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Abstract

Linear model predictive control is extended to both control and optimize a

product grade schedule. The proposed methods are time scaling of the lin-

ear dynamics based on throughput rates and grade-based objectives for product

scheduling based on a mathematical program with complementarity constraints.

The linear model is adjusted with a residence time approximation to time-scale

the dynamics based on throughput. Although nonlinear models directly ac-

count for changing dynamics, the model form is restricted to linear differential

equations to enable fast online cycle times for large-scale and real-time systems.

This method of extending a linear time-invariant model for scheduling is de-

signed for many advanced control applications that currently use linear models.

Simultaneous product switching and grade target management is demonstrated

on a reactor benchmark application. The objective is a continuous form of

discrete ranges for product targets and economic terms that maximize overall

profitability.
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1. Introduction1

Time-of-day energy pricing for electricity and natural gas pose a challenge2

and opportunity for industrial scale manufacturing processes. In many manufac-3

turing processes in which Model Predictive Control (MPC) is well-established,4

such as downstream refining and petrochemicals, there is lost opportunity when5

advanced process control only operates at certain conditions but must be turned6

off when unit production is lowered [1]. A challenge with changing production7

rates is that the dynamics of a process often change dramatically with through-8

put. Empirical models identified at high throughput rates are often inaccurate9

and lead to poor control performance at low production rates. An opportunity10

with time-of-day pricing is to temporarily reduce the consumption of energy-11

intensive processes for periods when the energy costs are sufficiently high. Dur-12

ing off-peak periods, the production rate is increased or more energy-intensive13

product grades are produced to take advantage of low energy costs. With typ-14

ical daily cycles in energy costs, a cyclical operation forms that the original15

advanced control system may not be designed to follow. When production tar-16

gets are not set to maximize to production constraints, MPC may switch to17

maximize energy efficiency or other secondary objectives. Set point targets tra-18

ditionally come from a real-time optimization (RTO) application that optimizes19

a steady state operating point for the plant [2].20

Segregated control and scheduling structure is historically due to computa-21

tional factors that limit application complexity [3]. As a result, the control and22

scheduling fields have grown independently and without coordination, leading23

to a loss of opportunity from combining the applications [2, 4]. By combining24

process scheduling of set points with control, the inefficiencies of application25

layering are avoided. One such inefficiency that results from application lay-26

ering is the infeasibility on the control layer of individual solutions pass from27

the supervisory layer [5]. Scheduling applications frequently do not consider28

grade transition times because of the large combinatorial look-up table that29

would be required to consider all possible transitions. Additionally, objectives30
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of individual solutions can oppose each other. For example, the controller does31

not consider the most economical route to reach a target set point given by the32

scheduler or steady-state optimizer [6].33

The computational barriers for combined control and scheduling are dimin-34

ished with improved computer hardware and adaptation of algorithms to the35

hardware. Algorithmic barriers are being overcome with a number of key con-36

tributions that are opening several fronts of development [7, 8]. Hardware or37

network resources such as multi-core, cloud-based, and graphics processing units38

(GPUs) provide access to previously inaccessible computing power. However,39

advanced architectures such as GPUs for optimization impose some limitations40

on the type of problems that can be solved because the algorithms have not yet41

been adapted to take full advantage of the architecture [9].42

Economic MPC (EMPC) [10, 11] uses an objective function that maximizes43

a profit function rather than targeting a set point as in standard MPC. Including44

the profit function directly in the MPC application ensures that decisions are45

directly driven by economic considerations. The profit function also provides46

guidance on product scheduling, although work on EMPC up to this point47

has focused on single products. The drawback of this approach is that EMPC48

generally requires a short time horizon such that the longer horizon required for49

scheduling constraints and objectives cannot be met [10]. MPC for supply chain50

management [12] is an alternative strategy that extends the control horizon to51

schedule product movement through a distribution network.52

Dynamic Real-Time Optimization (DRTO) also has an economic objective53

function but augments a steady state Real-Time Optimization (RTO) with se-54

lect differential equations that capture the salient and dominant dynamics of55

a process [13, 14, 15]. One drawback of RTO is that the process must be at56

steady-state [16] to perform data reconciliation. RTO has traditionally been57

applied to processes that do not have grade transitions but are dominated by58

changing economics, disturbances, and slow dominant dynamics. With dynam-59

ics included, DRTO can be solved more frequently than RTO applications and60

can be solved during periods of transient disturbances, during startup, or during61
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shutdown periods. RTO calculations are typically performed every hour to ev-62

ery day while DRTO optimizes the transition between steady-state conditions.63

Like EMPC, DRTO does not manage multiple sequential product campaigns as64

a scheduler.65

Complete integration of scheduling and control requires an extended pre-66

diction horizon to plan the production sequence as well as near-term control67

actions. Two integration approaches are referred to as top-down (add control68

and dynamics to a scheduling application) or bottom-up (add scheduling to a69

control algorithm) [3]. An early top-down implementation includes differential70

and algebraic equations in the scheduling application [17]. Another method is71

the scale-bridging model (SBM) in which a simplified model of process dynamics72

is embedded in the scheduling application [18, 19, 20]. A benefit of this method73

is disturbance rejection [21]. Algorithms include Benders’ decomposition [22]74

for problems that have a large-scale structured form and Dinkelbach’s algorithm75

[23] for non-convex problems that require global optimization methods. Applica-76

tions of combined scheduling and control include batch processes [5, 24], polymer77

reactors [25], parallel Continuously Stirred Tank Reactors (CSTRs) [26], and an78

electrical grid that responds to current and future price signals [27].79

Variable electrical pricing incentivizes reduced consumption during peak80

hours [28]. It is desirable to match generation to consumption, but the adop-81

tion of more renewable energy requires producers and consumers to respond82

to price signals [29, 30, 31]. Energy producers may expose consumers to time-83

of-day pricing to discourage consumption during peak hours [32]. Scheduling84

operation of chemical processing [33, 34], oil refining [35], and air separation85

[36] are some examples of industrial units that can shed electrical load during86

peak hours, typically in the middle of the day. Many cooling-limited processes87

also operate more efficiently at night [34]. Periodic constraints can be used to88

optimize a typical daily cycle.89

Prior work in scheduling and control integration has been centered around90

slot-based, continuous-time scheduling formulations. The benefit of discrete-91

time formulation has been shown [34]. However, the non-linear discrete-time92
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formulation proved computationally difficult. The purpose of this work is to93

restrict the dynamic model to linear form while capturing benefits of the inte-94

gration of scheduling and control. There is a large installed base of advanced95

controls that utilize linear models [1]. A unique aspect of this work is a time-96

scaling algorithm that adjusts the linear dynamic model based on residence97

time calculations with a theoretical foundation for first-order systems. The98

time-scaling approximation is applied to higher order, finite impulse response99

models that are common in industrial practice. These linear models are used in100

the combined scheduling and control application.101

2. Time-Scaling with First-Order Systems102

It is well known that linear MPC performance degrades with changes in the103

actual process time constant or gain [37]. This effect has been quantified for104

MPC where there is model mismatch in the time constant or gain of a first105

order system. A simple example is where the actual system is described by a106

single differential equation as τp
dy
dt = −y + Kpu with a process time constant107

of τp = 1 and a process gain of Kp = 1. An MPC controller with objective108 ∑20
i=1 |yi − 5| drives the response from a set point of 0 to 5. The controller109

model is similar to the process but with variable model time constant of τm and110

gain Km in the equation τm
dy
dt = −y+Kmu. Common industrial practice is that111

acceptable MPC performance can be achieved with gain mismatch less than 30%112

(0.7 ≤ Km ≤ 1.3) and time constant mismatch less than 50% (0.5 ≤ τm ≤ 1.5)113

[37]. The dominant time constant for many industrial processes is characterized114

by the volume (V ) divided by the volumetric flowrate (q) as τp = V/q. The115

explicit solution to the first order equation is given by Equation 1.116

y[k + 1] = exp

(
−∆t

τp

)
y[k] +

(
1− exp

(
−∆t

τp

))
Kp u[k] (1)

where y is the output, u is the input, k is the discrete time step, and t is the117

time. The integrated sum of absolute errors is computed for combinations of118

Km and τm, each between 0.1 and 5.0. The 3D contour plot shows the control119

5



performance over the range of time constant and gain mismatch (see Figure120

1a). A mismatch in the gain (x-axis) and time constant (y-axis) are plotted121

versus the error. The vertical axis (z-axis) is the integrated absolute value of122

the objective function for a set point change from 0 to 5. A lower sum of absolute123

errors equates to better control performance with a minimum at Km = 1 and124

τm = 1 (no model mismatch) as shown in Figure 1b.125
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Figure 1: Performance degradation of MPC with model mismatch

Especially poor performance occurs when the model has a higher time-126

constant (slower) than the actual process. The model in MPC predicts that127

changes happen slower than are actually the case, leading to a controller that is128

more aggressive. This aggressiveness translates into overshoot of the set point129

or even instability. Likewise, a model with a lower gain than the actual process130

also exhibits poor control performance. The model predicts that larger changes131

in the Manipulated Variable (MV) are required to drive the process to the new132

set point. In reality, a smaller adjustment is required and the over-reaction133

of the controller leads to overshoot and possibly instability. A contour plot of134

the performance profile gives insight on the performance as shown in Figure135

2a. Figure 2b shows the performance with the time-scaled model. The parallel136

contour lines show that there is no performance degradation of the controller137

when τm changes such as a production rate decrease or increase. The abil-138
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ity of the MPC to function over all production rates is required for processes139

that respond to utility price or product demand signals. This simple example140

shows the increased effectiveness over a wider range of operating conditions with141

time-scaling while still preserving the linear model.142
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Figure 2: Contour plot of performance degradation of MPC. An objective below 7 is accept-

able, between 7-30 is marginal, and above 30 (red line) is poor performance.

This result nearly agrees with industry observations, shown with dashed143

box in Figure 2. Another feature of this result is that the combination of high144

mismatch in time-constant (τm) and low mismatch in gain (Km) combine to145

form a region of poor control performance. Acceptable or marginal performance146

is also possible if both τm and Km are both too high or too low. If there is low147

mismatch in time-constant (τm) and high mismatch in gain (Km), the controller148

degradation is manifest as sluggishness and only incremental moves in the MV149

but not instability.150

The time scaling approach adjusts either the controller cycle time or the151

discrete model time step based on the change in unit throughput q relative to152

the nominal throughput q̄. τ̄p is the nominal time constant associated with q̄.153

The modified process time constant is τp = q × (τ̄p/q̄) which now has a linear154

relationship to q. If the process model is not easily adjusted, the cycle time155

∆t of the controller is adjusted to ∆t × (q/q̄) to compensate for the changing156

process dynamics. For first-order systems, this gives an exact representation of157
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the nonlinear dynamics without modifying the original linear model.158

3. Selective Time-Scaling159

Multi-variate and higher-order systems may have certain MV to CV relation-160

ships that are known to scale with changing unit throughput while others are161

invariant to throughput changes. Prior work has focused on decomposition of162

fast and slow dynamics [38] or variable time-delay of measurements [39, 40]. For163

systems with multiple MVs and CVs, only the relationships that are sensitive164

to throughput are scaled. These can be identified with a dynamic process sim-165

ulator or else by repeating plant identification tests at low and high production166

rates. A method to scale higher order systems is to transform the linear time-167

invariant (LTI) model into discrete form. In discrete form, the sampling time is168

scaled by (q̄/q) and resampled to preserve the overall model sampling time. As169

an example of this time scaling approach, consider the 7th order system given170

by Equation 2 as a transfer function in terms of Laplace variable s.171

G(s) =
CV (s)

MV (s)
=

1.5

(s2 + 0.6s+ 1) (0.5s+ 1)
5 (2)

Suppose that the dynamics of this system depend on the production rate172

and that the feed rate to the unit is reduced to half of the rate where the model173

is originally identified. When a time-scaling transformation of q/q̄ = 2 is applied,174

the new transfer function is also a 7th order system but with shifted dynamics.175

The steady state gain of the transfer function is preserved with this method of176

dynamic transformation. The resulting transfer function is Equation 3.177

G(s) =
CV (s)

MV (s)
=

1.5

(4s7 + 21.2s6 + 47s5 + 57s4 + 42s3 + 20s2 + 6.2s+ 1)
(3)

The continuous transfer function is first converted to discrete form with178

a sufficiently small sampling time. For this case, a sampling time of 0.5 sec179

is chosen for the continuous to discrete transformation. The discrete model180

sampling time is set to 2 x 0.5 sec = 1.0 sec based on the time-scaling factor181
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Figure 3: Time-scaling of a 7th order system when the feed rate is reduced to half.

and then the model is resampled to 0.5 sec to be consistent with other unscaled182

MV/CV models. Continuous to discrete transformations and discrete model183

resampling for LTI models are standard methods [41] and are not repeated here184

for the sake of brevity. A graphical demonstration of this method is shown in185

Figure 3.186

4. Scheduling and Control Formulation187

An innovation of this work is to combine scheduling and control with lin-188

ear models and quadratic objective functions for fast solution with Quadratic189

Programming (QP) [42] or Nonlinear Programming (NLP) solvers. There are190

multiple methods for formulating tiered price structures. The focus of this work191

is on creating mathematical expressions that have continuous first and second192

derivatives and fit within the QP or a QP with Quadratic Constraint (QPQC)193

framework. In contrast, most modern scheduling applications utilize integer194

variables, often as binary decision variables. Including integers requires MILP195

or MINLP solvers, which are significantly slower and more complex.196

9



4.1. MPCC Steps for Product Pricing197

The method uses a continuous formulation to logical decisions. It uses a198

Mathematical Programs with Complementarity Constraints (MPCC) formula-199

tion to avoid binary variables that would otherwise accommodate tiered pricing200

structures [43]. This formulation uses a step function MPCC, using constraints201

v0y = 0 and v1(1 − y) = 0. v0 and v1 are positive slack variables. The com-202

plementarity constraints force variables to their bounds – resulting in y being a203

binary variable at its bounds [0, 1].204

This condition can be difficult for solvers to find a solution so the condition is205

typically either solved as an equivalent inequality (v0y ≤ 0), a relaxed inequality206

(v0y ≤ ε), or included in the objective function (min v0y) [44]. The step function207

MPCC that turns y from 0 to 1 at switching point xp is shown in Equation 4a-4d.208

min
v0,v1,y

v0y + v1 (1− y) (4a)

209

x− xp = v1 − v0 (4b)
210

v1, v0 ≥ 0 (4c)
211

0 ≤ y ≤ 1 (4d)

212

To preserve the QP structure, the complementarity constraints are included213

in the objective function. If the complementarity constraints are included as214

inequalities a QPQC or NLP solver must be used. With sufficient weighting, the215

complementarity constraints in the objective function are zero at a final optimal216

solution but not necessarily along the search path to the solution. Being zero at217

the solution, the complementarity constraints do not influence other objective218

terms such as minimizing energy consumption or maximizing profit. The MPCC219

switching conditions are combined to create a tiered product pricing structure220

as shown in Figure 4.221

Each product has a different value and potentially a different width of spec-222

ification limits. The positive and negative step functions at different switching223
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expression of switching conditions.

points are combined with pricing information to create an objective function224

with multiple products. The individual steps are shown in the upper subplot of225

Figure 4 while the summation of all steps is shown in the lower subplot. Product226

A ranges from 0 to 1 and has a price of 1 per unit production. Product B ranges227

from 2 to 3 and has a price of 2 per unit production. Product C ranges from 2 to228

3 and has the highest price of 3 per unit production. The facility has a capacity229

of two units of production per hour and the minimum amount of production for230

each product over a 7 hour time window is 2 units of A, 5 units of B, and 3231

units of C. Because C is the most valuable product, any spare capacity should232

favor the production of C. In switching between products, a schedule should233

account for transition material between grades that does not have value. The234

speed of a transition is limited by the maximum move rate of the Manipulated235

Variable (MV ) of 1.6 per hour and the dynamics of the process. The dynamics236

of the process are simply a linear first-order system as τ d(CV )
dt = −CV + MV237

with a time constant τ of 1.0.238

The grade-specific objective function with a quadratic objective, linear equa-239

tion, and simple inequality constraints is added to the process model to opti-240

mize the timing of grade transition switches. A complete statement of the QP241
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optimization problem is shown in Appendix A. The series of three products242

demonstrates a simple combined control and scheduling problem as shown in243

Figures 5 and 6. The cases have different initial conditions and constraints but244

the same underlying model. The first case has an initial condition for CV of245

0.0 at the lower specification limit for product A while the second case starts at246

CV of 4.5.247
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Figure 5: The control and scheduling optimization are combined to determine optimal MV

movement along with the optimal order and quantity of production for each grade.

The optimizer minimizes the amount of products A and B while meeting the248

minimum requirements before transitioning to the next grade. This allows the249

schedule to favor the production of C, the most profitable product. By minimiz-250

ing the amount of products A and B, the scheduler creates a plan that produces251

an extra unit of product C. The combined controller and scheduler anticipates252

grade transitions by shifting the production specification to the upper limit to253

minimize the transition time to the next grade. This is apparent at time 1.0 hr254

and 4.2 hr where the product is already transitioning to the new grade just255

as the minimum required amount for products A and B are produced. The256

combined scheduler and controller adjusts both the control actions as well as257

the order in which the products are produced. In the next example, the initial258

condition is shifted to a different starting location to demonstrate this feature259
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of the approach.260

The computational time is an important factor for control problems where261

the algorithm must return a solution within the cycle time necessary to rejected262

disturbances and maintain process stability. The fully discretized combined263

scheduling and control problem with 3 products and discrete time points has264

2730 variables, 1820 equations, and 910 degrees of freedom. The problem is265

solved on a Dell R815 server with an AMD Opteron 6276 Processor and 64266

GB of RAM. The problem requires 8.6 s to converge with the APOPT solver267

(version 1.0) or 4.0 s with the IPOPT solver (version 3.10). MPC commonly268

uses a warm-start from a prior solution to improve efficiency. With a warm-start269

from the prior time-step, the optimizer requires 0.5 s with APOPT and 3.0 s270

with IPOPT. Active-set solvers (such as APOPT) and interior point solvers271

(such as IPOPT) are both effective for large-scale MPC applications although272

interior point solvers have better performance as degrees of freedom increase [7].273

4.2. Dynamic Cyclic Schedule274

A common method to optimize a schedule in current practice is to place275

products on a fixed grade wheel where each product is visited sequentially in a276

rotation. The cyclic schedule visits all grades in a forward and then a reverse277

order to end up at the original grade and begin the cycle again. If there is a278

sudden demand for a particular grade out of sequence, the product wheel is still279

typically traversed in the grade wheel order but there may be a minimal amount280

of the less desirable grades in favor of the desired grade production. In some281

processes, such as polyolefin production, there are multiple versions of the grade282

wheel. One version of the grade wheel may include only commodity products283

while other wheels or sub-wheels may be a more complex cycles that include284

less frequently produced products.285

The contribution of this work is the discrete time, extended controller and286

scheduler that is also able to produce a cyclic schedule. However, this cyclic287

schedule is not fixed but adjusts the sequence of products automatically when288

updated economic or constraint information is available. The schedule and289
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control action may update every controller cycle (e.g. every minute). Some290

constraints for scheduling are periodic boundary constraints where the final291

condition must be equal to the initial condition, contracted quantities that must292

be produced by a certain date or time, particular equipment limitation, or time-293

of-day transition constraints. An example of a time-of-day constraint is that294

certain grade transitions need start-up or shut-down of auxiliary equipment.295

A constraint may be that the grade transition should happen only during a296

weekday day-time shift where there is adequate operator support.297

The prior example problem is augmented with intermediate production tar-298

gets and a periodic constraint. The scheduler and controller, shown in Figure299

6 produces an optimized schedule and control actions. It is a dynamic rather300

than a static grade wheel because the order of product production and quantity301

is re-optimized every cycle of the controller. The product order or quantity may302

change based on changing customer demand, price signals for electricity or feed303

costs, or disturbances that drive the system to a different state.304
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Figure 6: Optimized schedule with periodic condition, intermediate production targets, and

final production targets. The schedule and control actions adjust to meet constraints and

maximize profit (product C).

The optimized solution meets constraints as well as maximizes the produc-305

tion of product C, the highest value product. The intermediate constraints306
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originate from contracted delivery times and storage capacity of a particular307

product. In this case, the storage capacity of all products is less than 5 units308

of production. This requires two deliveries of product B that are scheduled at309

two equally spaced intervals of 5 hrs. The production of product C exceeds310

the required delivery amount because it is the highest value product. Although311

the initial condition is at product C, the controller immediately targets product312

B to meet the required delivery of 5 units of production at 5 hrs. Without313

the periodic constraint, production of product C would be maximized before314

transitioning because the scheduler evaluates the alternative that a transition315

back to product C results in lost profit potential. However, with the required316

transition back to product C, the scheduler puts excess production of product317

C at the end.318

While this method is capable of producing cyclic schedules, the optimizer319

should begin from current conditions rather than steady-state product condi-320

tions to fully integrate control and scheduling. Cyclic schedules combined with321

online control may lead back to off-spec conditions because of disturbances or322

because the controller is in a transition. Instead, this method is better suited323

to a different set of constraints – production amounts and due dates. These324

constraints give more freedom to the optimizer so the economic objective will325

improve or be equal to the solution with periodic constraints.326

As with adding any constraint, there is potential to make the problem in-327

feasible. Multi-objective optimization statements, such as those used to refine328

a dynamic grade wheel sequence, can also be posed with a rank-ordered set of329

constraints with an explicit prioritization of objectives. The `1-norm dead-band330

formulation is discussed in more detail in [7] and related to combined schedul-331

ing and control production targets in Section 4.3. Posing the constraints as332

multi-objective penalties versus hard constraints allows the problem to remain333

feasible yet still meet the most important objectives in order of priority.334
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4.3. Acceptable Range of Production Quantity335

One drawback to the prior examples is that all spare production capacity is336

typically placed on the highest value product. Over-production of any product337

can have the effect of lowering the selling price because of supply and demand338

market forces. In scheduling, there is often a range of production quantity that339

is acceptable instead of just a single hard limit. To accommodate this, the340

scheduling and control algorithm can use an `1-norm objective function to give341

a target region for the production quantity, rather than one specific hard limit.342

Equation 5 shows a generalized `1-norm control formulation used in this work.343

min
x,CV,MV

Φ = wThiehi + wTloelo + xT cx +MV T cMV + ∆MV T c∆MV

s.t. 0 = f
(
d x
d t , x,

dCV
d t , CV,MV

)
ehi ≥ x− dhi
elo ≥ dlo − x

(5)

In this formulation, Φ is the objective function, x is the production quantity344

per grade. Parameters wlo and whi are penalty matrices for solutions outside345

of the production target region. The slack variable elo and ehi define the error346

of the dead-band low and high limits. Parameters cx, cMV , and c∆MV are cost347

vectors for the production quantity (positive values minimize production within348

region, negative values maximize production within region), the MVs (positive349

values minimize MV quantities such as energy use, negative values maximize350

MV quantity such as pump speed correlated to higher efficiency), and change351

of MVs, respectively. The function f is an open-equation set of equations as352

functions of x, CV , MV , and time derivatives of x and CV . The demand353

targets dlo and dhi define lower and upper target limits for production.354

This range formulation is not used in this work but is presented to demon-355

strate one of many ways that this problem structure can be expanded to meet356

various scheduling needs.357
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5. Application: Continuously Stirred Tank Reactor358

A continuously stirred tank reactor (CSTR) is a common benchmark used359

in nonlinear model predictive control and scheduling applications [34, 3, 16].360

This nonlinear application is used to demonstrate the strength of the approach361

to time-scale based on throughput and combined scheduling & control.362

The linear time-scaled model changes dynamics based on reactor flow rate,363

allowing linear MPC to be used instead of nonlinear MPC. The multi-product364

scheduling objective is used instead of a simple target tracking to combine the365

scheduling and control into one application. Rapid convergence is ensured with a366

linear model and quadratic objective because the problem is convex and because367

QP solvers are efficient for large-scale systems.368

The CSTR application is highly nonlinear because of an exothermic reaction369

that has the potential to cause rapid reaction of stored reactant and thereby370

cause a temperature run-away. The CSTR shares characteristics of many in-371

dustrial processes such as polymer reactors or many refining processes but with372

much simpler mathematics that are amenable to demonstrating a new approach373

for control and scheduling. The liquid full reactor is used to convert compounds374

A ⇒ B with constant liquid density (ρ) and heat capacity (Cp) as shown in375

Figure 7.376

The reaction kinetics are first order and irreversible. Reaction of A to B is377

exothermic with the potential for temperature run-away because of the exponen-378

tial dependence of reaction rate on temperature, typical of an Arrhenius form379

for reaction rates. The reactor is well-mixed with reactor concentration and380

temperature equally distributed and also equal to the outlet measured values.381

The reactor temperature is regulated with a cooling jacket liquid temperature,382

Tc. The cooling jacket temperature is normally regulated by adjusting the rate383

of cooling or the coolant flow rate but in this model the jacket temperature384

is assumed to be controlled directly and the dynamics are approximated by a385

maximum rate of change.386

The dynamics of the CSTR are dictated by a species and energy balance as387
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Figure 7: Diagram of the well-mixed and liquid-full CSTR. The A ⇒ B reaction is exothermic

and controlled by a cooling jacket fluid.

shown in Equations 6-7 and in Figure 8.388

V
dCA
dt

= q(CA0 − CA)− k0 V e
−EA
RT CA (6)

389

ρCpV
dT

dt
= qρCp(Tf − T )− k0 V e

−EA
RT CA∆Hr − UA (T − Tc) (7)

where V is the volume of the reactor, CA is the concentration of reactant A,390

q is the volumetric flowrate, CA0 is the inlet concentration of reactant A. The391

energy balance includes terms UA as an overall heat transfer coefficient times392

the tank surface area, Cp as the reactor fluid heat capacity, ρ as the fluid density,393

Tf as the temperature of the feed stream, T as the temperature of reactor, and394

Tc as the temperature of cooling jacket fluid. Terms related to the reaction395

include ∆Hr as the heat of reaction, EA as the activation energy, R as the396

universal gas constant, and k0 as the pre-exponential factor. Table 1 lists the397

CSTR parameters and the associated values.398

A regression is shown with varying orders for an Output Error (OE) time-399

series model in Figure 8. Second and third order models have nearly the same fit400

to the nonlinear regression while a first order model is insufficient in capturing401
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Table 1: Reactor Initial Conditions and Parameter Values

States Description Initial Condition

CA Concentration of reactant A 0.1 mol
L

CB Concentration of product B 0.9 mol
L

T Reactor temperature 386.82 K

Manipulated Variables Description Initial Value

Tc Cooling jacket temperature 300 K

Parameters Description Value

q Volumetric flowrate 12 m3/hr

V Tank volume 40m3

CA0 Feed concentration of reactant A 1molL

UA Overall heat transfer coefficient 5000 W
K

Cp Heat capacity of reactor fluid 0.239 J
kg K

ρ Density of reactor fluid 1000 kg
m3

Tf Feed temperature 350 K

∆Hr Heat of reaction (exothermic) −11.95MJ
mol

k0 Pre-exponential factor, rate constant 1.8e10 1
hr

EA/R Activition energy divided by R 8750K

the process dynamics. A second simulation is performed with the production402

rate reduced from 12 m3/hr to 6 m3/hr.403

The concentration response of the reactor at half production rate is shown404

in the bottom subplot of Figure 8 with the second order time-scaled model that405

originally fit with simulated data from the full production rate simulation. The406

time-scaled approach is effective at capturing the essential process dynamics407

without re-fitting a process model at low rates.408

One reactor makes multiple products by varying the concentrations of A and409

B in the reactor. The cooling jacket temperature Tc is the manipulated variable410

in this optimization. The production rate of the reactor changes throughout a411

typical 24-hour period because of time-of-day pricing that necessitates a cut-412
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Figure 8: Step tests in the jacket cooling and linear model regression of the step response.

back of production during peak energy prices and when cooling capacity is413

limited. The production rate is modified by adjusting the total flow through414

the reactor (q) between half-rates at 6 m3

hr and full-rates at 12 m3

hr .415

There is demand for three products with quantities that must be met in the416

schedule over a 48-hour horizon. The product descriptions and quantities are417

shown in Table 2.418

Table 2: Product Summary with Demand and Price

Product CA Demand Price

(mol/L) (m3) ($/m3)

P1 0.12± 0.01 120 9

P2 0.25± 0.01 130 11

P3 0.35± 0.01 150 6

The most valuable is product P2 while the least valuable product is P3.419

Although P3 has the lowest price, it also has the highest required quantity. Spare420

capacity in the production facility favors product P2. A potential drawback to421

always switching to P2 at the end of a campaign is that there is lost material422
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during the transition back to P2. An improved strategy is to make excess P2423

when the schedule requires it to meet a minimum target demand instead of424

transitioning back to P2 near the end of the time period. The combined control425

and scheduling solution is shown in Figure 9 over a 48 hour time period with 6426

minute time intervals. The problem is discretized with orthogonal collocation427

on finite elements. Each 6 minute segment is integrated with Radau quadrature.428

The resulting QP or QPQC problem is solved with a nonlinear programming429

solver with a simultaneous solution of the objective and equations. If specific430

control action is needed at more frequent intervals, the first steps of the horizon431

could be adjusted to meet a required controller cycle time. This would develop432

a near-term move plan and simultaneously solve the scheduling optimization433

problem with one application. The feed flow rate is decreased to half each434

day between the hours of 08:00 and 18:00 as is done with some energy intesive435

processes that exploit time-of-day electricity pricing. The addition of production436

rate as a decision variable and the associated cooling contraints is outside the437

scope of this work because the model becomes nonlinear. The simultaneous438

control and scheduling of production rate and product grade sequence is the439

topic of a future publication (see [34] for preliminary results). The top sub-440

plot is the sequence of control moves to drive the system to produce on-spec441

products and transition between products. The middle sub-plot shows the grade442

specifications and the concentration in the reactor. The bottom sub-plot is the443

total production of each grade with the minimum required as indicated by the444

circle markers at hour 48. The production rate is non-zero during transition445

periods because the total rate includes production of off-spec as well as on-spec446

grade material.447

The control influences the scheduling solution and the scheduling solution448

gives the controller target values. The controller adjusts the jacket temperature449

(Tc) to minimize the transition time between grade specifications and remain450

within the grade limits. The controller response improves with knowledge of the451

scheduling targets because pro-active pre-transition movement shows that the452

product specification are pushed to an upper limit right before the transition453
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Figure 9: Combined control and schedule optimization results.

begins. One factor that affects the schedule is the speed of the transition from454

one product to another. The control dynamics are due to limitations in the455

manipulated variable movement and the process dynamics affecting the speed456

of attaining concentration range. The speed of the control response is factored457

into the schedule as lost production time when transition (off-spec) material is458

produced. Blending of transition material is one strategy to dilute the off-test459

material in prime products. This strategy is not considered in this approach460

but could be included as a constraint on the amount of reblend fraction that is461

allowed in the final product.462

The scheduling profit function is an application and adaptation of Equations463

4a-4d. Figure 10 displays the slack and step function for each of the product464

limits along with the overall profit function.465

The slack variables and complementarity conditions combine to create dis-466

crete steps with a function that has continuous first and second derivatives.467

For this problem, the complementarity constraints were included as constraints468

and in the objective function to assist the optimizer and ensure binary decision469
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Figure 10: Profit function and individual step functions for each product.

variables. The transition time to each product is not specified beforehand but470

is a result of the optimization solver finding a sequence of grade transitions that471

maximize overall profit. The individual steps of Figure 10 occur when one of the472

product grade limits is crossed. One of each of the slack variables for each step473

is non-zero before or after the step. The slack variables guide the solver with a474

continuous form of a discrete grade switching function. The overall solution is475

intuitive because the optimizer produces excess product P2 (highest volumetric476

price) but meets only the minimum production quantities for the lower value477

products (P1 and P3).478

A weakness of this method is that the CSTR is nonlinear but the solution is479

computed with a linearized model. Linearization neglects features of the process480

that may be optimized if a suitable process model more accurately represented481
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the physical process. A key contribution of this work is that the solution to482

the combined control and scheduling problem is relatively computationally in-483

expensive in comparison to a full nonlinear solution. In this case, the linearized484

model with time-scaling has a total of 22, 048 variables and 16, 640 equations485

and is solved on a Dell R815 with an AMD Opteron 6276 Processor and 64486

GB of RAM. After initialization, the problem requires 23.7 s to converge with487

the IPOPT solver. This is representative of the cycle time of the application488

as it repeatedly solves to reject disturbances and as new objective information489

or demand constraint information is available. This speed, coupled with the490

inclusion of a process model sufficient for control, allows this formulation to be491

utilized for on-line control, on top of providing an advanced schedule. This is492

the epitome of combining scheduling and control – a fully unified optimization493

that can replace both layers.494

A nonlinear version of this application is future work that will be reported495

in a subsequent publication. A key difference with the full nonlinear solution496

is that the solution in this work is several orders of magitude faster because497

of the quadratic objective and linear time-scaled model. Although combined498

scheduling and control with linear models or feedback linearization does not499

always accurately predict a highly nonlinear system, the linearized solution is a500

valuable starting point to initialize a nonlinear solution. Also, many processes501

are not highly nonlinear and this approach is likely suitable for systems that are502

already controlled with linear MPC.503

6. Conclusion504

A combined scheduling and control application is enabled by an MPCC ob-505

jective function, discrete-time, and linear time-scaling of process dynamics based506

on production rate changes. The objective of this work is to extend traditional507

linear MPC applications with a scheduling objective that allows for rapid con-508

vergence for real-time applications. One drawback of this work is that nonlin-509

earities are not included in the application. These nonlinearities are the subject510
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of future work. The method is tested on a CSTR application that includes three511

grades over a 48 hour time horizon with 6 minute time intervals. The embed-512

ded controller simulates realistic transition times between each of the products.513

The scheduling objective determines the order and quantity of production at514

each grade even with half-rate reduction during peak electricity demand. The515

formulation is sufficiently fast enough, and includes enough process dynamics,516

to be utilized in on-line control. This presents a fully unified optimization that517

fulfills the roles of, and can replace, both control and scheduling for a compa-518

rable system. Although the method is demonstrated on the CSTR application,519

this formulation can be applied to other systems by replacing the model, pricing520

structure, and constraints of the scheduler.521
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Appendix A. Combined Scheduling and Control Example525

The following APMonitor model and Python script detail the variables,526

equations, and commands necessary to reproduce the combined scheduling and527

control presented in Section 4.1. The application uses two elements including528

the model file (schedule.apm) and a data file (schedule.csv). The data file is529

a list of times between 0 and 7 with time increment 0.1 and another column530

labeled last that is 0 everywhere except the end point as 1. The parameter last531

is to enforce the constraints that a certain amount of each product should be532

produced. All source files are available from https://github.com/APMonitor.533

Listing 1: Constants and Parameters
534
1 C o n s t a n t s535

2 n = 3 % products536

3537

4 P a r a m e t e r s538
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5 % t r a n s i t i o n po int s f o r s t eps539

6 b [ 1 ] = 0540

7 b [ 2 ] = 1541

8 b [ 3 ] = 2542

9 b [ 4 ] = 3543

10 b [ 5 ] = 4544

11 b [ 6 ] = 5545

12 % step up (+) or down (−)546

13 s g [ 1 ] = 1547

14 s g [ 2 ] = −1548

15 s g [ 3 ] = 1549

16 s g [ 4 ] = −1550

17 s g [ 5 ] = 1551

18 s g [ 6 ] = −1552

19 % magnitude o f s tep funct i on553

20 m [ 1 ] = 1554

21 m [ 2 ] = 1555

22 m [ 3 ] = 2556

23 m [ 4 ] = 2557

24 m [ 5 ] = 3558

25 m [ 6 ] = 3559

26 % demand f o r each product560

27 d [ 1 ] = 2561

28 d [ 2 ] = 5562

29 d [ 3 ] = 3563

30 % f l owra t e564

31 q = 2565

32 % manipulated va r i ab l e566

33 u = 0.0 >= 0.0 <= 8.0567

34 % zero everywhere except l a s t point568

35 l a s t = 0569
570

Listing 2: Variables and Equations
571
1 V a r i a b l e s572

2 x = 0.0573

3 % ind i v i dua l step func t i on s574

4 w [ 1 : 2 ∗ n ] >= 0 , <= 1575

5 % s l a ck va r i a b l e s576

6 % should be p o s i t i v e when x − b i s negat ive577

7 s 1 [ 1 : 2 ∗ n ] >= 0 , <= 1000578

8 % should be p o s i t i v e when x − b i s p o s i t i v e579

9 s 2 [ 1 : 2 ∗ n ] >= 0 , <= 1000580

10 % p r o f i t funct i on581

11 p f c n = 0 >= 0 <= 3582

12 % to t a l p r o f i t at each time step583

13 p r o f i t584

14 % which i s product i s being produced585

15 prod [ 1 : n ] = 0586

16 % i n t e g r a l o f product587

17 i p r o d [ 1 : n ] = 0588

18589

19 I n t e r m e d i a t e s590

20 % sum steps591

21 z [ 0 ] = 0592

22 z [ 1 : 2 ∗ n ] = z [ 0 : 2 ∗ n −1] + s g [ 1 : 2 ∗ n ] ∗ m [ 1 : 2 ∗ n ] ∗ w [ 1 : 2 ∗ n ]593

23594
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24 E q u a t i o n s595

25 p f c n = z [ 2∗ n ]596

26 p r o f i t = p f c n ∗ q597

27 d ( x ) / d t = −x + u598

28 prod [ 1 ] = w [ 1 ] − w [ 2 ]599

29 prod [ 2 ] = w [ 3 ] − w [ 4 ]600

30 prod [ 3 ] = w [ 5 ] − w [ 6 ]601

31 d ( i p r o d [ 1 : n ] ) / d t = prod [ 1 : n ] ∗ q602

32 x − b [ 1 : 2 ∗ n ] = s 2 [ 1 : 2 ∗ n ] − s 1 [ 1 : 2 ∗ n ]603

33 l a s t ∗ ( i p r o d [ 1 : n ] − d [ 1 : n ] ) >= 0604

34 % inc lude as a l t e r n a t i v e to ob j e c t i v e ve r s i on605

35 %s1 [ 1 : 2 ∗ n ] ∗ (w[ 1 : 2 ∗ n ] ) <= 0606

36 %s2 [ 1 : 2 ∗ n]∗(1−w[ 1 : 2 ∗ n ] ) <= 0607

37 m i n i m i z e 10000 ∗ s 1 [ 1 : 2 ∗ n ] ∗ ( w [ 1 : 2 ∗ n ] )608

38 m i n i m i z e 10000 ∗ s 2 [ 1 : 2 ∗ n ]∗(1− w [ 1 : 2 ∗ n ] )609

39 m a x i m i z e p r o f i t610
611

Python Script for Combined Control and Scheduling
612

from a p m import ∗613

614

s = ' http :// byu . apmonitor . com '615

a = ' products '616

# set up problem617

a p m ( s , a , ' c l e a r a l l ' )618

a p m _ l o a d ( s , a , ' schedule . apm ' )619

c s v _ l o a d ( s , a , ' schedule . csv ' )620

# crea t e manipulated va r i ab l e621

a p m _ i n f o ( s , a , 'MV' , 'u ' )622

a p m _ o p t i o n ( s , a , 'u . s ta tu s ' , 1 )623

a p m _ o p t i o n ( s , a , 'u . dcost ' , 1 . 0 )624

a p m _ o p t i o n ( s , a , 'u . dmax ' , 0 . 16 )625

a p m _ o p t i o n ( s , a , 'u . upper ' , 8 . 0 )626

a p m _ o p t i o n ( s , a , 'u . lower ' , 0 . 0 )627

# set opt ions628

a p m _ o p t i o n ( s , a , ' nlc . imode ' , 6 )629

a p m _ o p t i o n ( s , a , ' nlc . max iter ' ,200)630

a p m _ o p t i o n ( s , a , ' nlc . s o l v e r ' , 3 )631

a p m _ o p t i o n ( s , a , ' nlc . nodes ' , 2 )632

# so lve combined schedu l ing and cont ro l633

o u t p u t = a p m ( s , a , ' s o l v e ' )634

pr in t ( o u t p u t )635

# r e t r i e v e s o l u t i on636

s o l = a p m _ s o l ( s , a )637
638
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