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Abstract— This paper presents a new concept for aerial
recovery of Micro Air Vehicles (ARMAVs) using a large
mothership and a recovery drogue. The mothership drags a
drogue attached to a cable and the drogue is controlled to match
the flight patten of the MAV. This paper uses Gauss’s Principle
to derive the dynamic model of the cable-drogue systems. A
controllable drogue plays a key role in recovering MAVs in
windy conditions. We develop a control approach for the drogue
using its drag coefficient. Simulation results based on multi-
link cable-drogue systems present the feasibility of the aerial
recovery concept and the controllability of the drogue.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) have become an essen-

tial tool for warfighters. While high-altitude, long-endurance

UASs like the Predator and the Global Hawk provide per-

sistent intelligence, surveillance, and reconnaissance (ISR)

capabilities, they are a scarce resource that cannot be given

specific data-gathering tasks by individual troops. At the

other end of the spectrum are backpackable Micro Air

Vehicles (MAVs), with wingspans of less than 15 inches,

that theoretically can be carried by every warfighter.

Backpackable MAVs enable warfighters on the ground to

gather time-critical, over-the-hill ISR information. However

retrieving the MAV is problematic because landing the

vehicle near the soldier could disclose his/her location to

an enemy. Another potential application of MAVs is collect-

ing battle damage information. Again for this application,

retrieval of the MAV after it has performed its mission is

difficult because target locations are often deep in enemy

territory, and the MAV may not have enough fuel to return

home.

The relatively low cost of MAVs suggests that they may

be expendable; thereby removing the need for recovery.

However, even if the costs are low, MAVs still contain

critical and often classified technology which needs to be

kept out of enemy hands. One option is to destroy the MAV

or damage the electronics so that it cannot be reused or

reverse engineered. However, most of the solutions that have

been proposed require additional payload on the MAV. Cost

considerations and the potential that MAV technology could

fall into enemy hands will limit the use of this technology.
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Innovative recovery techniques are therefore critical to

ubiquitous use of MAV technology. The primary difficultly

with aerial recovery is the relative size and speed of the

mothership compared to the MAV. Aerial recovery is much

like aerial refueling where the goal is to extend the oper-

ational lifetime of the asset. However, in aerial refueling,

the fighter jet and the tanker can match their airspeeds,

which is not possible with MAVs and larger aircraft. One

potential solution to this problem is to use helicopters for the

recovery operation. However, helicopters produce significant

prop wash making it difficult for the MAV to operate in its

vicinity.

Fig. 1. This figure shows the baseline concept described in the paper. The
mothership recovers a MAV by towing a long cable attached to a drogue.
The drogue is actuated and can maneuver and communicate with the MAV
to facilitate successful capture. The MAV uses missile guidance strategies
to intercept the drogue.

Our approach is motivated by recent advances on the

dynamics of towed cable systems, where a towplane drags

a cable with a drogue at the end. In early work on this

problem, [1] shows that if the towplane is in a constant-

angular-rate orbit of radius R, and the drogue has sufficient

aerodynamic drag, then the motion of the drogue has a

stable orbit of radius r ≪ R. Since the angular rates of

the towplane and the drogue are identical, the speed of

the drogue will be significantly less than the speed of

the towplane. Reference [2] shows that the towplane-cable-

drogue system is differentially flat with the position of the

drogue being the flat output. In essence, this means that

the trajectory of the towplane is uniquely prescribed by the

motion of the drogue. Reference [2] uses the differential

flatness property to design a path planning algorithm for the

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB04.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4729



towplane with the objective of minimizing the orbit radius of

the drogue. In more recent work, [3] and [4] give a detailed

description of the dynamics of circularly towed drogues and

design strategies for moving from one orbit configuration to

another. The objective in [3] and [4] is precision pickup and

delivery of payloads on the ground by a fixed-wing aircraft.

Therefore, the focus in [2] [3] [4], is on minimizing the orbit

radius of the drogue.

For aerial recovery of MAVs, we take a slightly different

approach to the problem. As shown in Figure 1, rather than

attempting to minimize the radius of the orbit of the drogue,

our objective will be to place the drogue in a stable orbit

whose radius r is greater than the minimum turning radius

of the MAV. We note that allowing the drogue to have a

larger radius significantly simplifies the challenges [3] [4].

The basic idea is to maneuver the towplane, or mothership,

so that the drogue enters a stable orbit at an airspeed that

is slightly below the nominal airspeed of the MAV. The

MAV will then be maneuvered to enter the same orbit at

its nominal airspeed and will therefore overtake the drogue

with a relatively slow closing speed.

In this paper, we focus on modeling the multi-link cable-

drogue dynamics using Gauss’s Principle. We also derive a

potential control strategy for the drogue using a controllable

aerodynamic drag coefficient. Simulations illustrate the aerial

recovery concept.

II. DYNAMICS OF CABLE-DROGUE SYSTEMS

The mathematical model of the cable-drogue or towed-

cable systems is well established in the literature for both

air and underwater environments [2] [3] [5] [6] [7]. As is

typical, we will use a discretized finite element or lumped

mass representation of the cable dynamics.

Using the approaches in [2] [3] [5] [6] [7], the internal and

external forces need to be described explicitly. Reference [2]

develops towed-cable dynamics based on the Lagrange ap-

proach which requires an explicit derivation of the tension

in the cable. Reference [3] derives the equations of the

motion by introducing cable attitude angles. Unfortunately,

both of these approaches generate complicated equations for

the system dynamics model.

As an alternative, we develop the mathematical model of

the cable-drogue systems based on the work of Udwadia

and Kalaba [8]. A similar method was used in the context

of path planning in [9]. The method is especially well-

suited to problems with complex internal forces. Rather than

computing the force directly, the kinematic constraints are

employed.

A. Gauss’s Principle

Consider a system of n particles with mass

m1, m2, ..., mn. Let the vector pi = (xi, yi, zi)
T represent

the position of the ith particle in a rectangular inertial

reference frame [8]. We assume that the ith particle is

subjected to the given impressed force Fi(t), so that its

acceleration without constraints would be given by the

vector ai = Fi(t)/mi. The three components of the vector

ai correspond to the accelerations of the ith particle driven

by Fi in the three mutually perpendicular coordinate

directions. Thus the equation of motion without constraints

on the particles of the system, can be written as

Ma(t) = F(x(t), ẋ(t), t), (1)

where

F(t) = (FT
1 , FT

2 , ..., FT
n )T

a(t) = (aT
1 , aT

2 , ..., aT
n )T

x(t) = (pT
1 , pT

2 , ..., pT
n )T

M = Diag(m1, m1, m1, m2, ..., mn, mn, mn).

In the presence of constraints, the acceleration of the

particles at time t will differ from a(t) and we donate

this acceleration by the 3n-vector ẍ(t) = (p̈T
1 , p̈

T
2 , ..., p̈

T
n )T .

Gauss’s principle asserts that among all the accelerations that

the system can have at time t which are compatible with

the constraints, the accelerations that actually materialize are

those that minimize

G(ẍ) = (ẍ − a)T M(ẍ − a)

= (M1/2ẍ − M1/2a)T (M1/2ẍ − M1/2a). (2)

Assume that the m constraints can be expressed as linear

equality relations between the accelerations of the particles

of the system, then the constraints will always be of the

standard form

A(ẋ, x, t)ẍ = b(ẋ, x, t), (3)

where the matrix A is m by 3n and the vector b is an m-

vector.

Drogue

Mothership
m
p

1p

2p

1−N
p

N
p

Joint

Fig. 2. Cable-drogue systems based on lumped mass representation

Minimizing (2) subject to the constraint (3) implies that at

each instant of time t, the actual acceleration of the system
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of n particles is given by

ẍ = a + M−1/2(AM−1/2)+(b − Aa), (4)

where (·)+ is the unique Moore-Penrose inverse [8].

B. Dynamics Equations of Cable-Drogue Systems

Figure 2 depicts the cable-drogue systems with an N-

link cable modelled as a finite number of rigid links. The

forces acting on each link are lumped and applied at the

joint. The drogue is the last joint of the cable. Let p i =
(xi, yi, zi)

T ∈ R3, i = 1, 2, ..., N be the location of the ith
link. The position of the towplane or mothership is pm =
(xm, ym, zm)T ∈ R3. If the point masses associated with

each link are unconstrained, then the dynamics equations

describing their motions are

p̈i = ai, i = 1, 2, ..., N,

p̈m = am,

where ai, i = 1, 2, ..., N, and am ∈ R3 are the uncon-

strained accelerations driven by the applied forces in three

dimensions. Alternatively, defining x = (pT
1 , pT

2 , · · · , pT
N )T

and a = (aT
1 , aT

2 , · · · , aT
N )T gives

ẍ = a. (5)

However, the motions of the point masses associated with

the link are constrained by the relationship

‖p1 − pm‖2 = l2,

‖pi+1 − pi‖
2 = l2, i = 1, 2, ..., N − 1,

l = L/N,

where L is the cable length, or alternatively as the position

constraint

φ(x; pm) �











‖p1 − pm‖2 − l2

‖p2 − p1‖
2 − l2

...

‖pN − pN−1‖
2 − l2











= 0. (6)

Differentiating Equation (6) with respect to time results in

the velocity constraint

ψ(x; pm) �











(p1 − pm)T (ṗ1 − ṗm)
(p2 − p1)

T (ṗ2 − ṗ1)
...

(pN − pN−1)
T (ṗN − ṗN−1)











= 0. (7)

Differentiating Equation (7) results in the acceleration con-

straint










(p1 − pm)T (p̈1 − p̈m) + ‖ṗ1 − ṗm‖2

(p2 − p1)
T (p̈2 − p̈1) + ‖ṗ2 − ṗ1‖

2

...

(pN − pN−1)
T (p̈N − p̈N−1) + ‖ṗN − ṗN−1‖

2











= 0,

which, assuming the motion of the mothership is known, can

be written in matrix notation as

A(x)ẍ = b(ẋ, ṗm, p̈m), (8)

where

A =











(p1 − pm)T 0
−(p2 − p1)

T (p2 − p1)
T

...
. . .

0 · · ·

· · · 0
· · · 0
...

. . .

−(pN − pN−1)
T (pN − pN−1)

T











b = −











‖ṗ1 − ṗm‖2

‖ṗ2 − ṗ1‖
2

...

‖ṗN − ṗN−1‖
2











+











(p1 − pm)T p̈m

0
...

0











.

The mass matrix M = Diag(ml, ml, ..., ml, md, md, md)
∈ R3N×3N , where ml = mc/N is the mass of each link,

mc is the mass of the cable, and md is the mass of the

drogue.

Therefore, based on Gauss’s principle, the actual ac-

celeration of the cable-drogue system (5) subject to the

constraints (8) is given by Equation (4). The initial conditions

for the system must be chosen such that both φ(x; pm) = 0
and ψ(x; pm) = 0.

However, as indicated by [9], one of the drawbacks of

this method is that while solving Equation (4), numerical

error may cause the constraints φ(x; pm) and ψ(x; pm) to

drift from zero. When this happens, Equation (4) no longer

represents the physical dynamics of the cable. That is to say,

no mechanism serves to drive the constraints back to zero.

To solve this problem, Equation (4) is modified as [9]

ẍ = a + M−1/2(AM−1/2)+(b − Aa)

− γ1(
∂φ

∂x
)T φ − γ2(

∂ψ

∂x
)T ψ, (9)

where γ1 and γ2 are positive constants.

The additional two terms cause the ODE solution to

decrease the gradient of the constraints until they are not

violated. Selecting γ1 and γ2 properly guarantees that the

modified equation approximately represents the dynamics of

the constrained physical system.

C. Force Equations of Cable-Drogue Systems

1) Applied Forces on the Cable: The applied forces which

causes the unconstrained acceleration on the joints consist of

gravity and aerodynamic forces.

(1) The gravity term has the form

Fg = mge3, (10)

where e3 = (0, 0, 1)T .

(2) The aerodynamic forces acting on the cable can be

determined based on the crossflow principle in [3] and [6].

The drag and lift coefficients for an inclined cylinder are
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given by

CDj
= Cfj

+ Cnj
sin3(αj), (11)

CLj
= Cnj

sin2(αj) cos(αj), (12)

j = 1, 2, · · · , N − 1,

where αj is the angle of attack of the jth segment, and

Cfj
= {

0.038− 0.0425Mpj
,

0.013 + 0.0395(Mpj
− 0.85)2,

Mpj
< 0.4

Mpj
≥ 0.4

(13)

Cnj
= 1.17 + Mnj

/40 − M2
nj

/4 + 5M3
nj

/8, (14)

j = 1, 2, · · · , N − 1,

where Mpj
is the Mach number parallel to the cable seg-

ment, and Mnj
is the Mach number normal to the cable

segment [6] [3]. The angle of attack of the jth segment α j

can be computed as

cosαj =
lj ·, vj

‖lj‖‖vj‖
, j = 1, 2, · · · , N − 1, (15)

where lj = pj−1 − pj and vj is the velocity of the jth

segment. The unit vectors defining the directions of the drag

and lift vectors in the inertia frame are

eDj
= −

vj

‖vj‖
, (16)

eLj
= −

(vj × lj) × vj

‖(vj × lj) × vj‖
, (17)

j = 1, 2, · · · , N − 1,

Hence the drag and lift forces vectors are

F
drag
j =

1

2
ρCDj

ljd‖vj‖
2eDj

, (18)

F
lift
j =

1

2
ρCLj

ljd‖vj‖
2eLj

, (19)

j = 1, 2, · · · , N − 1,

where ρ is the atmospheric density, lj is the length of the jth

cable segment, and d is the diameter of the cable segment.

2) Applied Forces on the drogue: To facilitate rendezvous

with the MAV, the drogue is designed as a UAV-like aircraft

with autopilot, communication system, and a catch mecha-

nism. The applied forces on the drogue are aerodynamic drag

and lift, which can be written as

F
drag
N = −

1

2
ρCDN

S‖vN‖vN , (20)

F
lift
N =

1

2
ρCLN

S‖vN‖2eLN
, (21)

where S is the incidence area of the drogue, vN is the

velocity vector of the drogue, eLN
is the unit vector defining

the lift force direction of the drogue in the inertia frame and

CDN
and CLN

are drag and lift coefficients respectively.

III. DROGUE CONTROL

If the towplane is in a constant-angular-rate orbit of radius

R, and the drogue has sufficient aerodynamic drag, then the

motion of the drogue has a stable orbit of radius r ≪ R.

Since the angular rates of the towplane and the drogue are

identical, i.e.

ω =
Vm

R
=

VN

r
, (22)

where ω is the angular rate of the towplane and the drogue,

and the Vm and VN are the airspeeds of the mothership and

the drogue respectively, then

VN = r
Vm

R
. (23)

Therefore, we can regulate the drogue to a desired radius r d,

by regulating the velocity of the drogue to V d
N = rdVm/R.

A. Utilization of the aerodynamics drag coefficient

A possible strategy for controlling the velocity of the

drogue is to change its drag coefficient using control surfaces.

By analyzing the relationship between drogue radius and

drag coefficient, we found that the larger drag coefficient

corresponds to the smaller radius of the drogue.

Fig. 3. The layout of the PI controller based on drag coefficient.

As shown in Figure 3, a possible control law of the drag

coefficient is

CDN
= (KP +

KI

s
)(VN − V d

N ), (24)

where VN
d is the desired airspeed of the drogue, the VN is

the current airspeed, and KP and KI are positive propor-

tional and integral gains repectively.

IV. SIMULATION RESULTS

This section describes several simulations that illustrate the

application of Gauss’s Principle in constructing the cable-

drogue dynamics and the controllability of the drogue by

using the aerodynamic drag coefficient.

Mothership 

Dynamic with Orbit 

Tracking Control

Cable-Drogue

Dynamic

MAV with Vision 

Based Tracking 

Control

Cable-Drogue 

Guidance 

Control

Fig. 4. This figure shows the structure of the simulation system. The
mothership flies in a constant-radius orbit and does not feel tension from
cable-drogue system. We can choose to control the drogue or not. A vision-
based algorithm is implemented on the MAV to track the drogue.
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The simulation architecture is shown as Figure 4. To

simplify the problem, wind is not considered in this paper,

and the air density does not vary as a function of altitude.

The parameters used for the simulations are shown in Table I

TABLE I

SIMULATION PARAMETERS

Airspeed Altitude Orbit Radius
Mothership

50 m/s 1000 m 300 m

Links Length Diameter Mass
Cable

10 900 m 0.01 m 1 kg

Airspeed
MAV

16.67 m/s

A. Circular motion of the system without drogue control

In the first scenario the drogue is not controlled. Figure 5

shows the North-East motion of the drogue, and we can see

that the drogue eventually enters a steady orbit. Figure 6

shows the steady drogue radius oscillates between 115 m
and 119 m. The steady state drogue velocity is approximately

19.5 m/s which is larger than the velocity of the MAV, which

will prevent recovery. Figure 7 and Figure 8 show the 2D

top-down view and 3D view of the simulated system. The

cable bends outward under the effect of the aerodynamic

drag.

B. Circular motion of the system under the drag coefficient

control

The second simulation was performed to demonstrate that

the drag coefficient can be effectively used to control the

drogue radius. In order to compare the difference between

the system motion with and without control, we apply the

actuation signal after 150 seconds which is the time that the

drogue enters steady state.

If the desired drogue radius is 60 m, then the desired

drogue velocity is V d
N = 10 m/s.

Figure 9 shows that the steady state radius of the drogue

converges to a smaller radius. Figure 10 shows that drag

based control approach works well and after 250 seconds

the three items enter steady states. The steady state radius

oscillates between 54 m and 58 m. The steady state velocity

oscillates between 9 m/s and 9.5 m/s allowing potential

aerial recovery.

V. CONCLUSION

A novel approach to Aerial Recovery of Micro Air

Vehicles has been presented. The multi-link cable-drogue

dynamic model is established based on Gauss’s Principle

which provides a succinct method to model the system

with complex constraints. The control strategy using drag

coefficient is effective in controlling the simulation. Two

simulations have been developed and used to simulate the

motion of the aerial recovery systems. The simulation results

illustrate the feasibility of the concept.
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Fig. 5. North-East motion of the drogue.
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Fig. 6. This figure shows the radius, velocity and distance to the MAV of
the drogue responses. After 150 seconds, the three items enter steady states.
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Fig. 7. Top-down view of the simulated system. The dots on the cable are
the joints.
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Fig. 8. 3D view of the simulated system.
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Fig. 9. North-East motion of the drogue under control. The steady state
radius is smaller than that without control.
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Fig. 10. This figure shows the radius, velocity and distance to the MAV
of the drogue responses under drag coefficient control. After 250 seconds,
the three items enter steady states.
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