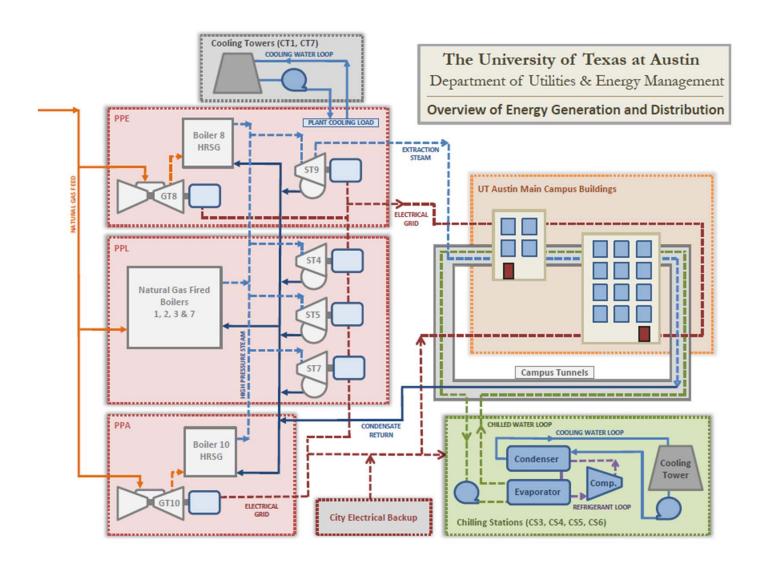
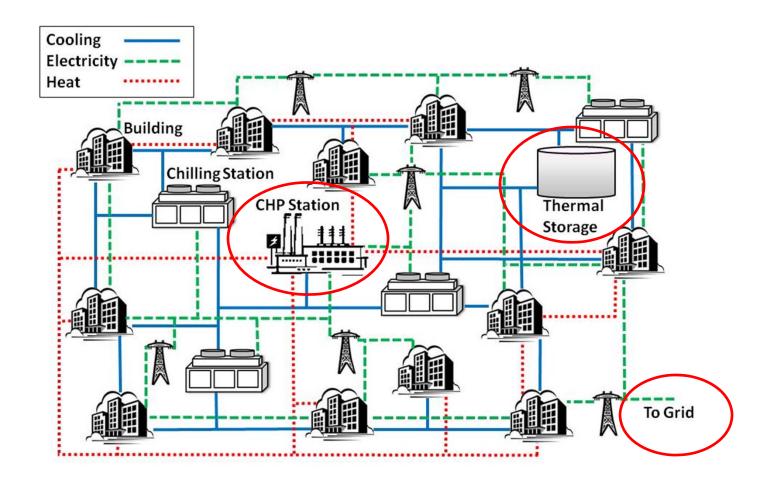
A Model Predictive Control Approach for Long Term Planning of Capacity Investments in a District Heating System


Jose L. Mojica
Michelle Chen
Damon Petersen
Dr. John D. Hedengren
Department of Chemical Engineering
Brigham Young University

Dr. Kody Powell University of Texas at Austin

BYU Advanced Control and Optimization


- BYU PRISM Group Overview
- Dynamic Optimization for:
 - Advance Control for Oil Drilling Operations
 - Unmanned Aerial Vehicles
 - Systems Biology
 - Solid Oxide Fuel Cells
 - Energy Storage and the Smart Grid
 - Energy Systems Planning Under Uncertainty
- Needs and resources for dynamic optimization

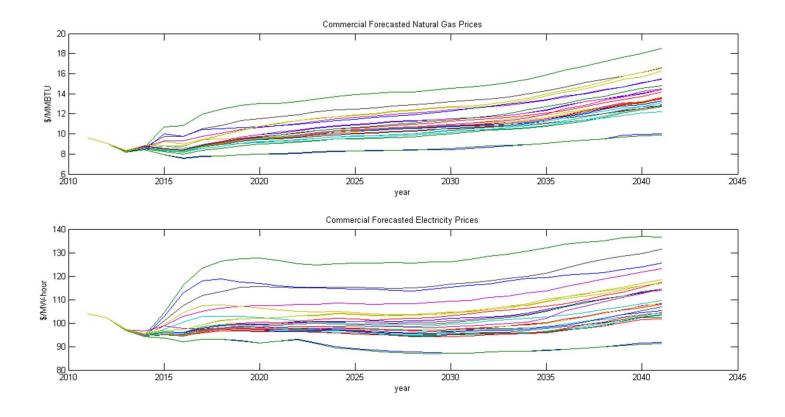
District Energy System

Planning for a CHP system

CHP Capacity Planning Challenges

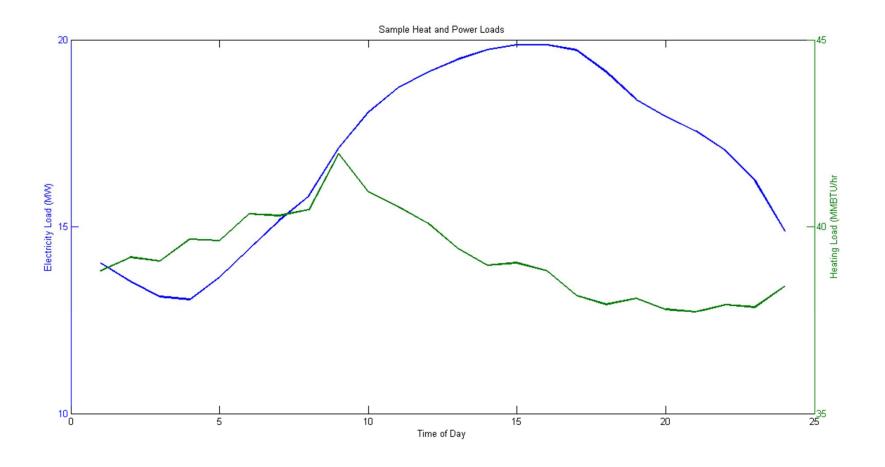
- Institutions and businesses invest in CHP systems to reduce energy costs.
- When to invest and capacity of CHP?

Utah State University (2004)

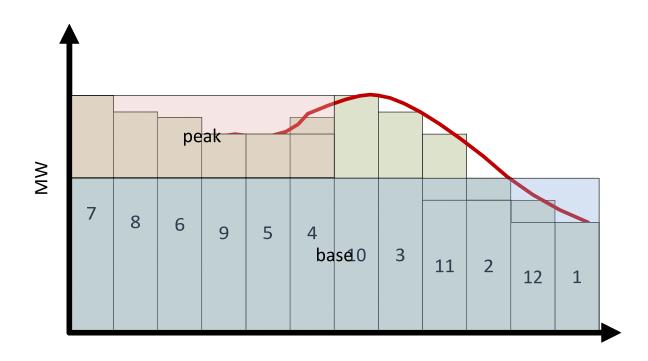

- Designed to cover electrical and thermal base load
- When natural gas prices are high, plant does not economically operate as designed and must operated as a peak shaver

University of Utah (2008)

- Strong financial analysis should consider that electricity and natural gas prices are variable
- Consider sizing of system to meet all electrical or thermal load
- Consider room for growth


Source: DOE Clean Energy Application Center

Uncertain Energy Prices


Source: EIA.gov

Energy Load Profiles for Campus

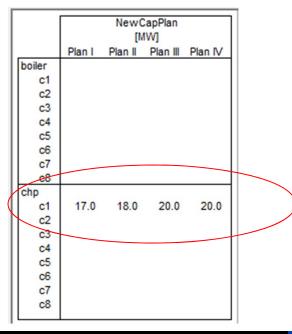
Traditional Approach

- Create Model:
- Electric and Heating Demand Model (winter and summer)

Traditional Model Formulation

Minimize:

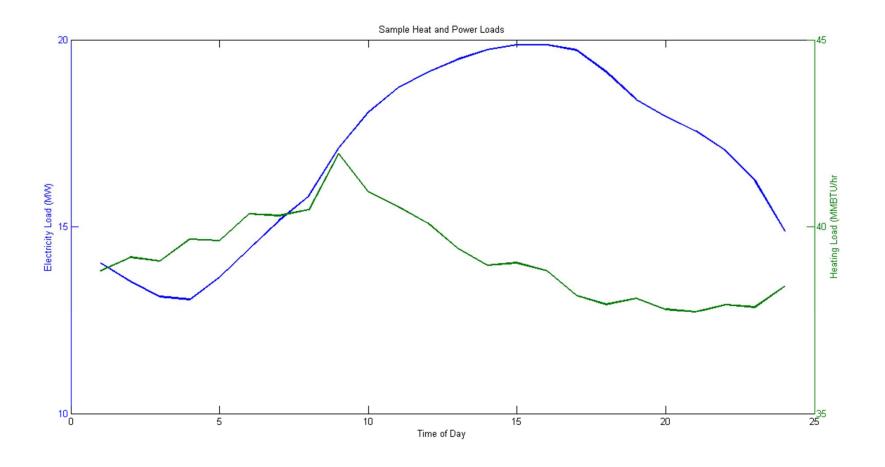
$$\sum_{p} cc_{p}(e_{p} + x_{p}) + \sum_{k} \sum_{s} ic_{k,s} \cdot z_{k,s} + \sum_{k} \sum_{s} \sum_{i} du_{k,s,i} \left(\sum_{p} oc_{p} \cdot y_{p,k,s}\right)$$

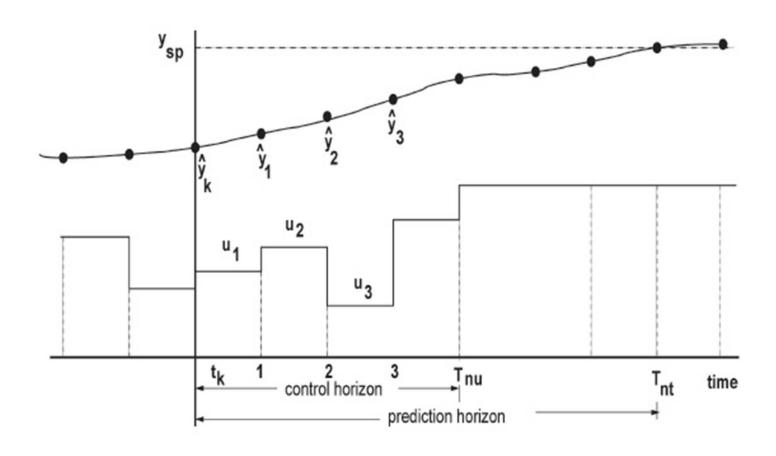

Subject to:

$$\begin{split} e_p + x_p &\geq \sum_k \sum_s y_{p,k,s} \quad for \ all \ p \\ r_{k,s,electric} &= z_{k,s} + du_{k,s,electric}(\sum_p y_{chp,k,s}) \quad for \ all \ k,s \\ r_{k,s,thermal} &\leq du_{k,s,electric}(\sum_p y_{boiler,k,s} + y_{chp,k,s} \cdot f_{hrg}) \quad for \ all \ k,s \\ x_p &\geq 0 \\ y_{p,k,s} &\geq 0 \\ z_{k,s} &\geq 0 \end{split}$$

Traditional Results

		CapacityAllocationPlan [MW] summer															[MW											
	c1				c2				c3				c4				c5				c6				c7			
	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV
boiler				1-1-1-0						- 111												191111111				1111111		
base																												
peak																												
chp																												
base	15.0	15.0	15.0	18.0	15.0	15.1	15.8	18.0	15.0	15.3	16.5	18.0	15.0	15.5	17.4	18.0	15.0	15.6	18.2	18.0	15.0	15.8	19.1	18.0	15.0	15.9	20.0	18.0
peak	2.0	2.6	2.6	2.0	2.0	2.7	2.8	2.0	2.0	2.7	2.9	2.0	2.0	2.5	2.6	2.0	2.0	2.4	1.8	2.0	2.0	2.3	0.9	2.0	2.0	2.1		2.0
	4				• 0																			-				


		CapimportedPlanMW [MW]																										
	c1			c2			c3			c4			c5				c6				c7							
	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV	Plan I	Plan II	Plan III	Plan IV
base																												
summer																											0.10	
winter																												
peak																												
summer	3.00	2.35	2.35	4.00	3.00	2.38	2.47	4.00	3.00	2.40	2.59	4.00	3.00	2.60	3.15	4.00	3.00	2.80	4.31	4.00	3.00	3.00	5.53	4.00	3.00	3.20	6.70	4.00
winter	1.53	1.53	1.53	1.53	1.53	1.54	1.61	1.53	1.53	1.56	1.69	1.53	1.53	1.58	1.77	1.53	1.53	1.60	1.88	1.53	1.53	1.62	2.97	1.53	1.53	1.62	4.12	1.53


LP or NLP formulation, optimizing through discrete scenarios. Lacks system dynamics.

Energy Load Profiles for Campus

Model Predictive Control (MPC)

Problem Formulation Overview

Standard Problem Formulation

max
$$f(x)$$

subject to $g\left(\frac{\partial x}{\partial t}, x, u, p\right) = 0$
h $(x, u, p) \le 0$

- Objective Function (f(x))
- Dynamic model equations that relate trajectory constraints, sensor dynamics, and discrete decisions
- Uncertain model inputs as unmodeled or stochastic elements
- Solve large-scale NLP or MINLP problems (100,000+ variables)

Dynamic Nonlinear DAE Problem

Nonlinear Objective function

$$\min J(x, y, u) = (Cost_{capital} + Cost_{operating} + Cost_{environmental})$$

s.t.
$$0 = f\left(\frac{\partial x}{\partial t}, x, y, u\right)$$

Turbine and boiler dynamics

$$0 = g(x, y, u)$$

Nonlinear demand and operating constraints

$$x, y \in \mathbb{R}^n \ u \in \mathbb{R}^m$$

MPC Framework

Control ℓ_1 -norm Objective

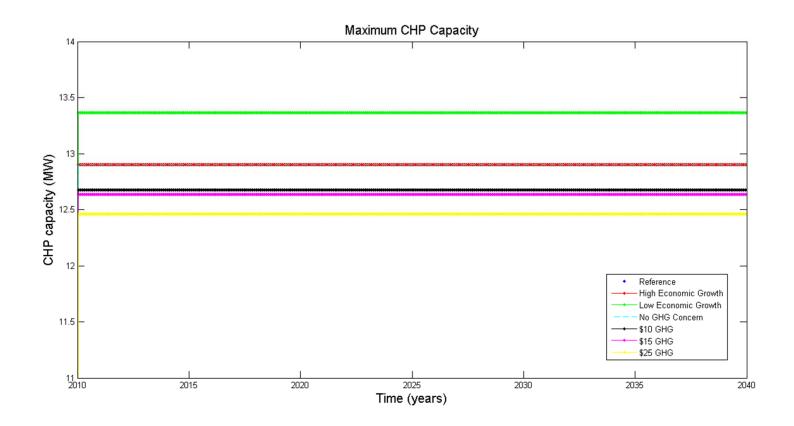
$$\min_{d} \Phi = w_{hi}^{T} (e_{hi}) + w_{lo}^{T} (e_{lo}) \dots$$

$$\dots + (y_{m})^{T} c_{y} + (u)^{T} c_{u} + (\Delta u)^{T} c_{\Delta u}$$
s.t. $0 = f(\dot{x}, x, u, p, d)$

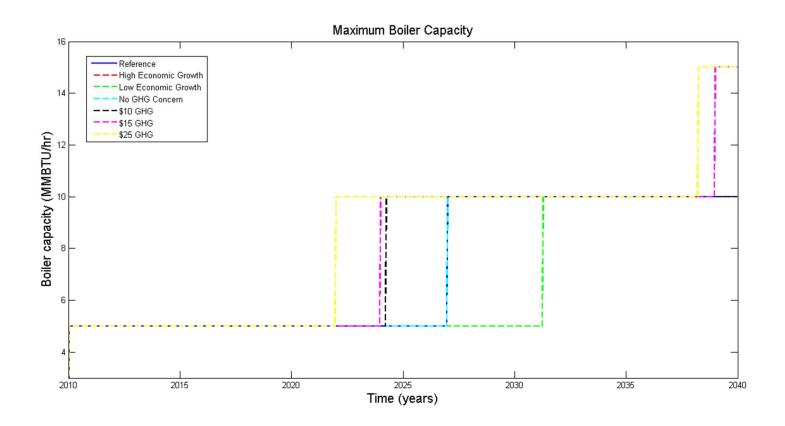
$$0 = g(y_{x}, x, u, d)$$

$$a \ge h(x, u, d) \ge b$$

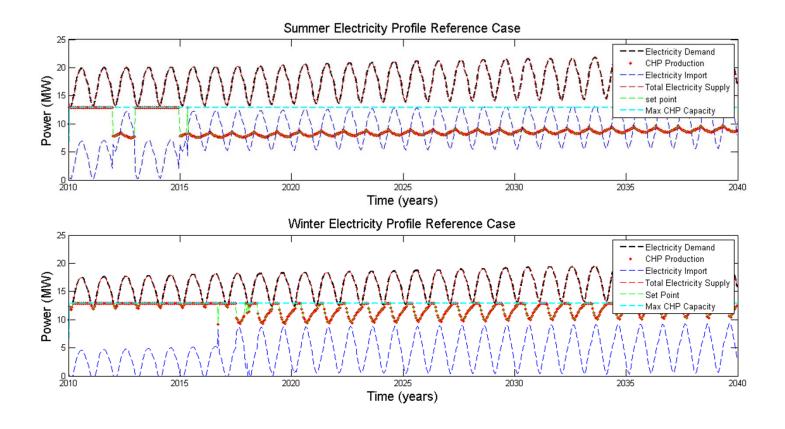
$$\tau_{c} \frac{\partial y_{t,hi}}{\partial t} + y_{t,hi} = sp_{hi}$$

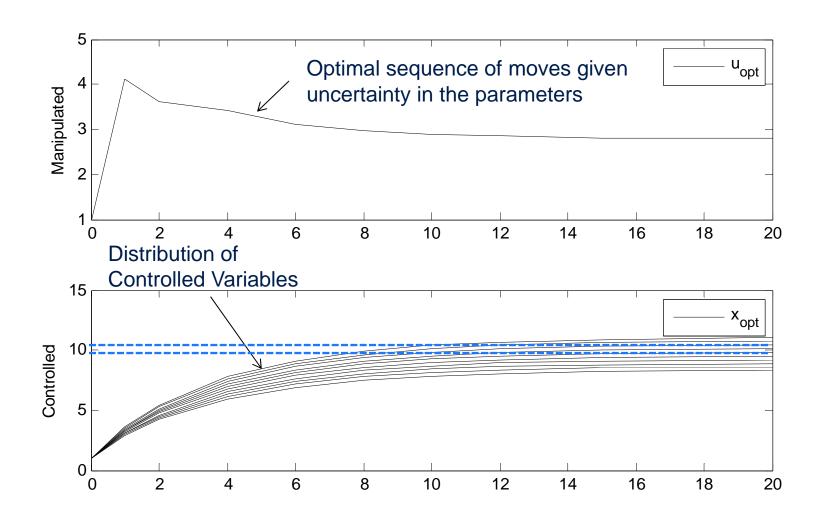

$$\tau_{c} \frac{\partial y_{t,hi}}{\partial t} + y_{t,lo} = sp_{lo}$$

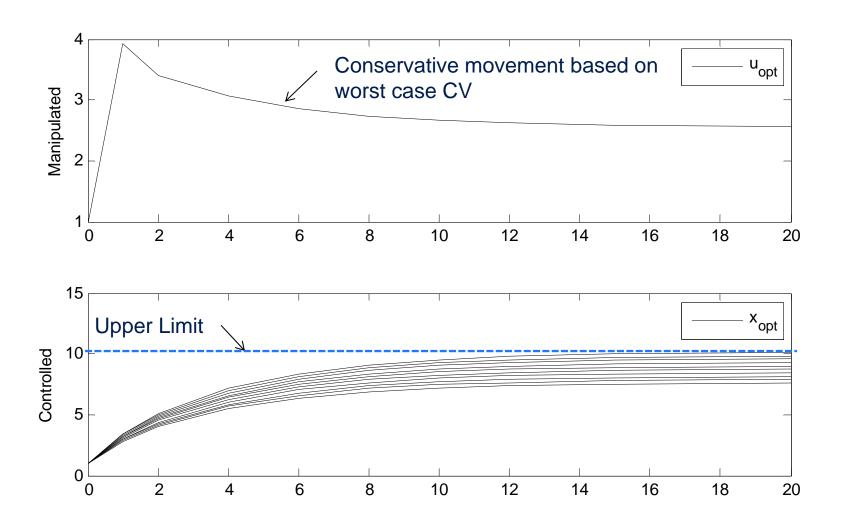
$$e_{hi} \ge (y_{m} - y_{t,hi})$$

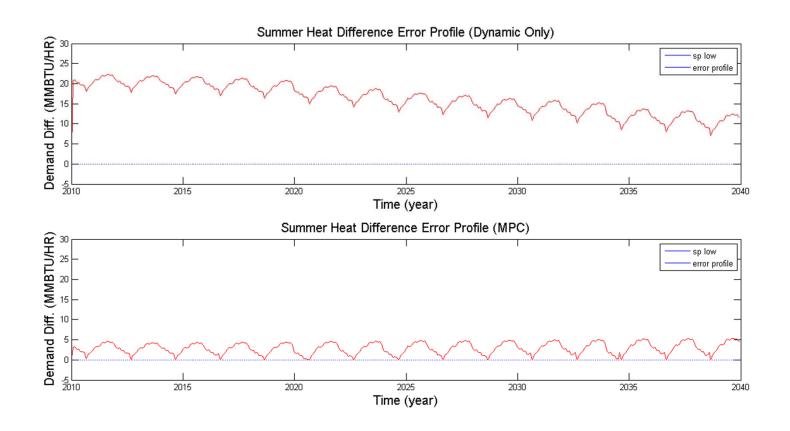

$$e_{lo} \ge (y_{t,lo} - y_{m})$$

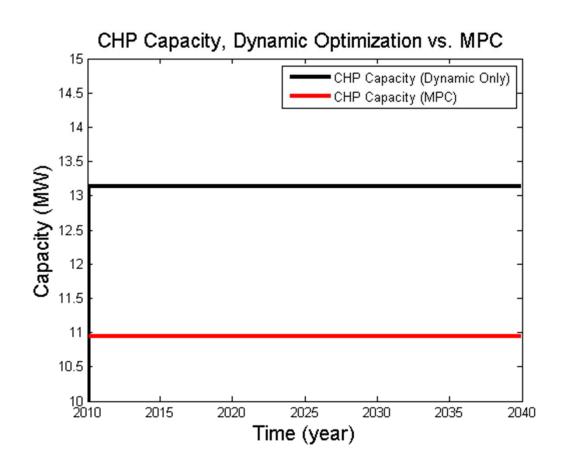
Hedengren, J.D. and Asgharzadeh, R. Implementation Details for Nonlinear Modeling, Data Reconciliation, and Dynamic Optimization


Dynamic Optimization Results


Dynamic Optimization Results


Utilization of Capacity


Optimize to a Target Range


Optimize to a Limit

MPC

Effects on CHP Capacity Planning

APMonitor.com

APMonitor Optimization Suite

The APMonitor Modeling Language is optimization software for mixed-integer and differential algebraic equations. It is coupled with large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, MINLP). Modes of operation include data reconciliation, real-time optimization, dynamic simulation, and nonlinear predictive control. It is available through MATLAB, Python, or from a web browser interface.

Future Development

- Simultaneous Optimization of cases to account for uncertainty in natural gas and electricity prices.
- Effects of selling power to the grid.
- MINLP formulation for more realistic capacity optimization.
- Simulate a true control problem with disturbance variables (variable costs) to simulate uncertainty.