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A systematic approach to modeling includes selection of empirical or fundamental elements to construct
a relationship between exogenous inputs and the measured or predicted outputs. Differential and
algebraic equations are a natural expression of many systems that include equations of motion, material
balances, energy balances, or linear time invariant (LTI) empirical models from system identification.
When there are discrete levels of certain variables, the set of equations becomes a combination of
integer and continuous decisions that lead to Mixed Integer Differential Algebraic Equations (MIDAEs).

When the MIDAEs represent an actual system, it is desirable that the mathematical representation
aligns with the physical observations. MIDAE representations are aligned with either steady state or
dynamic data by minimizing the deviation of the model response from the actual measured states with
mixed integer nonlinear programming (MINLP) solvers. This iterative model alignment is accomplished
with large-scale MINLP optimizers that exploit the nonlinear relationships to achieve a minimum least
squares or minimize absolute deviation. After a suitable representation of the system is obtained
through parameter estimation, the optimal control can then be used to achieve a desired outcome [1].

The APMonitor Modeling Language (APM) is an optimization platform for MIDAEs and is coupled with
large-scale solvers for data reconciliation, dynamic optimization, and nonlinear predictive control [2].
MIDAE systems lead to large-scale MINLP problems due to the discretization over a time horizon [3], [4].
New solvers, APOPT and BPOPT, exploit a number of structural characteristics of these systems to solve
optimization problems for real-time process control, parameter estimation, and scheduling applications
[3]. The following sections detail applications of MIDAEs in education and research with a few
motivating examples.

Dynamic Optimization in Education

Dynamic systems frequently arise in the study of chemical engineering topics such as process control,
reactor design, heat transfer, fluid dynamics, and in unit operations laboratory experiments. Engineering
laboratory experiences are expensive to build and maintain. Common complaints from students include
broken equipment, rigid operating procedures, and excessive manual effort to collect quality data.
Physical systems provide an opportunity to troubleshoot, analyze noisy or corrupt data, and allow
hands-on learning. An alternative approach preserves these features while supplementing with
simulation. On the other hand, a purely virtual experience opens the student to new applications that
would not be feasible for many university laboratories. In one particular case, a chemical reactor
experiment as part of a unit operation lab formerly required 20 hours to collect data for the design
problem. Using a virtual replicate of the reactor as an MIDAE, the students first designed the reactor
experiments in simulation to optimize the information collected from the laboratory. This Design of
Experiment (DOE) through optimization reduced the operation time from 20 hours to 1 hour because of
the improvement in data content collected and because dynamic data was able to be used in the



parameter estimation for the reactor model. Supplementing the experimental portion with a virtual
system helped the students gain greater insight and maximize the laboratory learning experience.

Dynamic Optimization in Research

Applications of dynamic optimization include computational biology [5], unmanned aerial systems [6],
chemical process control [7], solid oxide fuel cells [8—10], energy storage [11], and oil & gas upstream
monitoring systems [12], [13]. Although these and other systems are considered to be in separate fields
of research, there is a common approach to system modeling with MIDAEs. These MIDAEs are used in
parameter estimation to investigate fundamental system dynamics by uncovering unmeasured
disturbances or parameters [14]. Unlike the Kalman filter [15], parameter and state estimation with
MIDAEs respects constraints, uses nonlinear systems of equations without linearization, and seamlessly
incorporates data sets with infrequently measured states. In some systems, such as in kinetic modeling,
certain reaction pathways can be turned on or off with the use of binary decision variables. Once the
system is modeling accurately, a simultaneous dynamic optimization approach is used to drive the
simulated system either along a desired trajectory or to minimize a particular objective function. While
there are many challenges remaining with MIDAE systems, much progress has been made in the past
couple years towards large-scale and complex systems.
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