
OPEN-SOURCE MODELING PLATFORMS

John Hedengren a,1, Bethany Nicholson b

a Department of Chemical Engineering, Brigham Young University, Provo, UT 84602

b Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87123

Abstract
A review of current trends in scientific computing reveals a broad shift to open-source and higher-level programming
languages such as Python and growing career opportunities over the next decade. Open-source modeling tools accelerate
innovation in equation-based and data-driven applications. Significant resources have been deployed to develop data-
driven tools (PyTorch, TensorFlow, Scikit-learn) from tech companies that rely on machine learning services to accelerate
business needs. The data and applications of the software are proprietary but the foundational tools are open. Open-
source equation-based tools such as Pyomo, CasADi, Gekko, and JuMP are also gaining momentum according to user
community and development pace metrics. The future of open-source modeling tools is in specialization and interfaces
to other specialized packages. Integration of data-driven (empirical) and equation-based (principles, knowledge-driven)
tools is emerging. New compute hardware, productivity software, and training resources have the potential to radically
accelerate progress. However, long-term support mechanisms are still needed to sustain momentum and maintenance for
key foundational packages.

Keywords
Modeling, Open-source, Optimization, Simulation, Solver.

Introduction

The pace of innovation in scientific computing is accel-
erated with free and open-source foundational contributions
such as programming languages, modeling platforms, and
solvers. The decision to create and support open-source
packages is counter-intuitive from the aspect of direct com-
pensation for the time and effort put into creating and sup-
porting the software. While there are non-monetary awards
and recognition for creating useful software, there are many
business, regulatory, and scientific drivers that influence the
decision to release open-source software. Open-source is
sometimes required by the sponsoring agency, such as a gov-
ernment contract that requires the source code. Business
drivers for open-source include spreading the development
burden across the industry instead of isolating it to a special-
ized team of developers within a single company. Scientific
drivers for open-source include verifying results and advanc-
ing science with the ability to more easily build on and ex-
tend existing work. The value of open-source software is am-
plified by a strong community of users and developers that
mutually support each other through online tutorials, sup-
port forums, bug reports, feature requests, and documenta-
tion. Community momentum is a critical metric to observe so

that organizations can build upon open-source software that
is actively developed and supported and find skilled work-
ers already familiar with the software, limiting the need for
extensive training.

The organization of this paper is to first present a high-
level view of current trends in scientific computing. In partic-
ular, there has been a shift from proprietary software to open-
source programming languages (MATLAB to Python). There
has also been a performance sacrifice for increased usability,
functionality, and higher-level abstractions (C++ to Python).
Next, this paper compares momentum for equation-based
modeling platforms and data-driven modeling platforms and
discusses the pace of innovation and how this can be acceler-
ated with open-source initiatives. Finally, the future of open-
source software is considered focusing on two areas: (1) cur-
rent developments and features that are recently released or
planned to be released in the next few years and (2) long-term
needs for open-source software development within Process
Systems Engineering (PSE).

Current Trends in Scientific Computing

Programming jobs in software development, quality as-
surance, analysis, and testing will grow +22%, about 3 times

1 Corresponding author. Email: john hedengren@byu.edu.



faster than other occupations, over the next decade accord-
ing to US Bureau of Labor Statistics (2022). Python is the
most popular programming language according to indices
that track online searches (PYPL, 2022). Other scientific
computing languages in the top 50 most popular program-
ming languages include C/C++ (2/4), R (16), MATLAB (24),
FORTRAN (26), Julia (28), Simulink (47), and LabVIEW
(48) as of June 2022 (TIOBE, 2022).

Python has gained popularity relative to other scientific
programming languages in recent years as shown in Fig. 1.
Python has risen in popularity because of its accessibility,
ease of learning, documentation, online community support,
and library availability but is criticized for its performance
relative to compiled languages like C/C++. Many popular
Python packages for scientific computing interface to lower-
lever programming languages to offload compute-intensive
tasks. In addition, JIT (Just In Time) compilers such as
Numba and PyPy or AOT (Ahead of Time) compilers such
as Cython can be used to speed up Python code.

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

Date

20

40

60

80

100

Go
og

le
 S
ea

rc
h 
In
te
re
st

Python
C++
MATLAB

Figure 1: Trends of Python, C++, and MATLAB search in-
terest from January 2004 to June 2022

In contrast, Julia is a much younger programming lan-
guage that is starting to gain momentum in the scientific com-
puting community. It offers many of the same features of
Python in terms of usability with the added benefit of com-
putational performance comparable to lower-level compiled
languages. However, as it is a newer language, there is a
limited set of libraries available in Julia.

Open-Source Momentum Metrics and Definitions

Open-source modeling packages gain momentum by hav-
ing an active development team and by growing a user com-
munity. The momentum of open-source modeling packages
can be compared by examining the number of users and de-
velopers actively engaged with the software. Some metrics
for measuring software engagement include:

• Users: Install Rate, Q+A Forum Posts, Citations

• Developers: Latest Release, Documentation, OS Sup-
port, GitHub Insights

Other factors are also important such as whether the
software is easy to install, extensible, scales to large-scale
problems, solves popular benchmark problems, is tailored

to unique solutions not available elsewhere, and has auto-
completion in advanced tools such as GitHub Copilot.

There is an important distinction between Open-Source
Software (OSS), Free Software (FS), and Free and Open-
Source Software (FOSS). OSS can have a proprietary license
and FS can be closed-source. Free/Libre and Open-Source
Software (FLOSS) emphasizes that free software refers to
freedom and not to price. The focus of this review is on
FLOSS modeling frameworks with permissive licenses (al-
lowing for the use, copy, and modification of the source code)
that are openly shared to encourage developers to voluntar-
ily adapt and improve the software. FLOSS is in contrast to
proprietary codes that have restrictive licenses or unavailable
source code. Proprietary software has an important role to
provide customer support, graphical user interfaces, and cus-
tomized solutions. Some industries are dominated by FLOSS
such as Python in data science and TensorFlow / PyTorch in
deep learning. Other segments of scientific computing are
dominated by proprietary software, such as solvers CPLEX
and Gurobi for Mixed Integer Linear Programming (MILP)
and Simulink for graphical and embedded control, that have
less competitive but emerging open-source alternatives. Dis-
tributed Control Systems (DCS) and Programmable Logic
Controllers (PLC) are likewise dominated by proprietary so-
lutions. Open Process Automation (OPA) is an industry-led
initiative to create interoperability standards in the industrial
control domain (Bartusiak et al., 2022). The trend in many
industries is the adoption of standards or open-source alter-
natives.

While many open-source packages are initially developed
in academia, there are several FLOSS modeling platforms
that have been created and supported by industry. The term
“mind share” is frequently cited as a reason to release com-
mercial software as FLOSS and distribute development costs
among industry participants. The software becomes more
useful with broad adoption, an online support community,
searchable knowledge base, and extensions of the software
capabilities. Some of the challenges of FLOSS are lack of
standards for benchmark performance, shifting community
momentum, long-term support, and selection among many
alternatives.

Open-Source Algebraic Modeling Languages

The primary purpose of an Algebraic Modeling Lan-
guage (AML) is to facilitate the expression and solution of
equation-based optimization problems. The AML serves as
a front-end translator for mathematical expressions, convert-
ing these expressions into a form for solvers to attempt a so-
lution. At a minimum, solvers need information such as ob-
jective function values and equation residuals. Many solvers
also require first and second derivative information so most
AMLs also provide automatic differentiation capabilities.

This section gives an overview of equation-based FLOSS
modeling platforms, with particular emphasis on control and
optimization AMLs. The monthly download rates for three
popular FLOSS Python AML packages is shown in Figure 2.
These numbers are inflated with downloads from automated
clone repositories but give a general picture of the growth in



users over time. The list of packages described below is not
comprehensive, but is an attempt to share some of the popular
options with their distinguishing capabilities.

2017 2018 2019 2020 2021 2022
Year

104

105

M
on

th
ly
 D
ow

nl
oa

ds

pyomo
casadi
gekko

Figure 2: AML downloads for one month (June) each year
(source: Google BigQuery).

Pyomo (Bynum et al., 2021) is a Python-based AML. It
includes interfaces to a variety of optimization solvers either
through standardized file formats (LP or NL) or by interfac-
ing directly with a solver’s Python API. Automatic differ-
entiation is achieved using the AMPL Solver Library (ASL)
with NL files. An advantage of this package is that it includes
many extensions for handling high-level modeling constructs
(e.g. differential equations and logical disjunctions). Pyomo
was first released in 2009 as the Coopr software library but
was released as its own package beginning in 2015. As of
July 2022 there are 1270 Pyomo tagged questions on Stack
Overflow. User questions are also posted to a Google Group
forum.

CasADi (Andersson et al., 2019) is available in MATLAB,
Python, and C++. It was originally a framework for auto-
matic differentiation but has evolved into a complete model-
ing language. Casadi was first released in 2017 and as of July
2022, there are 72 questions on Stack Overflow. Most of the
support questions are posted to a Google Group forum that
delivers messages with email.

Gekko (Beal et al., 2018) is a Python package for machine
learning and optimization of mixed-integer and differential
algebraic equations. It is coupled with large-scale solvers
for optimization, parameter regression, and predictive con-
trol. Gekko was first released in 2018 and as of July 2022,
there are 605 questions on Stack Overflow. Questions are
also posted to a Google Group forum.

JuMP (Dunning et al., 2017a) is a Julia-based model-
ing language for optimization with automatic differentiation
for solution of linear, nonlinear, and mixed-integer problems
with many solver interfaces. As of July 2022, there are 313
questions on Stack Overflow and about 800 questions on the
Julia Language support forum. A direct comparison to pip
installs is not possible because many of the pip downloads
are for cloning. A total of 93,424 unique IP addresses down-
loaded JuMP between Sept 2021 and July 2022 for a monthly
download rate of ∼8500. Besides anonymized or dynamic IP
addresses, this is a much closer count to number of users than
the pip install numbers that are inflated with clone repository
downloads.

In addition to those listed above, many other FLOSS
and proprietary software packages are available for optimiza-
tion and control including ACADO (Houska et al., 2011),
ACADOS (Verschueren et al., 2022), AIMMS (Bisschop,
2006), AMPL (Fourer et al., 1993), CProS (Misra et al.,
2022), CVX (Grant and Boyd, 2008), CVXOPT (Ander-
sen et al., 2011), DIDO (Ross, 2004), Dymos (Falck et al.,
2021), GAMS (Bisschop and Meeraus, 1982), GPkit (Bur-
nell et al., 2020), GPOPS II (Patterson and Rao, 2014), Grav-
ity (Hijazi et al., 2018), IMPL (Kelly and Menezes, 2019),
InfiniteOpt (Pulsipher et al., 2022), MUSCOD-II (Leinewe-
ber et al., 2003), NLPy (Orban, 2014), OMPR (Schumacher,
2022), OpenMDAO (Gray et al., 2019), OpenOpt (Kroshko,
2007), OPTANO (DEMİR, 2021), OR-tools (Perron, 2011),
PICOS (Sagnol and Stahlberg, 2022), PROPT (Rutquist
and Edvall, 2010), PSOPT (Becerra, 2010), PuLP (Mitchell
et al., 2011), PyOpt (Perez et al., 2012), PySCIPOpt (Maher
et al., 2016), Python-MIP (Santos and Toffolo, 2019), and
YALMIP (Löfberg, 2004).

Many of the FLOSS optimization platforms mentioned
above are also enabling new, application-specific packages.
For example, do-mpc (Lucia et al., 2017) and PolyMPC (Lis-
tov and Jones, 2020) are libraries for Model Predictive Con-
trol (MPC) built on CasADi and IDAES (Lee et al., 2021)
is a Pyomo-based multi-scale process modeling framework
for the design and optimization of complex, interacting en-
ergy and process systems. There are many more examples of
application-specific packages, further illustrating the value
these generic FLOSS optimization platforms provide to the
community.

Review of FLOSS optimization solvers is beyond the
scope of this review. However, a notable emerging trend is
tighter coupling between the solver and modeling language
for callbacks, adaptive programming, and meta-algorithm
development.

Open-Source Data-Driven Modeling

The dramatic rise of data-driven modeling is driven by in-
creased data availability, decreased compute cost, and pow-
erful data-driven software tools. Two of the most popular
packages for deep learning are TensorFlow (Abadi et al.,
2015) and PyTorch (Paszke et al., 2019) that were developed
at Alphabet (Google Brain) and Meta AI (Facebook), respec-
tively. The machine learning package scikit-learn (Pedregosa
et al., 2011) was started in 2007 as a Google Summer of Code
project. Figure 3 shows the number of monthly downloads of
scikit-learn, TensorFlow, and PyTorch. The download rate is
not an accurate count of users but does give qualitative trends
on relative adoption rates and community momentum.

https://discourse.julialang.org/tag/jump
https://www.do-mpc.com
https://idaes.org


2017 2018 2019 2020 2021 2022
Year

104

105

106

107

M
on

th
ly
 D
ow

nl
oa

ds
scikit-learn
tensorflow
pytorch

Figure 3: Data-driven package downloads for one month
(June) each year (source: Google BigQuery).

Part of the core business model of both Meta and Al-
phabet is to sell advertisements and online services rather
than proprietary optimization software. Forecasting, natural
language processing, facial recognition, advertisement selec-
tion, and web-page ranking are Artificial Intelligence (AI)
enabled aspects for increasing click-through rates. The de-
cision to open-source and support AI tools is one of the fac-
tors that has increased speed of innovation and impact within
major US tech companies such as Alphabet, Meta, Ama-
zon, Tesla, Apple, and Netflix. There is an abundance of
AI startup companies now penetrating traditional industries
(manufacturing, automotive, aerospace, etc) with data engi-
neering, data science, and machine learning services with In-
dustry 4.0 innovation and disruption. Many of the software
solutions are based on open-source tools such as Tesla Au-
topilot built on PyTorch.

A key performance metric for data-driven models is the
performance per energy consumed. Specialized compute
hardware has been created to reduce the power consumption
such as Application Specific Integrated Circuits (ASICS) for
processing financial transactions on blockchain, embedded
controls, smart phones, wearable devices, and other applica-
tions in automotive, telecommunication, and medical indus-
tries. ASICS are designed for a specific task while a Central
Processing Unit (CPU) is a more configurable platform for
computing. Alphabet designed the Tensor Processing Unit
(TPU) to reduce power consumption by up to 80 times rela-
tive to contemporary CPUs or GPUs (Eeckhout, 2017). They
achieved this improvement by using 8-bit integers and a com-
plex instruction set to calculate a neural network prediction.
Instead of relying on the pace of innovation that is driven by
other industries, Alphabet created new hardware to drive a
key performance index for data-driven models that are used
in search, street view, photos, and translation. The CPU,
GPU, and TPU kernels are freely available in web browsers
through a Google Colab run-time option for machine learn-
ing prediction functions.

Impacts on Speed of Innovation

FLOSS tools have greatly impacted the rate of innova-
tion in the optimization and control community. Equation-
based and data-driven modeling and optimization software
are two concrete examples of tools that accelerate innova-

tion. Equation-based tools have been applied in chemical
and process industries (Mowbray et al., 2022), staff schedul-
ing (Abouee Mehrizi et al., 2022), mathematical research
(Hernandez et al., 2022), renewable energy grid optimiza-
tion (Lai et al., 2022), control of electric vehicle charging
in smart communities (Zhou et al., 2022), chemical reactor
design (Frumkin et al., 2022), blockchain computing opti-
mization for Industrial Internet of Things (IoT) (Wang et al.,
2022), safety systems on Liquified Natural Gas (LNG) ves-
sels (Nubli et al., 2022), robotic hand automation (Hammoud
et al., 2021), autonomous unmanned aerial vehicles (Alhe-
laly et al., 2022; Han et al., 2022), low-activity waste load-
ing for long-term storage with vitrification (Lu et al., 2021),
and fish-like robots (Barbosa et al., 2021). Many other ap-
plications are cited, giving strong evidence of user adoption
with innovative application areas. There are 1074 citations
of Pyomo (Hart et al., 2012), 353 citations of APMonitor and
Gekko (Beal et al., 2018), 1478 citations of CasADi (Anders-
son et al., 2019), and 1195 citations of JuMP (Dunning et al.,
2017b).

The pace of innovation is likewise supported by FLOSS
tools in data-driven modeling and optimization with notable
advances in natural language processing (Brown et al., 2020),
self-driving cars (Gupta et al., 2021), image classification
(Guo et al., 2016), medical diagnosis (Razzak et al., 2018),
precision agriculture (Kamilaris and Prenafeta-Boldú, 2018),
autonomous unmanned aerial vehicles (Fraga-Lamas et al.,
2019), and many other areas (LeCun et al., 2015). There are
26,958 citations of TensorFlow (Abadi et al., 2016, 2015),
27,720 citations of PyTorch (Paszke et al., 2019, 2017), and
58,656 citations of Scikit-learn (Pedregosa et al., 2011).

Future of Open-Source Tools

Most of the tools discussed in this paper were recently de-
veloped around the time of the last CPC/FOCAPO meeting
in 2017. Since then many of these tools have seen significant
adoption by the PSE community. This section looks to the
future and tries to predict how these tools will evolve over
the next 5-10 years.

What’s Next

A new trend in open-source tools is to specialize to an
important task and create interfaces to other packages that
complement those capabilities. There is TensorFlow sup-
port in CasADi, PyTorch linear and integer programming
with Pyomo (Tang and Khalil, 2022), integration of ma-
chine learning models in Pyomo (Ceccon et al., 2022), con-
strained optimization with physics-based modeling priors in
PyTorch (Tuor et al., 2022), and Gekko interfaces to GPflow
(Matthews et al., 2017) and scikit-learn. Developments with
package interoperability will continue to accelerate in the
next 5 years.

There are new development resources for code auto-
completion such as GitHub Copilot (Sobania et al., 2022)
which could accelerate the adoption of certain FLOSS mod-
eling tools. Additional AI-trained tools and auto-ML tools
will move optimization engineers, data scientists, and ma-
chine learning specialists to new levels of abstraction with

https://colab.research.google.com
https://web.casadi.org/blog/tensorflow/
https://web.casadi.org/blog/tensorflow/
https://gekko.readthedocs.io/en/latest/ml.html


higher levels of productivity (He et al., 2021).
Data engineering, organizing and preparing data for the

purpose of extracting useful information (Wu et al., 2013),
will also be increasingly important.

What’s Needed

A well-known issue for open-source foundational tools is
long-term support and maintenance. This was recently em-
phasized within the PSE community in a December 2021
COIN-OR news post seeking support for a full-time em-
ployee to work on the development, documentation, and dis-
tribution of COIN-OR projects such as Clp, Cbc, and Ipopt.
Without this support, the COIN-OR initiative may be re-
tired. Support is also needed for adaptation to new computing
platforms (quantum, cloud, edge, embedded), new interfaces
such as higher level abstractions to define optimization prob-
lems, and support for issue tracking and resolution. Without
financial incentives, better recognition of code and software
contributions could be another method of motivating devel-
opment and support of open-source tools. A long-term sup-
port strategy for FLOSS tools will become increasingly im-
portant as these tools see broader adoption in the optimiza-
tion community, especially for packages that require a high
level of skill to develop and maintain.

The difference in development pace and resources is ap-
parent with data-driven and equation-based software. The
open-source model accelerates user feedback and spreads the
cost of development to the broader community. For exam-
ple, many companies reduced in-house technical expertise
in favor of contracting out development services in the en-
ergy, power, and chemical industries. The companies rely
on proprietary packages that sometimes have not had signif-
icant core technological advances from the first deployments
in the 1980s-90s. How would the situation be different if
key companies, similar to Meta and Alphabet, had released
open-source tools for broad adoption? Equation-based mod-
eling tools benefit from academic development and govern-
ment funding, but have not had a similar accelerated pace as
data-driven methods with strong initial open-source support.
The pace of innovation is robust but lags data-driven tools
that design specialized software (TensorFlow and PyTorch)
and hardware (TPUs) to accelerate adoption.

In addition to a robust funding model for equation-based
tools, more emphasis is needed on coding and software engi-
neering skill-sets in undergraduate and graduate student en-
gineering curriculum to meet growing demand. Current tools
are fragmented and have limited interoperability. Additional
resources are needed to blend data-driven and equation-based
modeling and optimization methods. Recent progress has
been made in physics-informed neural networks (Cai et al.,
2022) and more progress will continue to blend paradigms.
Disclaimer: Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-NA-0003525. This paper describes objec-
tive technical results and analysis. Any subjective views or opinions that
might be expressed in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government. SAND2022-
12379C

References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available
from tensorflow.org.

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. (2016).
{TensorFlow}: a system for {Large-Scale} machine learn-
ing. In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pp. 265–283.

Abouee Mehrizi, H., A. Aminoleslami, J. Darko, E. Osei, and
H. Mahmoudzadeh (2022). Staff scheduling during a pan-
demic: The case of radiation therapy department. Avail-
able at SSRN 4104581.

Alhelaly, S., A. Muthanna, and I. A. Elgendy (2022). Op-
timizing task offloading energy in multi-user multi-uav-
enabled mobile edge-cloud computing systems. Applied
Sciences 12(13), 6566.

Andersen, M., J. Dahl, Z. Liu, and L. Vandenberghe (2011).
Interior-point methods for large-scale cone programming.
Optimization for machine learning, 55–83.

Andersson, J. A., J. Gillis, G. Horn, J. B. Rawlings, and
M. Diehl (2019). Casadi: a software framework for nonlin-
ear optimization and optimal control. Mathematical Pro-
gramming Computation 11(1), 1–36.

Barbosa, A. S., L. Z. Tahara, and M. M. da Silva (2021).
Motion planning of a fish-like piezoelectric actuated robot
using model-based predictive control. Journal of Vibration
and Control, 10775463211048255.

Bartusiak, R. D., S. Bitar, D. L. DeBari, B. G. Houk,
D. Stevens, B. Fitzpatrick, and P. Sloan (2022). Open pro-
cess automation: A standards-based, open, secure, inter-
operable process control architecture. Control Engineer-
ing Practice 121, 105034.

Beal, L. D., D. C. Hill, R. A. Martin, and J. D. Hedengren
(2018). Gekko optimization suite. Processes 6(8), 106.

Becerra, V. M. (2010). Solving complex optimal control
problems at no cost with psopt. In Computer-Aided Con-
trol System Design (CACSD), 2010 IEEE International
Symposium on, pp. 1391–1396. IEEE.

Bisschop, J. (2006). AIMMS - Optimization Modeling.
Lulu.com.

Bisschop, J. and A. Meeraus (1982). On the development of a
general algebraic modeling system in a strategic planning
environment. In Applications, pp. 1–29. Springer.

https://www.coin-or.org/2021/12/15/future-of-coin-or/
https://www.coin-or.org/2021/12/15/future-of-coin-or/


Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. (2020). Language models are few-shot
learners. Advances in neural information processing sys-
tems 33, 1877–1901.

Burnell, E., N. B. Damen, and W. Hoburg (2020). Gpkit: A
human-centered approach to convex optimization in engi-
neering design. In Proceedings of the 2020 chi conference
on human factors in computing systems, pp. 1–13.

Bynum, M. L., G. A. Hackebeil, W. E. Hart, C. D.
Laird, B. L. Nicholson, J. D. Siirola, J.-P. Watson, and
D. L. Woodruff (2021). Pyomo–optimization modeling in
python (Third ed.), Volume 67. Springer Science & Busi-
ness Media.

Cai, S., Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis
(2022). Physics-informed neural networks (pinns) for fluid
mechanics: A review. Acta Mechanica Sinica, 1–12.

Ceccon, F., J. Jalving, J. Haddad, A. Thebelt, C. Tsay, C. D.
Laird, and R. Misener (2022). OMLT: Optimization & ma-
chine learning toolkit. arXiv preprint arXiv:2202.02414.

DEMİR, Y. (2021). Mathematical programming with c#. net.
Electronic Letters on Science and Engineering 17(2), 96–
104.

Dunning, I., J. Huchette, and M. Lubin (2017a). Jump: A
modeling language for mathematical optimization. SIAM
Review 59(2), 295–320.

Dunning, I., J. Huchette, and M. Lubin (2017b). Jump: A
modeling language for mathematical optimization. SIAM
review 59(2), 295–320.

Eeckhout, L. (2017). Is moore’s law slowing down? what’s
next? IEEE Micro 37(04), 4–5.

Falck, R., J. S. Gray, K. Ponnapalli, and T. Wright (2021).
dymos: A python package for optimal control of multidis-
ciplinary systems. Journal of Open Source Software 6(59),
2809.

Fourer, R., D. Gay, and B. Kernighan (1993). Ampl. Dan-
vers, MA: Boyd & Fraser 117.

Fraga-Lamas, P., L. Ramos, V. Mondéjar-Guerra, and T. M.
Fernández-Caramés (2019). A review on iot deep learning
uav systems for autonomous obstacle detection and colli-
sion avoidance. Remote Sensing 11(18), 2144.

Frumkin, J. A., V. Khanna, and M. F. Doherty (2022). In-
novation in chemical reactor engineering practice and sci-
ence. Computers & Chemical Engineering 161, 107699.

Grant, M. and S. Boyd (2008). Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd, and
H. Kimura (Eds.), Recent Advances in Learning and Con-
trol, Lecture Notes in Control and Information Sciences,
pp. 95–110. Springer-Verlag Limited.

Gray, J. S., J. T. Hwang, J. R. Martins, K. T. Moore, and
B. A. Naylor (2019). Openmdao: An open-source frame-
work for multidisciplinary design, analysis, and optimiza-
tion. Structural and Multidisciplinary Optimization 59(4),
1075–1104.

Guo, Y., Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew
(2016). Deep learning for visual understanding: A review.
Neurocomputing 187, 27–48.

Gupta, A., A. Anpalagan, L. Guan, and A. S. Khwaja (2021).
Deep learning for object detection and scene perception
in self-driving cars: Survey, challenges, and open issues.
Array 10, 100057.

Hammoud, A., A. Diouf, and V. Perdereau (2021). A robotic
in-hand manipulation dictionary based on human data. In
2021 20th International Conference on Advanced Robotics
(ICAR), pp. 961–967. IEEE.

Han, J., M.-J. Tahk, and H.-L. Choi (2022). Pseudospec-
tral method-based safe motion planning for quadrotors in
a cluttered environment. In AIAA SCITECH 2022 Forum,
pp. 2545.

Hart, W. E., C. D. Laird, J.-P. Watson, D. L. Woodruff,
G. A. Hackebeil, B. L. Nicholson, and J. D. Siirola
(2012). Pyomo-optimization modeling in python, Vol-
ume 67. Springer.

He, X., K. Zhao, and X. Chu (2021). Automl: A survey of the
state-of-the-art. Knowledge-Based Systems 212, 106622.

Hernandez, M., R. Lecaros, and S. Zamorano (2022). Aver-
aged turnpike property for differential equations with ran-
dom constant coefficients. Mathematical Control and Re-
lated Fields.

Hijazi, H., G. Wang, and C. Coffrin (2018). Gravity: A math-
ematical modeling language for optimization and machine
learning.

Houska, B., H. J. Ferreau, and M. Diehl (2011). Acado
toolkit—an open-source framework for automatic control
and dynamic optimization. Optimal Control Applications
and Methods 32(3), 298–312.

Kamilaris, A. and F. X. Prenafeta-Boldú (2018). Deep learn-
ing in agriculture: A survey. Computers and electronics in
agriculture 147, 70–90.

Kelly, J. D. and B. C. Menezes (2019). Industrial modeling
and programming language (impl) for off-and on-line op-
timization and estimation applications. In Optimization in
Large Scale Problems, pp. 75–96. Springer.

Kroshko, D. (2007). Openopt: Free scientific-engineering
software for mathematical modeling and optimization.
URL http://www. openopt. org.

Lai, B.-C., W.-Y. Chiu, and Y.-P. Tsai (2022). Multiagent re-
inforcement learning for community energy management
to mitigate peak rebounds under renewable energy uncer-
tainty. IEEE Transactions on Emerging Topics in Compu-
tational Intelligence.



LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning.
nature 521(7553), 436–444.

Lee, A., J. H. Ghouse, J. C. Eslick, C. D. Laird, J. D. Siirola,
M. A. Zamarripa, D. Gunter, J. H. Shinn, A. W. Dowling,
D. Bhattacharyya, et al. (2021). The idaes process model-
ing framework and model library—flexibility for process
simulation and optimization. Journal of Advanced Manu-
facturing and Processing 3(3), e10095.

Leineweber, D. B., A. Schäfer, H. G. Bock, and J. P. Schlöder
(2003). An efficient multiple shooting based reduced
sqp strategy for large-scale dynamic process optimization:
Part ii: Software aspects and applications. Computers &
chemical engineering 27(2), 167–174.

Listov, P. and C. Jones (2020). Polympc: An efficient and
extensible tool for real-time nonlinear model predictive
tracking and path following for fast mechatronic systems.
Optimal Control Applications and Methods 41(2), 709–
727.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In In Proceedings of the CACSD
Conference, Taipei, Taiwan.

Lu, X., D.-S. Kim, and J. D. Vienna (2021). Impacts of con-
straints and uncertainties on projected amount of hanford
low-activity waste glasses. Nuclear Engineering and De-
sign 385, 111543.

Lucia, S., A. Tătulea-Codrean, C. Schoppmeyer, and S. En-
gell (2017). Rapid development of modular and sustain-
able nonlinear model predictive control solutions. Control
Engineering Practice 60, 51–62.

Maher, S., M. Miltenberger, J. P. Pedroso, D. Rehfeldt,
R. Schwarz, and F. Serrano (2016). PySCIPOpt: Math-
ematical programming in python with the SCIP optimiza-
tion suite. In Mathematical Software – ICMS 2016, pp.
301–307. Springer International Publishing.

Matthews, A. G. d. G., M. Van Der Wilk, T. Nickson, K. Fu-
jii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani, and
J. Hensman (2017). Gpflow: A gaussian process library
using tensorflow. J. Mach. Learn. Res. 18(40), 1–6.

Misra, S., L. R. Buttazoni, V. Avadiappan, H. J. Lee,
M. Yang, and C. T. Maravelias (2022). CProS: A web-
based application for chemical production scheduling.
Computers & Chemical Engineering 164, 107895.

Mitchell, S., S. M. Consulting, and I. Dunning (2011). Pulp:
A linear programming toolkit for python. The University
of Auckland, Auckland, New Zealand.

Mowbray, M., M. Vallerio, C. Perez-Galvan, D. Zhang,
A. D. R. Chanona, and F. J. Navarro-Brull (2022). Indus-
trial data science–a review of machine learning applica-
tions for chemical and process industries. Reaction Chem-
istry & Engineering.

Nubli, H., J. M. Sohn, and A. R. Prabowo (2022). Layout
optimization for safety evaluation on lng-fueled ship un-
der an accidental fuel release using mixed-integer nonlin-
ear programming. International Journal of Naval Archi-
tecture and Ocean Engineering 14, 100443.

Orban, D. (2014). Nlpy—a large-scale optimization toolkit
in python. Cahier du GERAD G-2014-xx, GERAD,
Montréal, QC, Canada. In preparation.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer
(2017). Automatic differentiation in pytorch.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala (2019). Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (Eds.), Advances in Neural Information
Processing Systems 32, pp. 8024–8035. Curran Asso-
ciates, Inc.

Patterson, M. A. and A. V. Rao (2014). Gpops-ii: A mat-
lab software for solving multiple-phase optimal control
problems using hp-adaptive gaussian quadrature colloca-
tion methods and sparse nonlinear programming. ACM
Transactions on Mathematical Software (TOMS) 41(1), 1.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay (2011).
Scikit-learn: Machine learning in Python. Journal of Ma-
chine Learning Research 12, 2825–2830.

Perez, R. E., P. W. Jansen, and J. R. Martins (2012). py-
opt: a python-based object-oriented framework for non-
linear constrained optimization. Structural and Multidis-
ciplinary Optimization 45(1), 101–118.

Perron, L. (2011). Operations research and constraint pro-
gramming at google. In International Conference on Prin-
ciples and Practice of Constraint Programming, pp. 2–2.
Springer.

Pulsipher, J. L., W. Zhang, T. J. Hongisto, and V. M. Zavala
(2022). A unifying modeling abstraction for infinite-
dimensional optimization. Computers & Chemical Engi-
neering 156, 107567.

PYPL (2022). PYPL index.

Razzak, M. I., S. Naz, and A. Zaib (2018). Deep learning for
medical image processing: Overview, challenges and the
future. Classification in BioApps, 323–350.

Ross, I. M. (2004). User’s manual for DIDO: A matlab appli-
cation package for solving optimal control problems. Tom-
lab Optimization, Sweden, 65.



Rutquist, P. E. and M. M. Edvall (2010). Propt-matlab opti-
mal control software. Tomlab Optimization Inc 260(1).

Sagnol, G. and M. Stahlberg (2022). Picos: A python inter-
face to conic optimization solvers. Journal of Open Source
Software 7(70), 3915.

Santos, H. G. and T. A. Toffolo (2019). Tutorial de de-
senvolvimento de métodos de programação linear inteira
mista em python usando o pacote python-mip. Pesquisa
Operacional para o Desenvolvimento 11(3), 127–138.

Schumacher, D. (2022). OMPR: Model and Solve Mixed In-
teger Linear Programs. R package version 1.0.2.

Sobania, D., M. Briesch, and F. Rothlauf (2022). Choose
your programming copilot: a comparison of the program
synthesis performance of github copilot and genetic pro-
gramming. In Proceedings of the Genetic and Evolution-
ary Computation Conference, pp. 1019–1027.

Tang, B. and E. B. Khalil (2022). Pyepo: A pytorch-based
end-to-end predict-then-optimize library for linear and in-
teger programming. arXiv preprint arXiv:2206.14234.

TIOBE (2022). TIOBE index.

Tuor, A., J. Drgona, M. Skomski, J. Koch, Z. Chen, S. Dern-
bach, C. M. Legaard, and D. Vrabie (2022). Neu-
roMANCER: Neural Modules with Adaptive Nonlinear
Constraints and Efficient Regularizations.

US Bureau of Labor Statistics (2022). Occupational outlook
handbook: Software developers, quality assurance ana-
lysts, and testers.

Verschueren, R., G. Frison, D. Kouzoupis, J. Frey, N. v. Dui-
jkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen,
and M. Diehl (2022). acados—a modular open-source
framework for fast embedded optimal control. Mathemat-
ical Programming Computation 14(1), 147–183.

Wang, T., S. Ai, Z. Tian, B. B. Gupta, and C. Shan (2022). A
blockchain-based distributed computational resource trad-
ing system for industrial internet of things considering
multiple preferences. arXiv preprint arXiv:2201.09539.

Wu, X., X. Zhu, G.-Q. Wu, and W. Ding (2013). Data mining
with big data. IEEE transactions on knowledge and data
engineering 26(1), 97–107.

Zhou, F., Y. Li, W. Wang, and C. Pan (2022). Integrated en-
ergy management of a smart community with electric ve-
hicle charging using scenario based stochastic model pre-
dictive control. Energy and Buildings 260, 111916.


