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Model Reduction

• Optimally reduce the number of model 
variables

• Linear combination of states that retain the 
most important dynamics

• Methods
– Proper Orthogonal Decomposition (or PCA)
– Balanced Covariance Matrices



Model Reduction
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Original ODE model

Determine a similarity 
transform to optimally 
reduce the model states
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Model Reduction
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Binary distillation model reduction shows the relative weighting of the 32 
original states in the top 3 transformed states.
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Model Reduction
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Computational Reduction

• Retain all the of dynamics
• Storage and retrieval to reduce the 

computational cost
• Methods

– Artificial neural networks
– In situ adaptive tabulation (ISAT)



Combined Approach

• Combined approach for NMPC
– Model reduction first
– Computational reduction second

First 
Principles 
Model

Reduced 
model

Storage and 
retrieval of 
reduced 
model 
integrations

Balanced 
Covariance
Matrices

ISAT



ISAT Introduction

Nearby ISAT Record

Desired Integration
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Error
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Fig. 1.  Approximation of the desired integration final state with a nearby 
ISAT record.



ISAT Search

• Binary Tree Architecture
– Search times are O(log2(N)) compared with O(N) for 

a sequential search
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Binary Trees
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Fig. 2.  An illustration of the binary tree structure in the cutting plane 
format (on the left) and the tree format (on the right).



Binary Tree Growth
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Fig. 3.  Binary tree growth.  A tree with one branch and two leaves is 
grown to include another leaf.



Binary Trees

• To increase the accuracy of the binary tree 
search, multiple binary trees are searched.  

• This increases the probability of finding a better 
record.

• Number of binary trees is a tuning parameter 
that balances search speed with search 
accuracy.



ISAT Integration

• Scenario #1: Inside the region of accuracy
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ISAT Integration

φ1

• Scenario #2: Outside the region of accuracy but within 
the error tolerance

φ
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Compute Mnew so that the new
region is a symmetric, minimum
volume ellipsoid that includes φ



ISAT Integration

φ1

• Scenario #3: Outside the region of accuracy and 
outside the error tolerance
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Application #1: Binary Distillation

32 state ODE 
model of 
binary 
distillation

5 state 
reduced  
model

Storage and 
retrieval of 
integrations

Balanced 
Covariance
Matrices

ISAT

Fig. 4.  Model and computational reduction flowchart.



Closed-loop Response
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Fig. 5.  Closed loop response comparison for nonlinear MPC with ISAT 
with 5 states, nonlinear MPC with 5 states, nonlinear MPC with 32 
states, and linear MPC. 



CPU times

1 2 3 4 5
0

20

40

60

80

100

120

S
pe

ed
-u

p 
F

ac
to

r

Optimization #

5 states/ISAT   
5 states        
32 states       
32 states/Linear

0.26 sec avg 

0.77 sec avg 

9.3 sec avg 22.2 sec avg 

Fig. 6.  Speed-up factor for each of the optimizations shown in Fig. 5.  
The number above each curve indicates the average optimization cpu
time on a 2 GHz processor.



Application #2: ISAT vs. neural net
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• Dual CSTR model

Fig. 7.  Diagram of two CSTRs in series with a first order reaction.  
The manipulated variable is the cooling rate to the first CSTR 



Artificial Neural Network
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Fig. 8.  Neural net with one hidden layer and one output layer. The 
hidden layer is a hyperbolic tangent function and the output layer is 
a linear function.  This neural net relates 7 inputs to 6 outputs.



Open-loop Response
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Fig. 9. The error control of ISAT indicates that additional records 
must be added, thereby avoiding extrapolation error.



Closed-loop Response #1
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Fig. 10.  Small closed loop set point change within the training
domain.



Closed-loop Response #2
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Fig. 11.  Large closed loop set point change outside of the 
training domain.



Summary and Conclusions

• Combined approach includes model reduction 
followed by computational reduction

• ISAT is a storage and retrieval method

• With a 32 state binary distillation, the CPU time 
for NMPC is reduced by 85 times



Summary and Conclusions

• ISAT indicates when the retrieval is outside of 
the storage domain

• ISAT incorporates automatic error control to 
avoid extrapolation errors


