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Introduction 

 
 Advances in biomedical research have lead to an increase of experimental data to be 

interpreted in the context of reaction pathways, molecular transport, and population dynamics. 

Kinetic modeling is one way employed to interpret this data and is used in the pharmaceutical 

industry in developing clinical trials for new medications [1]. Kinetic modeling’s role will only 

increase as large pharmaceutical companies look to scale back and be more focused, spending 

less on R&D while expecting more results. We propose that kinetic modeling offers one such 

mechanism. 

 One collection of kinetic models is built on the System Biology Markup Language 

(SBML), which includes hundreds of contributions.  Many models in this collection have 

detailed reaction metabolic pathways that describe biological systems, including cause and effect 

relationships in the human body.  While simulations of these biological systems have been 

successfully applied for many years, the alignment to available measurements continues to be a 

challenge. The best available solution techniques continue to limit the size of the reconciliation 

of models and measurements to small and medium size problems. This limits the usefulness of 

the models due to the many assumptions and simplifications that are required in order for the 

optimizer to be able to perform the parameter estimation.  

 Recent developments may have changed this situation: an optimization technique known 

as the simultaneous approach has shown promise in efficiently optimizing large models 

(thousands of variables and parameters) [2]. In this method, the model and optimization problem 

are solved simultaneously, as opposed to the traditional approach of solving the differential and 

algebraic equation (DAE) model sequentially.  In the sequential approach, each iteration of the 

optimization requires the solution of the DAE model. Much of the recent development for the 

simultaneous approach has occurred in the petrochemical industry, where on-line process control 

applications require optimization of nonlinear models with many decision variables in the span 

of minutes. The applications drive petrochemical processes to produce more from existing 

processing units, stay within safe operating conditions, and minimize environmental emissions.  

Using the same solution techniques, major advances in the biological systems area are possible. 

One software that takes advantage of the simultaneous approach is APMonitor (APM).  

 

Results 

 
 To verify that APM can accurately simulate biological models it was used to simulate a 

toy model and the results were compared to literature values. The model used is a basic model 

describing the HIV virus over thirty days with nine parameters, three variables and three 

differential equations [3]. APM was successfully able to replicate the results published in the 

literature. APM simulation was also verified with a model that describes the dynamics of HIV 



infection of CD4+ T cells [4]. This model is a little larger with nine parameters, four variables, 

and five DAE. This model was obtained from the BioModels Database and was manually 

converted to a format that could be used by APM. It was found that APM could accurately 

simulate this model and match values from literature and simulations in MATLAB.   

 Once it was shown that APM could simulate biological models accurately the next step 

was to verify the parameter estimation capabilities of APM. This was done using a HIV model 

similar to those mentioned above. In order to perform the parameter estimation the objective 

function was set to minimize the absolute error between the model and synthetic data. There was 

measurement noise of plus or minus 0.5 log order added to the synthetic data. All six parameters 

values were changed to see if APM could find the correct parameter values from several 

different starting points. It was found that APM was able to accurately find the correct parameter 

values. Figure 1 shows the concentration of HIV viruses from the synthetic data and the 

predicted model values with the estimated parameters. As seen in the figure APM was able to 

correctly find the parameters that allowed the model to fit the synthetic data. With this same 

model it was shown that APM allows for parallel processing, allowing multiple parameter 

estimations to be run simultaneously.  

 
 

Figure 1: Shows the fit of APM model with estimated parameters to the synthetic data 

 

 Before the capability of APM’s parameter estimation could be applied to large-scale 

biological models it was necessary to create an automatic conversion from the Systems Biology 

Markup Language (SBML) to a version usable by APM. This not only eliminates the human 

error in the conversion process, but it also allows for the quick evaluation of many publicly 

available models.  

 This conversion tool was used to automatically convert a model that describes the ErbB 

signaling pathways [5].  This model shall be referred to as the ErbB model. It is a large model 
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with 225 parameters, 504 variables and 1331 DAEs. In the article the authors estimated 75 of the 

initial conditions and rate constants out of the 229 identified by the sensitivity analysis. This was 

accomplished through simulated annealing which required 100 annealing runs and 24 hours on a 

100-node cluster computer on average to obtain just one good fit. APM is currently able to 

simulate the model and properly shows the dynamics found in the literature. It is believed that 

values do not match the literature values due to the limitations found in the conversion tool as it 

does not properly handle piecewise functions. Even if the literature values are not replicated 

exactly, parameter estimation can still be preformed. This is the next step in the project. The 

objective function will minimize the absolute error between the model and two measurable 

concentrations. Instead of using simulated annealing to estimate the parameters, a multi-start 

optimization will be used. To accomplish this, the parameter values will be randomly varied 

from 2.5 log order from the prior value. Many of these runs will be conducted and the results will 

be compared to those found using simulated annealing. If it is found that the design space is too 

flat or if there are too many optimums other optimizing techniques will be considered such as 

simulated annealing or a genetic algorithm.  

 In addition to the HIV and ErbB model parameter estimation, a benchmark test of 

Nonlinear Programming (NLP) solvers was conducted on the test set of over 400 curated models 

in the BioModels database. The test compares the performance of APOPT, BPOPT, IPOPT, 

SNOPT, and MINOS on this class of problems that is characterized by challenges unique to 

computation biology. This benchmark study points to a number of characteristics of interior 

point and active set methods for solving large-scale and sparse systems of differential and 

algebraic equations. 
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