essential for optimizingthe update phase yet state
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Fig. 1.8 Noise distributions of state and measurement noise. These distributions are used to opti-
mally tune the estimators.

and measurement covariance information can be difficult to obtain. The results of
the Kalman filter with the upper and lower 95% confidence intervals are shown in
Figure 1.9. In the update phase, a measurement of the flow is taken from the trans-
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Fig. 1.9 The Kalman filter uses two phases, predict and update, to obtain an estimate of the true
flow. During the predict phase, the model calculates an updated flow due to the latest reported
model inputs. During the update phase, part of the flow measurement is used to update the state,
inversely proportional to the variance of the measurement error.

mitter. Because of the noise, this measurement has a certainamount of uncertainty.
The calculated variance from the predict phase determines how much the new mea-
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surement affects the updated prediction. If the model prediction drifts away from the
real flow, the measurements from the flow transmitter should pull the flow estimate
back towards the real flow but not disturb it to the point of introducing all of the
noise from the measurement. This model update could also employ other measure-
ments such as mud pump speed, choke pressure, or supply tank level to infer the
flow rate across the valve. For this simple example, only the valve position and flow
measurements are used to predict the flow with a linear, first-order correlation. Each
of the five techniques discussed in this chapter are comparedover the same data set
as shown in Figure 1.10. The filtered bias update and IDFTMhave been tuned to give
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Fig. 1.10 Actual, measured, and estimated flows for filtered bias update, IDFTM , the Kalman filter,
ℓ2-norm MHE, andℓ1-norm MHE.

equivalent responses. After an initialization period, they also align exactly with the
Kalman filter results because the Kalman gain becomes constant after the estimate
of Pn also converges to a constant value. The first four methods including filtered
bias update, IDFTM, the Kalman filter, and theℓ2-norm MHE (with one horizon
step) can be tuned to give equivalent results for this singlemeasurement case. Ta-
ble 1.1 shows the tuning values that make each of the estimators equivalent for this
example case and in general. In addition to noise, real data often contains outliers.

Table 1.1 Estimator Configuration Values

Estimation Method Example Tuning Equivalent Tuning for OneMeasurement

Filtered Bias Update α = 0.0951 Setα equal to the Kalman GainK
IDFTM Kc = 0.0951e−10,τI = 1e−10 SetKc

τI
equal to the Kalman Gain asKc →

0
Kalman Filter P0 = 0.5,Q = 0.01,R = 1.0 SetP0 = P∞ for equivalency to other meth-

ods during initialization
ℓ2-Norm MHE Horizon = 50,Qy = 100,Qd = 10 For linear systems with quadratic objec-

tive ℓ2-norm MHE reduces to Kalman Fil-
ter [29]

ℓ1-Norm MHE Horizon = 50 Theℓ1-norm MHE does not have equiva-
lent tuning correlations to the other meth-
ods
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Outliers do not typically fit a standard normal distributionbut are instead drastic
deviations from normal variation in the data. Outlier detection and removal is typi-
cally accomplished by setting rate of change limits, upper validity limits, and lower
validity limits. This gross error detection eliminates many but not all of the data
outliers. The effect of data outliers is shown in Figure 1.11with the introduction of
two outliers at cycle 50 and cycle 100. The results with data outliers clearly indi-
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Fig. 1.11 Outlier effect on the filtered bias update, IDFTM , the Kalman filter,ℓ2-norm MHE, and
ℓ1-norm MHE. Two outliers at cycle 50 (measured flow = 100 T/hr) and cycle 100 (measured flow
= 0 T/hr) are introduced to demonstrate the ability of the methods to reject outliers. Theℓ1-norm
MHE is least sensitive to data outliers.

cates that all state estimates, except theℓ1-norm MHE, are significantly affected by
the bad data points. The insensitivity to bad data is a key advantage of theℓ1-norm
MHE approach.

1.5 Concluding Remarks

There is a recent increase in data availability in the oil andgas industry due to
advances in technology, improved networking, and regulatory requirements that re-
quire additional monitoring. When measurements are viewedindividually they pro-
vide insight into the true state of the process, but do not offer a holistic view of
the process. When combined with a process model, the data provides an increased
understanding of unmeasured disturbances or unmeasured states. This alignment of
measurements and model predictions is accomplished with a variety of techniques
ranging from a simple bias update to large-scale optimization approaches. Two op-
timization approaches discussed in this chapter include Moving Horizon Estimation
(MHE) with ℓ1 andℓ2-norms. Efficient solution of the MHE approach is important
for solving large-scale problems of industrial significance. Simultaneous solution of
the objective function and model equations is a popular approach to solving large-
scale models for the data reconciliation.
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Nomenclature

α Filter Factor for Additive Bias
P̄ Predicted Covariance Matrix
x̄ Predicted State Vector
∆Pv Differential Pressure
d̂ Prior Values of the Parameters or Disturbances
ŷ Vector of Prior Model Values at the Sampling Times ( ˆy0,. . . ,ŷn)T

Φ Objective Function Value
σq Standard Deviation of State Noise
σr Standard Deviation of Measurement Noise
τ Time Constant
τI Integral Time Constant for IDFTM

δ̃ Innovation: Comparison of Model to Measurements
A State Transition Matrix
B Control Matrix
b Additive Model Bias
C Observation Matrix
cL Slack Variables to Penalize Model Value Changes Below the Prior Value
cU Slack Variables to Penalize Model Value Changes Above the Prior Value
Cv Constant Relating Valve Position to Flow
d Model Parameter or Disturbance Vector
eL Slack Variables to Penalize Model Values Below the Measurement Dead-

Band
eU Slack Variables to Penalize Model Values Above the Measurement Dead-

Band
f Differential Equation Residuals
f (l) Valve Lift Function
g Output Function Residuals
gs Specific Gravity
h Inequality Constraint Residuals
I Integral Term in IDFTM

K Kalman Gain: Moderate the Measurement Correction

21
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Kc Proportional Tuning Constant for IDFTM

n Sampling Time Index
PV Process Variable
Q Estimated Process Error Covariance
q Flow Rate (T/hr)
Qd Weighting Matrix on Changes of the Disturbance Variables
Qy Inverse of the Measurement Error Covariance
R Estimated Measurement Error Covariance
S Innovation Covariance: Comparison of Real Error to Prediction
SP Setpoint
u Model Input Vector
wm Vector of Weights on the Model Values Outside a Measurement Dead-Band
wp Vector of Weights to Penalize Deviation from the Prior Solution
x Model State Vector
x0 Vector of Initial States
y Vector of Model Values with Corresponding Measurements
z Vector of Measurements
IDFTM Implicit Dynamic Feedback
APC Advanced Process Control
BHA Bottom Hole Assembly
EKF Extended Kalman Filter
MHE Moving Horizon Estimation
MPC Model Predictive Control
MPD Managed Pressure Drilling
MPU Model Parameter Update
NLP Nonlinear Programming
PI Proportional Integral Controller
RTO Real Time Optimization
SISO Single Input-Single Output
UKF Unscented Kalman Filter


