Chapter 1
Advanced Process M onitoring

John D. Hedengren

Abstract Measurement technology is advancing in the oil and gas tngduano-
vations such as wireless transmitters, reduced cost ofureagnt technology, and
increased regulations that require active monitoring llaeeffect of increasing the
number of available measurements. There is a clear oppiyrtardistill the recent
flood of measurements into relevant and actionable infaonaMethods include
a filtered bias update, Implicit Dynamic Feedback, Kalmdtefing, and Moving
Horizon Estimation. The purpose of these techniques is lidata measurements
and align imperfect mathematical models to the actual m®c€he objective of
this approach is to determine a best estimate of the curtatet sf the process and
any potential disturbances. The opportunity is in earletiedtion of disturbances,
process equipment faults, and improved state estimatepfionization and control.

1.1 Introduction

Over the past 10 years many sectors of the oil and gas indoatry seen a dra-
matic increase in the number and quality of available measants. To capture
the benefits of increased available measurements, themiaf@mn must be distilled
into relevant and actionable information. This chapteiews the current state of
the art of industrial practice in the downstream area withsaussion of potential
opportunities to upstream.

One such opportunity is the increase in the available badhithtdo monitor up-
stream drill string dynamics. Recently, new technology lbeen deployed to dras-
tically increase the data transmission rate to the Bottore Assembly (BHA) or
along the drill string. Mud pulsing was previously the mostrenon form of com-
munication where 3-45 bits per second could be transmittma the BHA to the
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surface monitoring system via a series of pressure wavesghrthe inner annular
pipe. In addition to providing a communication pathway, pbenped mud removes
tailings and cools the drill bit. As the depth of drilling ie@ases, the attenuation of
mud pulses increases and mud pulse data is frequently UalateaiRecently, wire-
in-pipe technology, provided by NOV’s IntelliServ, has rieased this rate by ap-
proximately 10,000 times (see Figure 1.1) [20]. This inseeim information allows
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Fig. 1.1 Best available data transmission rates in upstream dhiitigst [15] [13]. The recent in-
crease in throughput and bi-directional communicationdraated a new opportunity for better
utilizing the information. Without interpretation, thecireased data does not necessarily lead to

increased understanding or value.

two-way communication and presents opportunities for mapd monitoring and
control of directional and under-balanced drilling. Saniimprovements in mea-
surement technologies are occurring in other parts of thenol gas industry. This
chapter is concerned with ways to better synthesize thendtitgprocess knowledge
to capture the most benefit. These include a filtered biastapbaplicit Dynamic
Feedback, Kalman Filtering, and Moving Horizon Estimation

Moving Horizon Estimation (MHE) is an optimization apprbabat aligns pro-
cess models with available measurements to determine adigstte of the current
state of the process and any potential disturbances. Thatopity is in earlier de-
tection of disturbances, process equipment faults, andaveg state estimates for
process control. Explicit approaches commonly used ineturpractice, such as
measured variable bias updating and Kalman filters, are aoedpto the full op-
timization approach. Formerly, the downside to optimi@atapproaches was the
increased computational load required to solve the prokledthe difficulty to ob-
tain optimal tuning. This chapter discusses techniqueséocome both of these
obstacles to enable fast and reliable solutions that aredttim optimally utilize
measurement information in model predictive applications
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1.1.1 Time-Scales of Process Monitoring

Measurements of slow or fast processes pose unique chedieRgr example the
slow fouling of a heat exchanger [33] or the fast build-up pfitates [10] are two
examples of processes with different process time corsstavith fouling or plug-
ging as one of the top loss categories industry-wide, therenany opportunities for
utilizing measurement technology to monitor the short agleerm reliability [16].
In particular, deep-sea pipeline monitoring poses a chg#ielue to the remote en-
vironment, intermittent weather incidents, and gradutdjiee factors [4]. There is
a desire for improved monitoring of existing and new prajdot give insight into
the conditions that lead to failure. Analytical modelsiaélthe data to monitor the
operational integrity for flow assurance and riser intggrit

1.1.1.1 Frequency of Optimization Updates

Before discussing techniques for measurements, it isnimtive to review the cor-
responding optimization applications. Optimization caouwr after a model is syn-
chronized to available process measurements or inputseBs@ptimization is used
in the oil and gas industry at various phases of the proctesytile. As shown in
Figure 1.2, optimization of process design occurs oncesabéginning of the life-
cycle. This may include sizing of vessels, valves, etc. @jzttion is also used
to guide flow of products with Supply Chain Optimization. $may occur on a
weekly to monthly basis. Dynamic optimization is concemti long time periods
as well and covers processes such as defouling, turn-acperdtions, and produc-
tion scheduling. On an hourly basis Real-Time Optimiza{lRNTO) with large-scale
steady state models is used to determine new targets far\wlda operations [6]
[17]. On the second to minute time-scales, Model Predic@iwatrol (MPC) appli-
cations implement the steady-state targets.

Process

Supply Chain Design
Dynamic Optimization
, optimization NN
Model Real-Time ptimization
predictive  Optimization NN
Control (N
sec min hourly daily weekly yearly once

Fig. 1.2 Time-scales of optimization technologies applied in od gas industry.
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1.1.1.2 Frequency of Model and M easurement Alignment

Just as optimization is applied at varying time-scales,suesament reconciliation is
performed at varying time-scales as well that are analogmtise optimization ap-
proaches (see Figure 1.3). A sufficiently accurate modeldsired to optimize the

Process

Supply Chain Modeling

Model Dynamic Data Reconciliation
Advanced Parameter Reconciliation _
Process Update (NN
Monitoring [N

——— R
sec min hourly daily weekly yearly once

Fig. 1.3 Time-scales of measurement reconciliation applied in thenal gas industry.

design of a process. During the lifecycle of a facility, tmedeling activity is typ-
ically conducted during the design and start-up of a newgsecData from other
related processes are typically used to generate an ipitiless model which is
then refined after the process unit comes online. Supphnateaionciliation seeks
to align a model to the available inventories, capacities, @onstraints [18]. Dy-
namic data reconciliation is used for large-scale dynaniciets over long time
horizons [19] [21] [1]. It is used in conjunction with dynatroptimization to align
the model parameters with dynamic data [31]. For RTO apiiing, a precursor
step is to adjust fouling factors, tray efficiencies, anceotfarameters with a Model
Parameter Update (MPU) [6]. This MPU may include single oltiple steady-state
snapshots or the process measurements. One restrictiat ihé process must be
at steady-state for the MPU. Finally, Moving Horizon Estiiroa (MHE) is a multi-
variable approach for optimal measurement reconcilidti@amdynamic model [29].
MHE applications are typically performed on a time-scalgtda than that of the
process time constant of interest. It typically executethamrange of seconds to
minutes and can be used to provide updates to MPC applisation

1.1.2 Overview of Chapter

This chapter is a review of strategies to incorporate measents in optimization
and monitoring applications. The mathematical models use¢dese applications
have unmeasured or unmodeled disturbances that cause thed predictions to
drift from actual values. This realignment of model and noeasent can occur
with a variety of techniques ranging from simplified to sagiciated. When the
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application provides information in real-time, the resuttust be returned within
a specified cycle time. Details on efficient implement of teehhiques are also
presented in this chapter with a practical guide that inetueikample applications.

The focus of this chapter is on measurement reconciliatioffefst time pro-
cesses in the range of seconds to minutes. New and estabietimiques are
discussed that improve the information extraction fromrtreasurements to
allow fundamental understanding of a process.

1.2 Numerical Solution with Dynamic Models

The approach taken in this chapter is simultaneous solofitime model equations
and objective function. The general model form consistsaflinear differential
and algebraic equations (DAES) in open equation format asistn Equation 1.1.

f (g—f,x,u,d)
g(y. %, u,d) (1.1)
h

The optimization calculates future states in the horizat #re uniquely specified
by the initial statexy, a given sequence of inputis= (up,Us,. .. U,_1), and a calcu-
lated set of disturbances= (dp,ds,... dn_1). In Figure 1.4u andd are shown as
discrete values over the horizon. Variables calculatem fldferential and algebraic
equations are continuous over the time horizon. The saiufahe open equation

X = measurement

® =model

Differential and algebraic

states e

31 T
~— Pr—
Non-integrated unmeasured T 2
g —
disturbances
Unmeasured disturbances are optimized to
minimize measured/model state mismatch

Current Time

Time

Fig. 1.4 Dynamic equations are discretized over a time horizon alh@gsimultaneously.

system is accomplished by converting the differential tetmalgebraic equations
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with orthogonal collocation on finite elements [5] or als@mim as direct transcrip-
tion [7]. Order reduction may assist in understanding thetrimportant states that
dominate the system dynamics [11], but in general the fidtesy can be solved
directly.

The solution of the estimation problem is solved with an icipsolution tech-
nigue such as large-scale NLP solvers [19] [2]. Other meghindlude the direct
shooting approaches [14] or the explicit solution [27] [1&] simplified problems.
The difference between competing implicit solution tecjugs is how the state
equations are satisfied. Direct single or multiple shoatinlges the state equations
to a convergence tolerance for every iteration. Using ajtin@l collocation on fi-
nite elements, the state equations are only satisfied at\vermed solution. This
generally leads to a more efficient solution, especiallydoge-scale problems with
many decision variables [9].

1.3 Review of Current Strategies

Advanced Process Control (APC) has produced significargfiierin many of the
oil and gas sectors, including upstream, refining, and cta&siproduction [26].
However, simpler control applications such as PID corgrslare often preferred in
particular situations. Measurement reconciliation atsaoges from simple to com-
plex[32]. Simple techniques include filtered bias updatémplicit Dynamic Feed-
back (IDFM). More complex strategies include Kalman filtering and MayHori-
zon Estimation (MHE). Each of these techniques are disdussiew.

1.3.1 Filtered Bias Update

A predominant approach for measurement feedback into mitmeg@opular APC
commercial packages continues to be a filtered bias updéleAading an output
constant or integrating disturbance introduces insigaificomputational overhead
and is easy to tune. In the case of a constant disturbancdgdéiva model bia® is
updated at iteration with a filter a as shown in Equation 1.2

bh=0a(z—yn)+(1-a)bp i, 0<a<l (1.2)

In this case, the difference between the measured ztated the predicted model
Yn is used to update the offset of a controlled variable ing@idition. With a weak
filter with a near 1, almost all of the measurement value is accepted fiatiny

the model predicted value. Strong filters that accept lefiseoimeasured value may
cause the corresponding APC application to respond slawlyntnodeled distur-
bances. The value af is typically chosen to balance noise rejection with speed of
reaction.
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Advantages of Filtered Bias Update

1. Incorporated with many popular APC commercial packages

2. Single tuning parameter, that balances noise rejection with measurement
tracking speed

3. Insignificant computational overhead

Disadvantages of Filtered Bias Update

. No capability to estimate parameters or unmeasuredrietces
. No consideration of multivariable effects

. Offset is present for integrating disturbances

. Physical constraints may be violated

AN PR

In order for the bias to be updated, certain qualificationg also be set to de-
tect bad measurements. These qualifications are commopéy apd lower validity
limits as well as a rate of change validity limit. The validiimits are applied to ei-
ther the raw measurement or the raw bias. If any of the valldtitits are violated,
the measurement is rejected and the bias value remainaotriRate of change va-
lidity limits are frequently set too restrictively for ugsmnditions, necessitating the
need for operator intervention or automatic applicatioricving to manual control.

1.3.2 Implicit Dynamic Feedback

Implicit Dynamic Feedback (IDP') estimates unmeasured disturbances related to
the predictions of the measured state variables."Myrairs a single measurement
with a single unmeasured disturbance variable. The anatoggntrol is the Single
Input, Single Output (SISO) controllers such as the ubayustP1D controller. In the
case of IDEMthe unmeasured disturbance variable is adjusted to aligmtbdel
with a process measurement. I[Bfeonsists of two equations that can be solved
simultaneously with the control problem over a precedingzom interval.

The IDF'Mequations are similar to a proportional integral (P1) colfér. The
IDF™input is the difference between the measured stated model statg. This
is similar to the PI controller with a setpoifP = z) and process variab([®V =y).
The output is an unmeasured disturbance varidhldéthe model and is analogous
to the PI controller as the manipulated variable. This disince variable is ad-
justed proportional to the current and integrated measemn¢m@rror as shown in
Equation 1.3a. However, Equation 1.3a is not implementqutaatice because of
the integral term. To overcome this, the integral teims differentiated and the
IDF™equations are solved as two separate expressions (seédaqLiab).
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T

d:KC(z—y)Jr%c/(z—y)dt (1.3a)
t=0
d:KC(z—y)+$—|°I, %:(z—y) (1.3b)

The tuning parameters for IBMareK. andr;, the same as a Pl controller. Using
a large value ofry and smallK; has the effect of heavily filtering the error term
for feedback. In this case the algorithm will take longer tatoh the plant. Using
these tuning parameters and knowing the quality and typesasurements enables
trading off of speed of tracking the process versusstability concerns.

Advantagesof IDF™

. Only two differential equations are required to implet@&i ™
. Similar tuning to a PID controller
. Two intuitive parameters trade-off speed versus stgbili

W N P

Disadvantages of IDF™

1. Restricted to one-to-one pairing of a measurement to areasured dis-
turbance
2. Potential wind-up of the integral term
3. One step estimation horizon gives parameter values thgtnmat project
into the future for predictive applications (e.g. MPC)
. Physical constraints cannot be enforced

N

IDF™has been successfully used for many years to provide oreftimation
measurement biases, catalyst activities, kinetic pammsatjustment factors and
heat transfer coefficients. However, IBfis limited to a past horizon length of one,
pairing of only one measurement to one disturbance, andnthglity to handle
constraints.

1.3.3 Kalman Filter

With a Kalman filter, sequential measurements are used tirotite state of the
system with a linear model. To obtain this model, Jacobiorimation from Equa-
tion 1.1 are rearranged into the discrete state space femrHguation 1.4) wherk,
B, C are constant matrices,is the manipulated variable vectaris the state vector,
y is the vector of model outputs. In this case, the subsarigefers to the time step
at which the model is computed.
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XrH,]_ - AXn + BUn (14a)

Yn=CXn (1.4b)

The horizon of measurements is combined mathematicallgt@igte the sys-
tem’s state at the current time with the Kalman filter as showiBquation 1.5. The
Kalman filter is divided into 4 subsets of equations. In Eguat.5a the states
and covarianc® are predicted in the absence of new measurement inform#&tion
the next step (see Equation 1.5b), the predictions are cadpathe measured val-
ues. The innovatiod and innovation covarianc®are the comparison of the model
predictions to the measured reality. The innovation caveréSand covariance pre-
diction P are then used to calculate the Kalman g&im Equation 1.5c. As a final
step, the new state and covariance estimates are compubsuation 1.5d. The
Kalman gain relates the fraction of the innovatidmand state predictior that are
used to construct the new state estimateSimilarly, the Kalman gain relates the
predicted covariance prediction to the new covarianceigtied. Note that the co-
variance update is independent of the measurement vajaesl the time evolution
is only a function of constant matrices.

X= AXn_1+ Bun

P=AR, AT +Q (1.53)
S=CPC" +R (1.5b)
K=pPCTst (1.5¢)

Py — (I —KC)P (1.5d)

The Kalman filter is optimal for unconstrained, linear systesubject to known
normally distributed state and measurement noise [8]. Ttierteled Kalman Filter
(EKF) or Unscented Kalman Filter (UKF) are an attempt to edtthese techniques
to nonlinear systems.

Advantages of the Kalman Filter

1. Optimal estimator for linear systems without constisint

2. Solution approach is accomplished through matrix miidggions, not an
iterative optimization solution that is not guaranteeddowerge

3. Covariance estimate provides confidence interval fae sstimate

Disadvantages of the Kalman Filter

1. Restricted to linearized model state updates
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2. Physical constraints cannot be enforced
3. Can only estimate model states, not model parameters
4. Cannot utilize infrequent measurements or those witiakbe time delay

EKF is able to predict the nonlinear state evolution by nedirizing the model
at each time instant. Some effort has been made to incogpomastraints with
EKF although the state augmentation strategy for paranestémation is still a
limitation [34]. Kalman based techniques suffer from a nemdf limitations. For
nonlinear or constrained systems, optimization techrigueh as MHE are better
suited to providing an estimate of the true system state.

1.3.4 />-Norm Moving Horizon Estimation

Moving Horizon Estimation (MHE) outperforms the Extendealian Filter (EKF)
in the presence of constraints [8]. Recent advances in ctatipoal capability
and methods have improved the application of MHE to larg#esmdustrial sys-
tems [28]. Just as APC has demonstrated significant bengfisrsidering multi-
variate relationships, MHE is better able to utilize measwunts and deliver a more
accurate description of the current state of the processliatutbances [30].

By using an optimization framework the model and measurémalues are
aligned and present detailed information about the systeramics. This optimiza-
tion framework uses a receding horizon of process measuntsm@HE attempts
to optimally estimate the true state of the dynamic systevenga real-time stream
of measurements and a model of the physical process. Offsetektimation and
control is achieved by adding as many disturbance varia@asddase number of mea-
surements [22] [25] [24]. The MHE objective function is pdses a squared error
minimization of¢>-norm error to reconcile the model with measured values.

Advantages of /,-Norm MHE

1. Least squares is intuitive and simple to implement

2. Model constraints can be added to model to improve thenastin accu-
racy

3. Optimal tuning has been established [23]

Disadvantages of /,-Norm MHE

Poor rejection of outliers or infrequent bad values comnvih real data
Difficult to obtain good estimates 8, Q, andR
3. Dense tuning matrices impractical for large-scale syste

N =
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4. Iterative optimization solution that may fail to converm the required
cycle time

In a MHE form amenable to real-time solution, the unmeasdistdrbance vari-
ablesd are adjusted to match the continuous model to discrete meshgalues [28].

. 2|2 N2
min® = TVHQy+Hd—dHQd
st. 0= f(x,xu,d) (1.6)
0=9(zx,u,d)
0 < h(x,u,d)

in which @ is the objective function value is a vector of measurements at all
nodes in the horizorg,. .. z,)T, yis a vector of model values at the sampling times
(Yo, .- yn)T, Qy is the inverse of the measurement error covariafics,a vector

of model equation residualz represents the model stateds the vector of model
inputs,d is the vector of model parameters or unmeasured disturbadids the
vector of prior unmeasured disturbanc®g,is a matrix for the weight on changes
of disturbance variableg, is an output function, ant is an inequality constraint
function. A graphical representation of the MHE-norm reconciliation is
shown in Figure 1.5. The objective for this measured valwedsiadratic function
with the minimum target between the previous model and nredstalues. The full

‘\ & Wodel (Previous Solution)
I\ ==+ s+ ModelError
25 \ ®  Measurement /
N\ == == = il gasurement Emor
@  Optimal Solution
2 \ e O bjective Function / K
15 —

el Sk s
v

LT

e -
0 . tey ‘ ase® . 'l-._..-'" .
0 05 1 15 2 25 3

Fig. 1.5 Graphical representation of tlig-norm for a single measurement in the horizon.

estimation problem allows violation of the state constiaj80]. State equality con-
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straints are relaxed and violations are penalized in theabibE function. Withoud
the optimization problem found in Equation 1.6 does notaktate transition error
because the state equations are exactly satisfied at a gedsmiution [3]. This can
be overcome by creating a discontinuous syated disturbance with an additional
equationy = x+ d for each state subject to state noise. This allows discoititis

in the y states while preserving the continuity of tkestates. However, allowing
state noise is undesirable when employing first principledats. For material and
energy balances, allowing state noise reduces the pneglmtitential of the model.
Instead, the only decision variables are selecteg andd instead of Xo,. .. Xn, p)

as in the full MHE problem. As the estimation horizon incessghe sensitivity of
the solution ak, to xg decreases. With a first-order approximation, the value®f th
final statex, sensitivity decreases tej% whererT is the approximate process time
constant. For sufficiently long time horizons, it is thenyodlthat has a significant
effect on the current model state. Thus, it is generally aasgary to estimate the
initial statesxy as degrees of freedom in the optimization problem.

1.3.5 /1-Norm Moving Horizon Estimation

A new form of MHE has been used in industry for a number of ydeasovercomes
some of the limitations of thé,-norm MHE approach [9]. The objective function
in Equation 1.7 is implemented in a form that is amenable tmerical solution
of large-scale models. The use of an absolute value funidiemoided by instead
solving inequality constraints with slack variables. Tteek variables and inequal-
ities create an objective function that is smooth and cootirsly differentiable as a
requirement for large-scale Nonlinear Programming (NLdWess.

rrljinCD:wL(eu—a_)jth,(qurcL)
st. 0= f(x,x,u, p,d)
0=9(y,x,u,d)

0<h

< h(x,u,d)

1.7)
U >yY—W
e>yL—-y
cu>y-y
cL>y-y
ey,€e,cy,cL. >0

in which @ is the objective function value is a vector of measurements at all
nodes in the horizonz,... z,)", y is a vector of model values at the sampling
times o,...yn)", ¥ is a vector of previous model values at the sampling times
(Jo,- .. ¥n)T, Wi is a vector of weights on the model values outside a measunteme
dead-bandy, is a vector of weights to penalize deviation from the priduton, f

is a vector of model equation residuatsepresents the model statass the vector
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of model inputsd is the vector of model parameters or unmeasured disturbance
g is an output functionh is an inequality constraint functioey ande_ are slack
variables to penalize model values above and below the mesasut dead-band,
andcy andc are slack variables to penalize model value changes aboMesdow
the previous values. A graphical representation of the MHEOrm reconciliation
is shown in Figure 1.6. Parameters are only adjusted if thesored value is more
than the half of the dead-band away from the previous modekvatherwise,
the model is not adjusted because the measurement lieshthiregion of a flat
objective function. In the case of Figure 1.6, the optimalison lies at the edge
of the measurement dead-band. This will always be the casadasurements that
are more than half the dead-band distance from the prior hadiee. The MHE

)
\ 4 Model (Previous Solution)
A % U R R Model Error
25 \ B Measurement
B “ == ==« easurement Emor
\\ e  Optimal Solution
P \ e 0 bjective Function /

L) @I  Measurement-0.5
\ B Measurement + 0.5 /
14

Fig. 1.6 Graphical representation of the MHE-norm for a single measurement in the horizon.

£1-norm objective has a number of advantages and challengasared with other
methods such as the Kalman filter or the Mi@Enorm. The next sections details
the trade-offs between the different techniques.

1.3.5.1 MHE ¢1-Norm Advantages

An important MHE/;-norm advantage is less sensitivity to data outliers. This
portant when dealing with industrial data where instruraelnift or fail. Gross-error
detection can eliminate a majority of bad data. With MHEnorm, any data that
isn't filtered by gross-error detection has less impact engrameter estimation
and allows improved reliability of the solution. A squaredoe or /,-norm objec-
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tive is more sensitive and will disproportionately weightues that are far from the
model predictions.

An additional advantage of the MHE-norm is that only linear equations are
added to the objective function. By not adding additionahlim®ar expressions,
the solution is generally easier for numerical solvers td &in optimal solution. In
summary, the MHE/1-norm optimization problem with measurement noise dead-
band has a number of advantages over the Mbiler squared error form of the
objective function:

Advantagesof MHE ¢;-Norm

1. Low sensitivity to data outliers

2. Linear objective function and sparse tuning technigomgs@ve scaling to
large-scale systems

3. Explicit measurement dead-band for improved noise tiejec

Disadvantages of MHE #/1-Norm

=

. Additional equality and inequality constraints and &Bles
. No optimal theory on best tuning parameters
3. Requires an iterative solver to reliably converge in asi@e cycle time

N

1.3.5.2 MHE ¢;3-Norm Challenges

The challenges with the MHE;-norm optimization problem include increased
complexity and size. Although the MHE-norm uses only linear expressions in
formulating an objective function, there are additionakl variables and inequal-
ity expressions, which increases the size of the optintngiroblem.

Many of the MHE/¢;-norm challenges are due to the increased complexity in
the solution techniques. Commercial and academic softivasebeen developed
to meet this challenge. The software used to generate thtsés this paper is
the APMonitor Modeling Language?]. Filtered bias updating, Kalman filtering,
IDF™ and MHE are implemented in this web-services platformugioMATLAB
or Python.

1.4 Example Application

As an example application, consider the problem of detangithe flow of mud
through the return annulus of a drilling pipe. In the retune) there is typically a
flow paddle that rotates proportional to the flow rate. Thiwfimddle measurement
is not very accurate so additional information such as pik favel can be used to
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infer the return flow. Additionally, in Managed Pressurelldry (MPD), a choke
valve is adjusted to maintain well pressuf §s shown in Figure 1.7. The flow,

. Supply Tank T/ @

Main Pump l

Ps)

(F)
g e
¥ NG
—<:\/‘ T Ea 1 Drill String
- =N P
De-gassing (F1) " Choke valve Py s
V
Riser
N
I ~ Annulus

Casing

Fig. 1.7 Schematic of Managed Pressure Drilling.

pressure, and level measurements have noise, creatingmafhettuations around
the true values. The flow through the choke valve can also tmated from the
valve position and differential pressure across the valee Equation 1.8).

r%+qzc\,f(l) <%> (1.8)

For this example, the installed characteristic of the cheMee is assumed to be
linear (f(I) =1) and the valve is fast acting & 1sec). Both the state and measure-
ment noise are normally distributed with mean values of ¢eee Figure 1.8). State
noise has a standard deviatiop= 0.1 and measurement noise has a standard de-
viation g; = 1.0. The Kalman filter updates the state estimates by operititvgp
phases: predict and update. In the prediction phase, thalatdd flow is modified
according to the equation that relates flgwo the lift functionf(l) and the differ-
ential pressure)R,. For Kalman filters, the equation must first be linearizedhwi
Extended Kalman filters, the nonlinear equations are mealized about the current
state estimate. The other parameters including,, andgs are constants for a par-
ticular valve and fluid. For systems with multiple measuretagthe covariance is
used to tune the Kalman filter. In this case with one measumngrttee variance is
used instead. This information is essential for optimizimgupdate phase yet state
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Fig. 1.8 Noise distributions of state and measurement noise. Thisgédtions are used to opti-
mally tune the estimators.

and measurement covariance information can be difficulbtain. The results of
the Kalman filter with the upper and lower 95% confidence wrakrare shown in
Figure 1.9. In the update phase, a measurement of the flokeas feom the trans-
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Fig. 1.9 The Kalman filter uses two phases, predict and update, tonodtaestimate of the true
flow. During the predict phase, the model calculates an @pdfibw due to the latest reported
model inputs. During the update phase, part of the flow measent is used to update the state,
inversely proportional to the variance of the measurement.e

mitter. Because of the noise, this measurement has a cartannt of uncertainty.
The calculated variance from the predict phase determio@siuch the new mea-
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surement affects the updated prediction. If the model ptiedi drifts away from the
real flow, the measurements from the flow transmitter shoulctpe flow estimate
back towards the real flow but not disturb it to the point ofaaliucing all of the
noise from the measurement. This model update could alstogrother measure-
ments such as mud pump speed, choke pressure, or supplyetaikd infer the
flow rate across the valve. For this simple example, only #ieaposition and flow
measurements are used to predict the flow with a lineardid+ correlation. Each
of the five techniques discussed in this chapter are comparrdhe same data set
as shown in Figure 1.10. The filtered bias update and ¥dfave been tuned to give

Flow Rate (T/hr)

.
0 50 100 150
Time (sec)

Fig. 1.10 Actual, measured, and estimated flows for filtered bias @daE™ , the Kalman filter,
lo-norm MHE, and/;-norm MHE.

equivalent responses. After an initialization periodythkso align exactly with the
Kalman filter results because the Kalman gain becomes aurester the estimate
of B, also converges to a constant value. The first four methodisdimg filtered
bias update, IDE™, the Kalman filter, and thé,-norm MHE (with one horizon
step) can be tuned to give equivalent results for this simgdasurement case. Ta-
ble 1.1 shows the tuning values that make each of the estimatmivalent for this
example case and in general. In addition to noise, real daga oontains outliers.

Table 1.1 Estimator Configuration Values

Estimation Method Example Tuning Equivalent Tuning for Quieasurement

Filtered Bias Update a = 0.0951 Setr equal to the Kalman Gail

IDF™ Ke = 0.095%e— 10,7y = 1le— 10 Setf—lc equal to the Kalman Gain && —
0

Kalman Filter Ph=050Q=001,R=1.0 SetPy =R, for equivalency to other meth-
ods during initialization

l2-Norm MHE Horizon = 50Q, = 100,Qq = 10 For linear systems with quadratic objec-
tive /,-norm MHE reduces to Kalman Fil-
ter [29]

¢1-Norm MHE Horizon =50 The/1-norm MHE does not have equiva-

lent tuning correlations to the other meth-
ods
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Outliers do not typically fit a standard normal distributibut are instead drastic
deviations from normal variation in the data. Outlier ddtecand removal is typi-
cally accomplished by setting rate of change limits, uppdidity limits, and lower
validity limits. This gross error detection eliminates miasut not all of the data
outliers. The effect of data outliers is shown in Figure lwith the introduction of
two outliers at cycle 50 and cycle 100. The results with datidiers clearly indi-
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Fig. 1.11 Outlier effect on the filtered bias update, IBf; the Kalman filter/,-norm MHE, and
¢1-norm MHE. Two outliers at cycle 50 (measured flow = 100 T/mg aycle 100 (measured flow
=0 T/hr) are introduced to demonstrate the ability of thehuds to reject outliers. Th@-norm
MHE is least sensitive to data outliers.

cates that all state estimates, excepthinorm MHE, are significantly affected by
the bad data points. The insensitivity to bad data is a kepmtdge of the;-norm
MHE approach.

1.5 Concluding Remarks

There is a recent increase in data availability in the oil gad industry due to
advances in technology, improved networking, and regufatxjuirements that re-
quire additional monitoring. When measurements are vienaigidually they pro-
vide insight into the true state of the process, but do naradf holistic view of
the process. When combined with a process model, the datapsoan increased
understanding of unmeasured disturbances or unmeasated.sthis alignment of
measurements and model predictions is accomplished withiaty of techniques
ranging from a simple bias update to large-scale optimonadpproaches. Two op-
timization approaches discussed in this chapter includeimgaHorizon Estimation
(MHE) with ¢1 and/,-norms. Efficient solution of the MHE approach is important
for solving large-scale problems of industrial significanSimultaneous solution of
the objective function and model equations is a popular@gyr to solving large-
scale models for the data reconciliation.
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Filter Factor for Additive Bias

Predicted Covariance Matrix

Predicted State Vector

Differential Pressure

Prior Values of the Parameters or Disturbances

Vector of Prior Model Values at the Sampling Times, (. yn)"
Objective Function Value

Standard Deviation of State Noise

Standard Deviation of Measurement Noise

Time Constant

Integral Time Constant for ID®

Innovation: Comparison of Model to Measurements

State Transition Matrix

Control Matrix

Additive Model Bias

Observation Matrix

Slack Variables to Penalize Model Value Changes Below tier Falue
Slack Variables to Penalize Model Value Changes Above tlee Falue
Constant Relating Valve Position to Flow

Model Parameter or Disturbance Vector

Slack Variables to Penalize Model Values Below the Measerdgrbead-
Band

Slack Variables to Penalize Model Values Above the Measard¢iead-
Band

Differential Equation Residuals

Valve Lift Function

Output Function Residuals

Specific Gravity

Inequality Constraint Residuals

Integral Term in IDEM

Kalman Gain: Moderate the Measurement Correction
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Proportional Tuning Constant for IDM

Sampling Time Index

Process Variable

Estimated Process Error Covariance

Flow Rate (T/hr)

Weighting Matrix on Changes of the Disturbance Variables
Inverse of the Measurement Error Covariance

Estimated Measurement Error Covariance

Innovation Covariance: Comparison of Real Error to Préalict
Setpoint

Model Input Vector

Vector of Weights on the Model Values Outside a Measuremeati=Band
Vector of Weights to Penalize Deviation from the Prior Sioint
Model State Vector

Vector of Initial States

Vector of Model Values with Corresponding Measurements
Vector of Measurements

Implicit Dynamic Feedback

Advanced Process Control

Bottom Hole Assembly

Extended Kalman Filter

Moving Horizon Estimation

Model Predictive Control

Managed Pressure Drilling

Model Parameter Update

Nonlinear Programming

Proportional Integral Controller

Real Time Optimization

Single Input-Single Output

Unscented Kalman Filter



