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Motivation: CO2 Emission

Coal is the world’s principal energy supply

 Global climate change concerns from CO2 

Increasing Restriction for CO2 Emission

 EPA’s regulation for existing power plants (2015)

 30% reduction in CO2 from 2005 levels by 2030

 EPA’s regulation for new power plants (2015)

 1100 lbs/MWh CO2 for gas-fired power plants

 1400 lbs/MWh CO2 for coal-fired power plants
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Trends in global CO2 emissions, PBL Netherlands Environmental

Assessment Agency, 2014



Motivation: Cycling Damage

5
The Cost of Cycling Coal Fired Power Plants, Coal Power Magazine, 2006
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Motivation: Cost of Spinning Reserves
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Deloitte Center for Energy Solutions, 2011
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Hybrid System Enhances Renewable Adoption
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CO2 Removal

Oxy-combustion (1.69 MJe/kg CO2)

Chemical and Physical Absorption (1.72 MJe/kg CO2)

Membranes (1.3 MJe/kg CO2)

Cryogenic Carbon Capture (0.7 MJe/kg CO2)
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Advantages of the CCC Process

Rapid-load-change capability 

Flexible operation

Scalable energy storage

Energy recovery with heat integration
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Cryogenic Carbon Capture (CCC)
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Jensen, PhD Dissertation, Brigham Young University, 2015
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Hybrid System of Power Generation and CCC
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Two 
refrigeration 
cycles

Refrigerant 
is also the fuel  

Power 
produced with 
gas turbine



Improved Profitability through Integration

Dynamic integration of CCC with power generation units

Meet residential and CCC electricity demands

Maximize operational profit of the hybrid system

Minimize cycling of the coal power plant
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Optimization Approach
Objective function: ℓ1-norm

Dead-band for the controlled variable

Prioritize multi-objective functions

Active Set or Interior Point Solvers

APOPT or IPOPT

APMonitor Modeling Language
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Power Output from Coal Plant

 Significant variations in 
coal power plant in 
load-following case

 Variations in baseline 
case to avoid 
overproduction of power
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Power Production vs. Electricity Demand

Basel ine Boi ler Load-fol lowing Boi ler
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Meet the total electricity demand

Refrigerant storage used in gas turbine 

100% utilization of the wind power



Trend of Natural Gas and LNG Inventory

Natural  Gas (Basel ine Boi ler) LNG Inventory (Basel ine Boi ler)
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Natural gas import 

during off-peak hours

Natural gas export 

during peak hours



Impact of Energy Storage
With Energy Storage 

1. Combined Cycle Power Product ion
2. Basel ine Boi ler

Without Energy Storage
1. Simple Cycle Power Production
2. Basel ine Boi ler
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Compressor shifted 
to off-peak hours



Comparison of Power Production

Without Energy Storage
1. Simple Cycle Power Production
2. Basel ine Boi ler
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𝑮𝒓𝒐𝒖𝒏𝒅𝒆𝒅 𝑷𝒐𝒘𝒆𝒓 = 𝑻𝒐𝒕𝒂𝒍 𝑷𝒐𝒘𝒆𝒓 − 𝑻𝒐𝒕𝒂𝒍 𝑫𝒆𝒎𝒂𝒏𝒅

Power imbalance without 
energy storage

With Energy Storage 
1. Combined Cycle Power Product ion
2. Basel ine Boi ler



Cycling Cost

Increased thermal, pressure, and mechanical related stress and fatigue

Cycling costs from NREL report

Cycling scenarios: Cold start, Hot start, Warm start, and Load-following

Large scale subcritical coal power generation ($2.45/MW Capacity/Cycle)

Natural gas combined cycle ($0.64/MW Capacity/Cycle)
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Cycling Cost (Continued)

 Rainflow cycle counting algorithm

 Capacity of coal-fired generation unit:1800 MW 

 Capacity of coal-fired generation unit:1000 MW 
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With Wind Without Wind

Load-following 

boiler

Baseline 

Boiler

Load-following 

boiler

Baseline 

Boiler

# cycles in Boiler 

(cost)

20 

($88200)

1 

($4410)

18

($79380)

1

($4410)

# cycles in gas 

turbine (cost)

17 

($10880)

21 

($13440)

23

($14720)

15

($9600)

Total cycling costs $99080 $17850 $94100 $14010

 Key Result: 80-85% reduction in cycling damage with energy storage
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Conclusion

CCC process removes 99% of CO2 with lowest cost per kg CO2

Large-scale energy storage improves renewable adoption

CCC + energy storage reduces cycling costs by 80-85%

Future work: Power grid stability
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