

Reduction in Cycling of the Boilers by Using Large-Scale Energy Storage of Cryogenic Carbon Capture

> Seyed Mostafa Safdarnejad John Hedengren Larry Baxter

Chemical Engineering Department Brigham Young University (BYU) November 2015

Outline

Background
 Cryogenic Carbon Capture
 Results
 Conclusion

Outline

BYU 1875

Background
 Cryogenic Carbon Capture
 Results
 Conclusion

Motivation: CO₂ Emission

Coal is the world's principal energy supply

Global climate change concerns from CO₂

Increasing Restriction for CO₂ Emission

- EPA's regulation for existing power plants (2015)
 - 30% reduction in CO₂ from 2005 levels by 2030
- EPA's regulation for new power plants (2015)
 - 1100 lbs/MWh CO₂ for gas-fired power plants
 - 1400 lbs/MWh CO₂ for coal-fired power plants

Trends in global CO₂ emissions, PBL Netherlands Environmental Assessment Agency, 2014

Motivation: Cycling Damage

Motivation: Cost of Spinning Reserves

Low Utilization = High Cost / MWh

6 Deloitte Center for Energy Solutions, 2011

Hybrid System Enhances Renewable Adoption

PRISM

Outline

1875 ROVO, UTN

Background
 Cryogenic Carbon Capture
 Results
 Conclusion

CO₂ Removal

BYL

Oxy-combustion (1.69 MJ_e/kg CO2)
 Chemical and Physical Absorption (1.72 MJ_e/kg CO₂)
 Membranes (1.3 MJ_e/kg CO₂)
 Cryogenic Carbon Capture (0.7 MJ_e/kg CO₂)

Advantages of the CCC Process

- Rapid-load-change capability
- Flexible operation
- Scalable energy storage
- Energy recovery with heat integration

Cryogenic Carbon Capture (CCC)

BYU 1875

Two refrigeration cycles

PRISM

Refrigerant is also the fuel

Power produced with gas turbine

Improved Profitability through Integration

- Dynamic integration of CCC with power generation units
- Meet residential and CCC electricity demands
- Maximize operational profit of the hybrid system
- Minimize cycling of the coal power plant

Optimization Approach

➢Objective function: ℓ₁-norm

Dead-band for the controlled variablePrioritize multi-objective functions

Active Set or Interior Point Solvers
 APOPT or IPOPT
 APMonitor Modeling Language

$\min_{x,y_m,u} \Phi = w_{hi}^T e_{hi} + w_{ho}^T e_{lo} + y_m^T c_y + u^T c_u + \Delta u^T c_{\Delta u}$								
	<i>s</i> . <i>t</i> .	$0 = f(\dot{x}, x, u, d)$						
trolled variable ve functions		$0 = g(y_x, x, u, d)$						
		$a \ge h(x, u, d) \ge b$						
		$\tau_c \frac{\delta y_{t,hi}}{\delta t} + y_{t,hi} = sp_{hi}$						
oint Solvers		$\tau_c \frac{\delta y_{t,lo}}{\delta t} + y_{t,lo} = sp_{lo}$						
anguage		$e_{hi} \ge \left(y_m - y_{t,hi}\right)$						
		$e_{lo} \ge \left(y_{t,lo} - y_m\right)$						
		14						

BYU VO. UI Outline

1875

Background Cryogenic Carbon Capture **Results** ➢ Conclusion

Power Output from Coal Plant

Significant variations in coal power plant in load-following case

Variations in baseline case to avoid overproduction of power

Baseline Boiler

Total demand Wind power

Total gas power

Power from combined cycle

Total steam boiler power

Load-following Boiler

Refrigerant storage used in gas turbine
 100% utilization of the wind power

PRISM

Trend of Natural Gas and LNG Inventory

PRISM

Impact of Energy Storage

With Energy Storage

- 1. Combined Cycle Power Production
- 2. Baseline Boiler

Without Energy Storage

1. Simple Cycle Power Production

PRISM

2. Baseline Boiler

Comparison of Power Production

Grounded Power = Total Power - Total Demand

With Energy Storage 1. Combined Cycle Power Production

BYU

2. Baseline Boiler

Without Energy Storage

- 1. Simple Cycle Power Production
- 2. Baseline Boiler

Cycling Cost

Increased thermal, pressure, and mechanical related stress and fatigue
 Cycling costs from NREL report
 Cycling scenarios: Cold start, Hot start, Warm start, and Load-following

Large scale subcritical coal power generation (\$2.45/MW Capacity/Cycle)

Natural gas combined cycle (\$0.64/MW Capacity/Cycle)

Cycling Cost (Continued)

BYU

- Rainflow cycle counting algorithm
- Capacity of coal-fired generation unit:1800 MW
- Capacity of coal-fired generation unit:1000 MW

	With Wi	nd	Without Wind	
	Load-following	Baseline	Load-following	Baseline
	boiler	Boiler	boiler	Boiler
# cycles in Boiler	20	1	18	1
(cost)	(\$88200)	(\$4410)	(\$79380)	(\$4410)
# cycles in gas	17	21	23	15
turbine (cost)	(\$10880)	(\$13440)	(\$14720)	(\$9600)
Total cycling costs	\$99080	\$17850	\$94100	\$14010

Key Result: 80-85% reduction in cycling damage with energy storage

Outline

Background
Cryogenic Carbon Capture
Results
Conclusion

Conclusion

CCC process removes 99% of CO₂ with lowest cost per kg CO₂
 Large-scale energy storage improves renewable adoption
 CCC + energy storage reduces cycling costs by 80-85%
 Future work: Power grid stability

Acknowledgements

Sustainable Energy Solutions (SES)

Graduate students in PRISM Group at BYU

>Undergraduate research assistants

Reduction in Cycling of the Boilers by Using Large-Scale Energy Storage of Cryogenic Carbon Capture

> Seyed Mostafa Safdarnejad John Hedengren Larry Baxter

Chemical Engineering Department Brigham Young University (BYU) November 2015