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Abstract - This paper outlines a method to implement 
nonlinear model predictive control (NMPC) in real-time 
control applications.  Nonlinear model identification is 
generally seen as a major obstacle to implementing NMPC.  
However, once an accurate nonlinear model is identified the 
computational effort is often too great to implement the model 
in a real-time application.  The approach in this paper is a two 
step process, model reduction followed by computational 
reduction.  Model reduction is accomplished by computing 
balanced empirical gramians.  Computational reduction is 
accomplished by using the method of in situ adaptive 
tabulation (ISAT).  ISAT was previously developed for 
computational reduction of turbulent flame direct numerical 
simulations and is extended to the sequential NMPC 
framework in this work.  A case study is performed with a 
binary distillation column model with 32 states.  By computing 
balanced empirical gramians the number of states is reduced 
to five.  With ISAT, the computational speed is 85 times faster 
than the original NMPC while maintaining the accuracy of the 
nonlinear model.  Since ISAT is a storage and retrieval 
method, it is compared to artificial neural networks in another 
case study.  This case study is performed with a dual CSTR 
model with 6 states.  Open loop and closed loop step tests are 
performed to demonstrate the superior quality of ISAT in 
extrapolating outside of the training domain. 

 
I.  INTRODUCTION 

 
In model predictive control (MPC) there is a tradeoff 
between computation speed and accuracy of the model.  
While many processes are better characterized by nonlinear 
models, the effort to implement nonlinear MPC (NMPC) in 
real-time process control is often prohibitive [1].  The 
objective of this research is to develop a combined model 
and computational reduction approach to make NMPC 
computationally feasible for real-time applications.  
Comparisons are made with the speed and accuracy of 
linear MPC (LMPC). 

 
II.  MODEL REDUCTION 

 
Recent efforts have focused on nonlinear model reduction.  
In particular, nonlinear model reduction using balancing of 
empirical gramians has proven effective [2].  This method 
reduces the nonlinear model to a variable subspace that 
captures the most important dynamics of input/output 
behavior.  One system studied by Hahn and Edgar is a 
binary distillation column with the reflux ratio (u) as the 
manipulated variable and distillate composition (x1) as the 

controlled variable.  The simulated column contains 30 
trays, a reboiler, and condenser.  The 32 states are the 
compositions of the liquid at each stage.  The ODE model 
is placed in the general nonlinear form of (1). 
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A similarity transform (T) is computed from the balancing 
of empirical gramians.  The transformed variables are in 
order from most important to the least important for 
input/output behavior.  The transformed system is shown in 
(2).  
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Hahn and Edgar showed that a reduced system with 3 
transformed variables shows excellent agreement with the 
full 32 state model on step tests.  The first 3 transformed 
variables are shown in (3). 
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The relative importance of the first state (reflux drum 
composition) on input/output behavior is much greater than 
the last state (reboiler composition).  This relative 
importance is shown by the magnitude of the numbers in 
the first column compared with the last column.  The 
similarity transform from the balancing of empirical 
gramians confirms that most of the important dynamics for 
control are found in the states at the top of the column.  
With the transformation, the nonlinear system can be 
reduced by truncation or residualization as shown in Table 
I. 
 
By reducing the number of dynamic variables through 
truncation, the computational requirements are reduced by 
~ 40%. 



 

 
 

III.  COMPUTATIONAL REDUCTION 
 
Computational reduction has a different focus than model 
reduction.  In computational reduction, the goal is to retain 
all of the dynamics of the original model while 
substantially lowering the computational costs.  An 
example of computational reduction is the method of in situ 
adaptive tabulation (ISAT) [3].  In performing turbulent 
flame simulations, Pope demonstrated a speed-up factor of 
1000 times using ISAT. 
 
Analogies to the ISAT method exist in many different 
industries and products.  For example, computer systems 
are built with multi-layers of caching.  One of the reasons 
that Pentium® processors are considered superior to 
Celeron® processors is the larger amount of cache.  This 
cache stores and accesses frequently computed instructions 
and thereby improves the processor performance.  As 
another example, the computer can speed-up the effective 
download speed for internet connections by storing web 
pages on the hard disk.  When a web site is visited again, 
the page can be loaded from the much faster hard disk.  The 
common characteristics of these speed-up technologies are: 
 
1) The first time through there is no speed-up.  In fact, 

there may be some slow-down associated with building 
and storing the database. 

2) Search time is generally fast compared to repeating the 
operation. 

3) Storage costs for the database are low compared to the 
cost of repeating the operations. 

4) There is a sufficient probability that the operation will 
be repeated, otherwise the database would serve 
mainly as an archive.  

5) The system performance increases as the database 
matures and more operations are repeated. 

 
In this work, the ISAT method from combustion 
simulations is applied to NMPC.  An important assumption 
for ISAT is that nearby integrations will likely be repeated.  
For a single step test or impulse response, very few 
integrations will likely be repeated and ISAT would likely 
show poor performance.  In control applications, similar 
disturbances to the system can occur frequently or step 
changes to switch between product grades can happen 
regularly.  The ISAT method is a framework for the 
controller to access data from previous MPC calculations. 

 
A.  Database Searching 
 
A vector φo defines the initial state of the distillation 
column given by (4) where u is the reflux ratio. 
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Before integrating to obtain φf, a search is performed to 
obtain a record close to φo.  If a record is found that is 
sufficiently close to φo, then φf can be approximated with 
the nearby integration that has been previously computed 
and stored (see Fig. 1). 

 
When δφo is within an initial state region of accuracy, the 
nearby ISAT record (φf

approx = φf
ISAT + Aδφo) is accepted as 

an approximation to φf, where A is a matrix of state 
sensitivities.  When δφo is outside of the region of accuracy 
the region of accuracy is either grown or a new record is 
added to the database.  
 
B.  Database Growth 
 
As the database of integrations is built, the time required to 
find a close record grows.    Sequential searching requires 
O(N) operations where N is the number of records stored in 
the database.  An alternative to sequential searching is 

Nearby ISAT Record

Desired Integration
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Error
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φ0
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Fig. 1.  Approximation of the desired integration final state with a 
nearby ISAT record. 

Table I 
Comparison of truncation and residualization with 3 dynamic 
variables remaining. 
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through a binary tree structure that requires O(log2(N)) 
operations.  The binary tree has a structure shown in Fig. 2.     
 

 
The cutting plane is defined by the vector v and scalar α. 
 

�
�

	


�

� +
=

−=

2
12

12

φφα

φφ

Tv

v
         (5) 

 
When vTφο is less than α, φο is closer to φ1 and when vTφο is 
greater than α, φ2 should be chosen as the closer record.  If 
φo is closer to φ1, but still not within the specified tolerance 
then φo is integrated to φf and the tree is grown (see Fig. 3). 

 
One of the limitations of the ISAT method is that the 
storage requirements are proportional to n2 where n is the 
total number of states [4].  Therefore, models with a 
reduced number of variables are better suited to 
computational reduction through ISAT. 

 
IV. COMBINED MODEL AND COMPUTATIONAL REDUCTION 

FOR NMPC 
 
Combining model reduction through empirical gramians 
and computational reduction through ISAT exploits the 
strengths of both methods.  Generally, the model reduction 
step decreases the number of dynamic variables but does 
not have sufficient computational speed-up.  Computational 
reduction is more effective with a low number of dynamic 
variables and can reduce the computational time 
significantly.  Fig. 4 provides an overview of the combined 
approach. 

 
 

 
 
   Fig. 4.  Model and computational reduction flowchart 

 
A case study has been performed with the distillation 
column model comparing NMPC/LMPC for the following 
models: 
 
1)  Nonlinear reduced model with 5 dynamic states and 

ISAT  
2)   Nonlinear reduced model with 5 dynamic states 
3)   Nonlinear model with 32 states 
4)   Linear model with 32 states 
 
Models 1 and 2 are from full state model with 32 dynamic 
variables, reduced through truncation down to 5 dynamic 
variables.  Using the sequential approach to MPC, the 
distillation column models are integrated multiple times in 
order to find optimal control moves that minimize a 
quadratic objective cost function. 
 
Certain operational, safety, or economic constraints must be 
considered when developing control solutions to real 
systems.  These limitations can be implemented as either 
hard or soft constraints in the MPC framework.  Soft 
constraints are costs added to the objective function.  In the 
author’s opinion, soft constraints are the more intuitive 
method because the solver can choose to violate a 
constraint if the economic performance of the entire plant 
will be improved.  In addition, the relative importance of 
each soft constraint is automatically considered.  Hard 
constraints may be more desirable for some situations such 
as when safety is a concern.  In this sequential NMPC 
approach, hard constraints can be implemented on the 
manipulated variables. 
 
The nominal operating point for the reflux ratio is 3.  Soft 
constraints limit the operating region to between 2 and 4.  
The reflux ratio (manipulated variable) is adjusted every 5 
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Model with 32 states 
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Fig. 2.  An illustration of the binary tree structure in the cutting plane 
format (on the left) and the tree format (on the right). 
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Fig. 3.  Binary tree growth.  A tree with one branch and two leaves is 
grown to include another leaf. 



 

minutes.  The control horizon is 10 minutes and the 
prediction horizon is 15 minutes.  Fig. 5 shows the closed 
loop responses. 

 
During the first control move, all MPC results are at the 
reflux ratio lower bound of 2.   
 
Fig. 6 shows the speed-up factor (compared to 32 state 
NMPC) for the 5 optimization steps of Fig. 5. 

 
The cpu times shown on the graph are from computations 
on a 2 GHz Celeron processor.  This case study shows that 
ISAT can exhibit significant computational reduction while 
preserving the accuracy of the nonlinear model. 
 

V. ISAT VS. NEURAL NETWORKS 
 
Although applied with a model reduced through balanced 
empirical gramians, ISAT for NMPC can be used with any 
model reduction technique that reduces the number of 

dynamic degrees of freedom.  In the case where the model 
already has a low number of variables, ISAT can be applied 
directly without a model reduction step. 
As an illustrative example, ISAT and a neural net are 
compared in an open loop step test and a closed loop 
control application.  The example model was a dual CSTR 
model (see Fig. 7) with 1 manipulated variable (heat 
addition to the first tank), 6 states, and 1 controlled variable 
(temperature of the second reactor).  The model was 
developed by Hahn and Edgar [2] as a benchmark model 
for nonlinear model reduction. 
 

The data were gathered from ISAT training.  For the sake 
of comparison, the neural net used the ~1600 ISAT records 
for training.  The neural net was constructed with one 
hidden layer of a hyperbolic tangent sigmoid transfer 
function and an output layer of a linear transfer function 
(see Fig. 8). 
 

 
Before the training, the data were appropriately scaled for 
efficient implementation in the neural net.  Fig. 9 shows a 
large open loop step test, one that is outside those found in 
the training data.  In this step test, the cooling is increased 
to the point that the irreversible reaction is extinguished and 
a large temperature step results. 
 
Up to about 5 minutes of simulated time, the neural net and 
ISAT perform similarly.  To this point both accessed data 
that were within the training domain.  Beyond 5 minutes 
ISAT is superior in agreement with the non-reduced model 
due to a built in error checking strategy.  Before 5 minutes, 
the ISAT method shows that it performs mostly retrievals 
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Fig. 8.  Neural net with one hidden layer and one output layer.  The 
hidden layer is a hyperbolic tangent function and the output layer is a 
linear function.  This neural net relates 7 inputs to 6 outputs. 
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Fig. 6.  Speed-up factor for each of the optimizations shown in Fig. 5.  
The number above each curve indicates the average optimization cpu 
time on a 2 GHz processor. 
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Fig. 7.  Diagram of two CSTRs in series with a first order reaction.  
The manipulated variable is the cooling rate to the first CSTR. 
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Fig. 5.  Closed loop response comparison for nonlinear MPC with 
ISAT with 5 states, nonlinear MPC with 5 states, nonlinear MPC with 
32 states, and linear MPC.  



 

indicated by the circles.  Once ISAT detects large errors 
from retrievals, it starts adding records to the database, 
indicated by the squares.  If the step response were to 
extend further in time to a new steady state, the ISAT 
points would again become circles, indicating database 
retrievals. 
 

 
ISAT and the neural net were compared in a closed loop 
simulation with a ‘small’ set point change inside the 
training domain (see Fig. 10). 

 
All three show excellent agreement as they reach the new 
set point along the same trajectory.  Next, a ‘large’ set point 
change was performed to access a region of state space 
outside of the training domain (see Fig. 11). 
 
For this step change, the neural net controller eventually 
becomes unstable.  This is because the neural net does not 
have the capability to extrapolate outside of the data that 
was used to train it.  In this respect, the ISAT method is 

superior because it detects when it has gone outside of the 
training domain and integrates the model to generate and 
add new data to the training set. 
 

 
VI. CONCLUSIONS 

 
This paper outlines a new technique for computational 
reduction for NMPC.  In this approach model reduction 
through balanced empirical gramians is followed by 
computational reduction through ISAT.  Although 
previously developed for turbulent flame simulations, ISAT 
can be directly applied because many open loop simulations 
are performed to find optimal inputs to the control problem.  
A case study with a binary distillation column model 
showed a speedup of 85 over the original NMPC.  Like 
neural nets, ISAT reduces the computational cost through 
storage and retrieval.  Another case study with a dual CSTR 
showed the advantage of using ISAT over neural nets when 
the simulation accessed data outside the training domain. 
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Fig. 11.  Large closed loop set point change outside of the training 
domain. 
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Fig. 9. Open loop step test for the dual CSTR model.  The error control 
of ISAT indicates that additional records must be added to the database 
when extrapolating outside of the training domain. 
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Fig. 10.  Small closed loop set point change within the training 
domain. 


