
Multi-Fidelity Model Predictive Control of Upstream Energy Production Processes

Ammon Nephi Eaton

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

John D. Hedengren, Chair
Morris D. Argyle
Randal W. Beard
Andrew R. Fry

Dean R. Wheeler

Department of Chemical Engineering

Brigham Young University

2017

Copyright © 2017 Ammon Nephi Eaton

All Rights Reserved



ABSTRACT

Multi-Fidelity Model Predictive Control of Upstream Energy Production Processes

Ammon Nephi Eaton
Department of Chemical Engineering, BYU

Doctor of Philosophy

Increasing worldwide demand for petroleum motivates greater efficiency, safety, and en-
vironmental responsibility in upstream oil and gas processes. The objective of this research is to
improve these areas with advanced control methods. This work develops the integration of opti-
mal control methods including model predictive control, moving horizon estimation, high fidelity
simulators, and switched control techniques applied to subsea riser slugging and managed pressure
drilling. A subsea riser slugging model predictive controller eliminates persistent offset and de-
creases settling time by 5% compared to a traditional PID controller. A sensitivity analysis shows
the effect of riser base pressure sensor location on controller response. A review of current crude
oil pipeline wax deposition prevention, monitoring, and remediation techniques is given. Also, in-
dustrially relevant control model parameter estimation techniques are reviewed and heuristics are
developed for gain and time constant estimates for single input/single output systems. The analysis
indicates that overestimated controller gain and underestimated controller time constant leads to
better controller performance under model parameter uncertainty. An online method for giving
statistical significance to control model parameter estimates is presented. Additionally, basic and
advanced switched model predictive control schemes are presented. Both algorithms use control
models of varying fidelity: a high fidelity process model, a reduced order nonlinear model, and a
linear empirical model. The basic switched structure introduces a method for bumpless switching
between control models in a predetermined switching order. The advanced switched controller
builds on the basic controller; however, instead of a predetermined switching sequence, the ad-
vanced algorithm uses the linear empirical controller when possible. When controller performance
becomes unacceptable, the algorithm implements the low order model to control the process while
the high fidelity model generates simulated data which is used to estimate the empirical model
parameters. Once this online model identification process is complete, the controller reinstates
the empirical model to control the process. This control framework allows the more accurate, yet
computationally expensive, predictive capabilities of the high fidelity simulator to be incorporated
into the locally accurate linear empirical model while still maintaining convergence guarantees.

Keywords: model predictive control, moving horizon estimation, advanced process control, switched
control, high fidelity simulators, subsea riser slugging, pipeline wax depostion, parameter estima-
tion, managed pressure drilling
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NOMENCLATURE

Greek
α Filter factor for additive bias
αc Confidence level, 1−αc is the level used in nonlinear regression
αi ARX model output coefficients
αo Given initial condition for the Runge-Kutta method
αL Average fraction of liquid in the riser
αLT Liquid fraction of fluid immediately upstream of the riser valve
α∗LT αLT without entrainment
βa Bulk modulus of the annulus
βd Bulk modulus of the drillstring
βi ARX model input coefficients
δ̃ Kalman innovation
∆p Change in model parameters
∆Pv Differential pressure across a valve
λeq Lagrange multiplier of equality constraints
λineq Lagrange multiplier of inequality constraints
νG1 Velocity of gas a the low point of the riser
θ Process time delay
θm Measurement time delay in slugging model
ϑ Vector of estimated model parameters
ϑ ∗ Vector of best estimates of model parameters
ρa Density in the annulus
ρd Density in the drillstring
ρG1 Density of gas in the section upstream of the riser
ρL Density of the liquid in the slugging model
ρT Average density of the total fluid flowing through the riser valve
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CHAPTER 1. INTRODUCTION

Petroleum currently fulfills 33% of total global energy demand, more than any other source

of energy, and is likely to continue to do so for at least the next 30 years [1]. Increasing demand

for oil brings with it increasing environmental and safety concerns. This is demonstrated by the

fact that within the Gulf of Mexico alone there continue to be four uncontrolled oil or gas well

situations each year [4]. Environmental and safety hazards have motivated the use of renewable

energy sources. While the need for alternative sources of energy is clear, the growth and maturity of

other energy sources has been slow and unable to meet energy demand, especially in transportation.

Therefore, to meet the growing demand for energy, safety, and environmental responsibility, more

efficient, robust, and reliable technological advances are needed in the petroleum industry. To

assist in this effort, this dissertation presents several advanced control techniques that are applied

to processes in the petroleum industry.

Figure 1.1: Total world energy consumption by energy source, 1990-2040 (quadrillion BTU).
Note: Dotted lines for coal and renewables show projected efforts of the U.S. Clean Power Plan.
Source: U.S. Energy Information Administration [1]
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The petroleum industry is functionally divided into upstream and downstream divisions.

The upstream division finds and extracts oil and gas from geologic formations, while the down-

stream division refines the crude oil and gas into usable products. The downstream sector has

seen many technological advances in process control and optimization, but many processes in the

upstream sector, such as oil well drilling, still lack any significant automation [5]. When automa-

tion is optimized, it improves safety and efficiency over manual control by responding faster to

process disturbances and by operating closer to process constraints. To attain these benefits, opti-

mal automation and control techniques require a sufficiently accurate model of the process. These

models can be obtained from empirical data or from first-principles. First-principles-based models

that very nearly approximate the actual process are known as high fidelity simulators. High fidelity

simulators have exceptionally accurate predictions, which is highly desirable for predictive control

applications. These models have rarely been implemented in real time control because of the large

computational resources required to use them in the short time intervals necessary in feedback con-

trol. This research explores novel uses of high fidelity simulators for optimal control in upstream

oil and gas processes.

1.1 Overview

Background information on advanced control and estimation techniques, and upstream oil

and gas processes puts this research in context. Subsection 1.1.1 explains how and why the AP-

Monitor modeling language modifies equations for simulation, estimation, and control. Subsection

1.1.2 describes subsea riser slugging and associated control challenges, as well as reviews pipeline

wax deposition technologies. Subsection 1.1.3 introduces concepts in advanced predictive con-

trol, while subsection 1.1.4 discusses the benefits and draw backs of high fidelity simulators in

control applications. Subsection 1.1.5 describes the oil well drilling process and the necessity of

downhole pressure control. Finally, Subsection 1.1.6 covers the need for estimating control model

parameters along with several industrially relevant estimation techniques. Additionally, the sig-

nificance of the novel contributions made in this work are highlighted in each subsection. These

subsections lay the foundation for the central theme of this research, which is improving controller

reliability through Model Predictive Control (MPC) and multi-fidelity control models. The work

includes theoretical and novel application contributions in model predictive and switched control

2



for upstream processes. Therefore, a review of state-of-the-art methods is presented along with the

challenges related to controlling the production of hydrocarbons.

1.1.1 The APMonitor Modeling Language

Dr. John Hedengren began developing the APMonitor modeling language in 2003, and

is still actively developing it [6]. Modeling languages are different than general use programming

languages, such as Python or C++. A modeling language converts dynamic process control models

into a form that allows an optimizer or solver to perform gradient-based optimization with the

model equations. To convert the equations, APMonitor incorporates several recent developments

in numerical methods and optimization techniques. These methods are explained in detail in this

subsection because APMonitor is used extensively in this work.

Dynamic Process Control Models

Optimal, computer-aided, process control requires a mathematical description of the pro-

cess. The collective equations are known as a control model, and can have various forms. Control

models are grouped into two major divisions: empirical-based models and first-principles-based

models. Empirical-based models are also known as “black box” models because they relate model

inputs to model outputs without giving a priori insight into how the inputs and outputs are related.

Several common empirical control model forms are in Table 1.1. In this dissertation, t is time, k

is discrete time, i is an index variable, y is a time-varying output variable, x is a time-varying state

variable, and u is a time varying input variable. τp is the process time constant, Kp is the process

gain, and θ is the process time delay. The A, B, C, and Dd matrices are the state transition matrix,

the control matrix, the observation matrix, and the feedforward matrix respectively. bi are the FIR

model coefficients, and αi and βi are the ARX model output and input coefficients.

Although nonlinear empirical models have been developed, empirical models often have a

linear relationship between the model inputs and outputs. Linear control models used on nonlinear

processes have a limited range of accuracy. This limitation has been addressed in several ways.

Gain-scheduling [7] is a technique that switches among predetermined linear control models based

on the current operating region. Methods based on Hammerstein-Weiner models [8] include a
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Table 1.1: Common empirical control model forms

Name Equation

First Order Plus Dead Time (FOPDT)
τp

dy(t)
dt

=−y(t)+Kpu(t−θ) (1.2)

State Space (SS) dx(t)
dt

= Ax(t)+Bu(t) (1.3a)

y(t) =Cx(t)+Ddu(t) (1.3b)

Finite Impulse Response (FIR) y(k) =
N

∑
k=0

biu(k− i) (1.4)

AutoRegressive with eXogenous inputs (ARX)
y(k) =

N

∑
k=0

αiy(k− i)+
N

∑
k=0

βiu(k− i) (1.5)

term to the linear model that accounts for the nonlinear behavior of the system. It is also possible

to simply use the linear model over the full operation range, but the controller may be limited in

its ability to control the process. Empirical control models are common in controlling industrial

processes [9]. These models are identified from dynamic process data that are used to fit param-

eters in the model. Generating data for empirical model parameter regression can be disruptive

to operations and very costly. Many industrial processes, such as polymer grade transitions, are

extremely nonlinear, to the extent that linear model approximations are insufficient to control the

process [10]. In these situations, nonlinear first-principles models are valuable for control.

First-principles-based models come from fundamental energy, mass, and momentum bal-

ances and include equations that capture the underlying chemistry and physics of a process. These

models explicitly describe the relationships among process variables, which are principally nonlin-

ear in nature. Hence, first-principles-based models are characterized by dynamic nonlinear equa-
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tions [11]. first-principles models are also inherently more complex than empirical models. Dy-

namic first-principles-based models generally consist of four elements:

1. Core differential equations that capture the major dynamics of the process, and may include

mass, momentum, or energy balances

2. Ancillary algebraic equations that determine necessary variables within the core differential

equations such as chemical kinetic rate constants or the cross-sectional area of a pipe.

3. Equation variables that change as process conditions change such as pressure, flow rates, or

valve position.

4. Equation variables that do not change with changing process conditions such as fundamental

physical constants or pipe diameter

Examples of first-principles models used in this work are in Chapters 2, 4, and 5. Few

industrial processes use first-principles-based models when compared to empirical models. They

take considerably more time to develop and to calibrate to changing process conditions. Also, the

computational resources required to use them in optimization can be substantial. The advantage

is that they are generally more accurate over a wider range of operating conditions, thus requiring

significantly less tuning than empirical models.

If the control model contains any Partial Differential Equations (PDEs), they must be con-

verted to Ordinary Differential Equations (ODEs) or Differential and Algebraic Equations (DAEs)

to be used in APMonitor. Once a suitable control model is acquired, any differential equations

must be solved at each instance of time.

Solving the Differential Equations

The model equations are the foundation of a controller. To optimize control, there are two

major divisions in the methods used to numerically evaluate ODEs- simultaneous methods and se-

quential methods. Sequential methods solve the model equations from the given initial conditions

by stepping sequentially forward in time. The model ODEs are solved at each time step by using

Runge-Kutta [12] or other similar numerical integration techniques. A fourth-order Runge-Kutta
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method evaluates the equations at the given initial conditions and three other intermediate steps to

give the solution at the next time step. Equations 1.6a-1.6g show how this is done in general for a

step size of s, and a known to and αo.

dy(t)
dt

= f (t,y), y(to) = αo (1.6a)

k1 = s f (ti,αi) (1.6b)

k2 = s f (ti +
s
2
,αi +

k1

2
) (1.6c)

k3 = s f (ti +
s
2
,αi +

k2

2
) (1.6d)

k4 = s f (ti + s,αi + k3) (1.6e)

αi+1 = αi +
1
6
(k1 +2k2 +2k3 + k4) (1.6f)

αi+1 ≈ y(ti+1) (1.6g)

This process is repeated at each time step, and the solution is sequentially propagated forward in

time. Simplicity is one of the benefits of sequential methods; one of the limitations of sequential

methods in control applications is the number of function calls, and subsequent computation time,

necessary at each time step. Most of the required computation is spent on converging intermediate

solutions that are not optimal. In contrast, simultaneous solution methods give a computation-

ally efficient way of calculating the entire time horizon of interest. These methods converge the

equations and minimize the objective function simultaneously.

Simultaneous methods can also be used to solve the core model equations. APMonitor uses

a method developed by Carey and Finlayson in 1974 [13] called orthogonal collocation on finite

elements. This method solves the ODEs by approximating the continuous solution at predeter-
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mined points known as collocation points. These points are determined by the Lobatto quadrature

[14], [15]. A quadrature is a formula for numerically approximating the integral of a function with

a series of algebraic functions and weights at points where the solution exactly matches the con-

tinuous solution [16]. The Lobatto quadrature uses the roots of the Legendre polynomials to find

the collocation points which are orthogonal to each other. The orthogonality is essential because it

ensures the points are linearly independent, and the matrix used to find the weights in the Lobatto

quadrature will not be singular. Once the weighting terms are determined, each time step in the

control horizon is a boundary collocation point, and additional intermediate points can be chosen

and computed. The time step is also known as a finite element [16]. Figure 1.2 gives a graphical

representation of orthogonal collocation on finite elements in a control application.

Time step/boundary collocation point

Internal collocation point

Continuous solution to ODE/Controlled Variable

Manipulated Variable 

Time

M
a
g
n
it
u
d
e

Figure 1.2: A graphical representation of orthogonal collocation on finite elements in a generic
control application. This example uses a Legendre polynomial of degree two with one internal
collocation point.

Simultaneous solution methods are beneficial for several reasons. These methods require

less function calls per time step, which translates to less computational resources and faster solution

times. Once the ODEs are converted to purely algebraic equations, additional algebraic constraint
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Table 1.2: A summary of the discussed benefits and drawbacks of sequential and simultaneous
solution methods in optimal control applications.

Sequential Simultaneous

Benefits • Straightforward to implement • Fast solution times

• Solver always remains in feasible
solution space

• Easy to implement equation and
variable constraints

• Easy to implement logical
conditions in optimization routines

• Easy to incorporate into
gradient-based optimization solvers

Drawbacks • Requires more computation per time
step

• Difficult to directly incorporate
logical decisions

• Difficult to implement variable
constraints

• Possibility of not converging to a
solution

equations and constraints on system and state variables can be directly integrated into the algorithm

of a gradient-based solver for more efficient optimization in MPC applications.

As a flexible modeling language, APMonitor has options for both sequential and simultane-

ous solution methods. Each method has strengths and weaknesses, and each should be used with

discretion. For example, when solving highly nonlinear model equations simultaneous methods

may give poor algebraic approximations, and sequential methods may prove more reliable. Table

1.2 contrasts the benefits and drawbacks of sequential and simultaneous methods.

Solving the model differential equations is necessary for control, but to take advantage of

current optimization techniques the first and second derivatives of the model equations must also

be computed.

Differentiation Methods

APMonitor uses Automatic Differentiation (AD) to compute the first and second deriva-

tives of the model equations, objective function, and constraint equations. These derivatives are

used in the optimization algorithms as explained in the next subsection. AD applies the chain rule

for calculating derivatives to computer code in a systematic way. There are two methods for using
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AD to compute derivatives: forward and reverse. Equation 1.7 shows how the two methods are

related.

(Id−DV )Dv = Id = (Id−DT
V )D

T
v (1.7)

Here, DV is the Jacobian of the model equations with respect to the model variables, Dv

is the Jacobian of each model variable with respect to the other model variables, Id is the identity

matrix, and the superscript T indicates the matrix transpose. The forward method solves the left

hand side of Equation 1.7 for Dv, while the reverse method solves the right hand side for DT
v . If

the number of model equations is greater than the number of model variables (i.e. an optimization

problem), then the reverse method is more computationally efficient. When there are more model

variables than model equations (i.e. an estimation problem), then the forward method uses less

computation [17]. Because the forward method uses less active memory than the reverse methods,

APMonitor employs the forward method for both optimization and estimation problems. It does

this in practice by using a technique called operator overloading. Operator overloading can only

be done in a programming language that supports this feature such as Fortran 90 or C++. A new

data structure is defined that includes a variable and its derivative. Then the basic computation

operators are redefined to handle the variable and its derivative [17].

Once the derivatives of the system can be computed, and differential equations are con-

verted to algebraic equations, APMonitor employs an active set or an interior point solver to find

the optimal solution for simulation, estimation or control problems.

Constrained Gradient-Based Optimization and Nonlinear Solvers

APMonitor has the capability to solve several types of optimization problems. These prob-

lems can include equality or inequality constraints, and can be linear or nonlinear. The general

formulation of these problems is Equation 1.8.
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minimize : f (x)

sub ject to : g(x)≤ c, (1.8)

h(x) = c

In this general formulation, f is the objective function, x is a vector of the model manipulated

variables, g is the set of inequality constraint equations, c is a vector of constants, and h is the set

of equality constraint equations. If the model equations are such that f is nonlinear, then the opti-

mization problem is called a NonLinear Programming (NLP) problem . If certain variables in an

NLP problem are required to be binary or integers, the problem type is known as a Mixed Integer

NonLinear Programming (MINLP) problem . If the objective function is linear then it is termed

a Linear Programming (LP) problem, with binary or integer variables it is called Mixed Integer

Linear Programming (MILP) problem. If the objective function f is quadratic, then the prob-

lem is known as a Quadratic Programing (QP) problem. Because constrained NLP problems are

the most challenging for gradient-based solvers, this type of problem is discussed in more detail.

These types of problems are usually solved using either an established open source interior point

solver called Interior Point OPTimizer or IPOPT [18], or an active set solver known as Advanced

Process OPTimizer or APOPT [19]. Both IPOPT and APOPT use the method of Lagrange mul-

tipliers which employs the Lagrangian L as the objective function to be minimized. This method

is an efficient way of incorporating the constraint equations into the optimization algorithm. The

Lagrangian function is found in Equation 1.9.

L(x,λeq,λineq) = f (x)+λeq(h(x)− c)+λineq(g(x)− c) (1.9)

Here, λeq and λineq are weighting vectors, known as Lagrange multipliers, that are chosen

to make the gradients of the equality and inequality constraints and the gradient of the objective

function f sum to zero. This condition is part of the Karush-Kuhn-Tucker (KKT) conditions that

define optimality. The KKT conditions are summarized in Table 1.3.
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Table 1.3: A summary of the necessary and sufficient conditions for constrained optimality. These
are known as the KKT conditions.

Condition Equation

Necessary No search direction improves the
objective function

J = ∇ f (x) = λeq∇h(x)+λineq∇g(x)

The solution is feasible h(x)− c = 0, g(x)− c≤ 0

λeq is unconstrained and λineq is
nonnegative

−∞ < λeq < ∞ , λineq ≥ 0

Sufficient The Hessian of the Lagrangian with
respect to x is positive definite

H = ∇2L(x,λeq,λineq) = ∇2 f (x)+
λeq∇2(h(x)− c)+λineq∇2(g(x)− c)

Another KKT condition for constrained optima is positive definite Hessian and Jacobian

matrices. The Jacobian matrix is the partial first derivatives of the model equations with respect to

each variable in the equations and is shown in Equation 1.10.

J =

[
∂ f

∂x1
. . .

∂ f
∂xn

]
=


∂ f1
∂x1

. . . ∂ f1
∂xn

... . . . ...
∂ fm
∂x1

. . . ∂ fm
∂xn

 (1.10)

The Hessian is the second derivative matrix of the Lagrangian as shown in Equation 1.11. When

every eigenvalue of the Hessian is positive, it is call positive definite. If the second derivative with

respect to each variable is positive, then the sufficient condition of optimality is satisfied.

H =



∂ 2L
∂x2

1

∂ 2L
∂x1∂x2

. . . ∂ 2L
∂x1∂xn

∂ 2L
∂x2∂x1

∂ 2L
∂x2

2
. . . ∂ 2L

∂x2∂xn
...

... . . . ...
∂ 2L

∂xn∂x1

∂ 2L
∂xn∂x2

. . . ∂ 2L
∂x2

n


(1.11)

Once IPOPT or APOPT verifies the KKT conditions are met, the search for optimality

stops. While the optimal solution is the same for a given problem, IPOPT and APOPT arrive at
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the solution in different ways. IPOPT uses an interior point method that utilizes a barrier term to

force the search direction away from the constraints, and toward the interior of the solution space.

At each iteration the barrier term is relaxed until the constraints are included in the search space.

In contrast, APOPT uses an active set method that assumes the constraints given will be active in

the optimal solution. The search direction follows the constraints until the KKT conditions are

satisfied.

When solving constrained nonlinear, or nonconvex, optimization problems, there are sev-

eral issues that the solver can encounter. For example, the search may lead to a local optimal point,

instead of the actual global optimum. When using the simultaneous solution method, finding local

minima can be over come by starting from an appropriate initial condition. Identifying the best ini-

tial conditions can be extremely challenging. However, several strategies exist that assist in finding

the suitable beginning model values. Several of these strategies can be found in [20]. Figure 1.3

shows an example graphical representation of a constrained non-convex optimization problem and

the pitfalls can occur in nonconvex optimization.

This work uses nonlinear solvers on nonconvex optimization problems. These methods are

applied in MPC and Moving Horizon Estimation (MHE) to control upstream production processes.

These processes are further described in the following sections to further put the value of this

research in context.

1.1.2 Subsea Riser Slugging Control

Hydrocarbon production from offshore oil fields has many challenges. These challenges

stem from drilling and producing oil from reservoirs that can be 20,000+ feet below the ocean

floor in 1,500 to 12,000 feet of water. Once a geologic evaluation is completed, exploratory wells

are drilled and prepared for producing oil or gas; this is known as completing a well. Well com-

pletion includes connecting the well to the reservoir, hydraulic fracturing, installing any necessary

downhole equipment such as pumps and connecting the wellhead at the ocean floor to floating

production facilities. Often these facilities are several miles from the wellhead, and a pipeline is

placed on the sea floor as a connection. Pipelines within an oil field are known as flowlines. When

the flowline approaches the floating facility it rises vertically to the floating vessel. This vertical

section of the flowline is known as the production riser. Figure 1.4 shows two of the most com-
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Figure 1.3: Example of a constrained non-convex optimization problem with two variables.

mon types of production riser configurations in offshore oilfields that are most likely to have flow

instabilities. Flow instabilities can occur when a riser has a low point, caused by either the buoys

or the sea floor terrain. A common flow instability is known as slugging. Slugging is a physical

phenomenon that can occur in pipes with multiphase flow of liquid and vapor. The liquid gathers

at the base of the riser and cuts off the gas from ascending in the riser.

As flow continues, liquid fills the riser volume and the gas builds pressure at the riser base.

This continues until the gas pressure is sufficient to rapidly move the liquid in the riser into the

topside receiving facilities. Figure 1.5 shows the stages of riser slugging.
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(a) L-shaped (b) S-shaped

Figure 1.4: Common production riser types.

Severe slugging is large amplitudes of pressure and flow, and can occur in subsea oil well

production risers. The undesired oscillations caused by severe slugging slow oil and gas pro-

duction, and cause accelerated fatigue to production equipment. Many technologies have been

developed to control the effects of slugging including design of separation equipment to better

accommodate the slugs, a large topside holding tank to catch the slugs, and subsea phase separa-

tors that separate the liquid from the gas near the wellhead. These methods are often expensive

or sub-optimal solutions [21]. Another way to mitigate the effects of severe slugging is through

a choke valve at the top of the production riser. The valve can be used by a controller to dampen

the oscillations caused by slugging. This inexpensive solution was first reported as successful in

1930 [22] and has since been studied extensively. Several controllers have been designed for slug-

ging suppression including PI [23], cascaded PID [24], neural networks [25], and gain-scheduling

Internal Model Control (IMC) [26] among others [27]. However, these control methods do not

take advantage of predictive control techniques. One of the novel contributions of this work is the

design and simulation of an advanced model predictive controller for severe subsea riser slugging

mitigation with quantified benefits for direct pressure sensing at the base of the riser.
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1- Liquid pools at riser base. 2- Liquid fills riser, gas pressure builds.

3- Liquid forcefully exits riser. 4- Gas pressure is released, liquid falls back.

Figure 1.5: Stages of subsea riser slugging.

1.1.3 Model Predictive Control

Model predictive control (MPC) is an advanced dynamic control technique that uses opti-

mization methods and a transient mathematical model to control a process. The algorithm mini-

mizes the difference between the model predicted states and the process controlled variables (CVs)

by adjusting the process manipulated variables (MVs) for a given set point (SP). This is done over

a finite future time horizon to predict future process states and adjust for future constraint vio-

lations in the present time step (see Fig. 1.6). Only the first of the predicted changes in MVs

is implemented. The latest process measurements are used to initialize subsequent optimization

calculations, and the calculations are repeated at the next time step.

MPC depends on a sufficiently accurate model of the process. If an accurate model is

available, then MPC offers several advantages over traditional control algorithms. The major ben-

efits of MPC over traditional Proportional, Integral, Derivative (PID), or Proportional, Integral (PI)

controllers, and the drawbacks of MPC, are shown in Table 1.4. The benefits of MPC are further

enhanced when high fidelity simulators are used in the MPC algorithm.
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Figure 1.6: A graphical interpretation of the MPC algorithm. The optimization routine minimizes
the error between the current plant outputs and the set point by changing the inputs at each time
step over the prediction horizon N. Only the first control move is implemented, the horizon shifts,
and the procedure is repeated incorporating the newest plant measurements. If highly accurate
models are used, better predictions lead to better controller performance and more stable control.

1.1.4 High Fidelity Simulators in MPC

The value of the predictions from highly accurate first-principles models in real time feed-

back control is most apparent in MPC. Closed loop control systems can become unstable even

with highly accurate models, and several robust control strategies have been developed to guaran-

tee stability for linear MPC applications [28]–[30]. However, a control model must have a certain

level of accuracy before any guarantees of controller stability and performance can be made. This
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Table 1.4: General benefits and drawbacks of MPC.

Benefits Drawbacks

• The controller takes advantage of the
modeled dynamic and static interactions
among MVs and CVs

• The algorithm requires more computational
resources including an optimization routine at
each iteration

• Process constraints are directly
incorporated into the control law

• The controller is more complex with an
inherent higher probability of error and
maintenance issues

• Control and set point calculations can be
coordinated and optimized

• There is a possibility that the algorithm will
not converge to a solution at all or within the
required time

• Adjusts for future constraint violations by
predicting, and not just reacting to, modeled
disturbances

is particularly true in MPC because the optimization algorithm minimizes the error between the

model predictions and the process measurements at each time step.

If the control model does not describe the plant behavior sufficiently, then the predictions

and subsequent controller decisions can cause a loss of satisfactory control. For Nonlinear MPC

(NMPC), it has been shown that if the optimizer converges to a solution, the feedback controller

is guaranteed to be stable [31]. However, in order for the solver to converge within a specified

tolerance of the true process, the control model must have a certain level of accuracy. It has been

demonstrated that improved models provide better control than less rigorous models in optimized

feedback control [32]. While performance improvements have been demonstrated, robust perfor-

mance and stability guarantees in NMPC are the subject of current research [30], [33]. In addition

to performance improvement, correct model predictions allow a controller to maintain control over

a process, over the prediction horizon, even when there is no process feedback due to sensor fail-

ure, etc. Therefore, because predicted future states are used to control current conditions, MPC

requires adequate model accuracy for any controller performance and stability guarantees. This

motivates the use of high fidelity simulators in feedback control for applications in the upstream

oil and gas industry.

17



One of the novel contributions of this work is a method to use the highly accurate, yet

computationally intensive, predictions of high fidelity simulators in real-time feedback control.

This novel control method is applied to managed pressure drilling with high fidelity simulators. To

fully appreciate these contributions, it is necessary to understand the oil well drilling process.

1.1.5 Automated Managed Pressure Drilling

Before a well can be put into production, it must be drilled, cased, cemented, and some-

times hydraulically fractured with a number of complex steps that each have unique challenges.

The focus of this section is on the drilling phase of well construction. Oil and gas wells are cre-

ated by drilling for several hundred to several thousand feet, stopping to insert and cement casing

pipe to the well bore, then repeating the process until the target depth in reached. As the well

deepens, more drill pipe is connected to the drillstring. At the bottom of the drillstring, a Bottom

Hole Assembly (BHA), consisting of measurement and steering equipment, is attached to the drill

bit. The drill bit is cooled by the drilling fluid, or mud, which also moves the rock cuttings to the

surface and maintains pressure in the well annulus (see Figure 1.7). In conventional drilling, the

well annulus pressure must be greater than the geologic reservoir pressure to prevent hydrocar-

bons from entering the well during the drilling process. Excessively high mud pressure in the well

can damage the rock formation, while excessively low pressure can allow hydrocarbons from the

subsurface reservoir to reach the surface in an uncontrolled and dangerous manner. When mud is

displaced by uncontrolled reservoir fluid flow, it is known as a blowout. The well bore pressure

must be maintained within a range of pressures that balances the reservoir fluid pressure to prevent

fractured formations and blowouts. To help achieve this pressure balance, a variation of traditional

drilling, called Managed Pressure Drilling (MPD) was developed [34]. A simplified schematic of

MPD is shown in Figure 1.7. A common implementation of MPD uses mud mass and volume bal-

ances from measurements to estimate and control the bit pressure and reject process disturbances.

Another MPD strategy uses pressure measurements from the BHA to inform the driller of the need

to adjust the main mud pump flow rate and choke valve opening to reach the desired pressure target

in the well. Also, a back pressure pump is used to maintain well pressure during pipe connection

procedures when the main mud pump is disconnected from the drillstring.
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Figure 1.7: Simplified schematic of the MPD process.

Several abnormal events can disturb normal drilling operations. For example, irregular

torsional vibrations in the drillstring can cause the bit to periodically stick in the well bore instead

of cutting through the rock. This is known as stick/slip, and is detected by an erratic Rate of

Penetration (ROP) through the rock and transient torque in the drilling rig topdrive which turns

the drillstring [35]. Erratic ROP can affect bit pressure control by randomly changing the friction

between the rotating drillpipe and the annulus fluid and subsequently the pressure in the annulus

[36]. Additionally, a drilling disturbance known as pack-off can occur. Pack-off occurs when

mud flow in the annulus is insufficient to carry the rock cuttings to the surface. The cuttings

conglomerate in the mud which prevents drillstring rotation. The drillstring is unable to spin

or move up or down in the well. When this occurs, pressure control ceases along with drilling

operations until the issue is resolved. Another serious process disturbance occurs when drilling

into an unexpected high pressure reservoir can offset the well/reservoir pressure balance and allow

an unwanted influx of gas or oil into the well bore. This situation is known as unwanted gas
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influx or kick. It is characterized by a sudden increase in pressure near the bit and increased

flow rate in the annulus. Traditionally, a kick is addressed by stopping operations and adding

bentonite powder to the mud to increase the fluid density and hydrostatic pressure of the mud

column. This creates a new balance, at a higher pressure, between the annulus pressure and the

reservoir pressure. However, the advances of MPD allow kicks to be rectified using increased mud

flow rates and changing choke valve positions, without stopping operations.

Some of the novel contributions of this work include the use of a high fidelity simulator

in the control loop to maintain bit pressure in the event of a simulated kick, and also when there

is no bit pressure feedback due to no mud flow during a pipe connection procedure in drilling.

The method utilizes a switching algorithm that selects the best control model based on availability

and fidelity. The method is expanded to include a novel online model identification technique that

incorporates high fidelity model predictions into the control loop. The method is used to control a

kick simulation.

While using highly accurate models can result in greater control over a wider range of op-

erating condition, it is critical that the model parameters are estimated correctly. Several estimation

techniques exist to estimate model parameter values. These methods are reviewed and compared

in this work.

1.1.6 Comparison of Model Parameter Estimation Methods

Several estimation techniques are used in the oil and gas refining, chemicals, exploration,

and production sectors for process model parameter estimation. These techniques include a fil-

tered bias update, Implicit Dynamic Feedback (IDF), Kalman Filtering (KF), and Moving Horizon

Estimation (MHE) [37]. This work reviews the advantages and disadvantages of each of these

methods. Because MHE is an estimation method used throughout this work, it is discussed in

more detail.

MHE uses optimization to adjusts process model parameters to minimize the error between

the model and process measurements over an estimation time horizon. Figure 1.8 gives a graphical

representation of the MHE algorithm.The disadvantages of MHE, compared to other estimators,

are the increased computational load required to solve the optimization problem and the difficulty

in obtaining optimal tuning. This work discusses techniques to overcome both of these obstacles
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Figure 1.8: A diagram of a moving horizon estimation algorithm.

to enable fast and reliable solutions that are tuned to optimally utilize measured data in model

predictive control applications.

The conventional standard in industrial process control has been that as long as the gain

is within 50% of the true value, and the time constant is within 30% of the actual value, then the

feedback will account for the differences and maintain satisfactory control over the process. One of

the novel contributions of this work is to provide a generalized result that verifies this conventional

standard and provides a more accurate estimate for the parameter bounds where a controller can

still maintain acceptable control.

1.2 Summary of Novel Contributions

This work makes the following contributions to the body of chemical engineering process

control knowledge:
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• The design and simulation of a model predictive controller for severe subsea riser slugging

mitigation using post-installed fiber optic sensors. The controller improves performance

over a PID slugging controller.

• A method for quantifying the benefits of sensor location in post-installed sensors used in slug-

ging feedback control.

• Guidelines for bounded control model parameter identification that allow the controller to main-

tain acceptable control over a process.

• An online process to give statistical significance to control model identification by using nonlin-

ear confidence regions.

• A basic switching algorithm that uses multi-fidelity models in real-time feedback control. The

controller allows for continued control, even with loss of feedback, by using the predictions

of a high fidelity simulator.

• A technique for implementing bumpless switching among control models.

• An advanced switching algorithm that builds upon the basic switch for use of multi-fidelity mod-

els in real-time control. The predictions from a high fidelity simulator can be incorporated

into the control law for more precise control.

• A method for online control model identification that does not interrupt the process. A high

fidelity model is used to simulate data to identify a control model from the current process

conditions.

1.3 Dissertation Outline

The remainder of this dissertation is divided into six chapters as follows:

Chapter 2 describes a basic model predictive control scheme for severe subsea riser slug-

ging control. The predictive controller is compared to a traditional PID controller and shows

improved performance. For this controller to have a practical feedback loop, there must be a pres-

sure sensor near the base of the riser. Therefore, the technical challenge of placing a post-installed,
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clamp style, fiber optic pressure sensor on the riser is also described in this chapter. The location of

the sensor and the effect on controller performance are explored in simulation. The simulations use

an established riser slugging model for controller validation. Corrosion of the riser over time can

alter the accuracy of the sensor, and the effect of pipe corrosion on sensor accuracy is explored. A

common problem that may affect the sensor performance is pipeline wax deposition. This chapter

reviews the mechanisms of wax deposition and the technologies used to address this issue.

Chapter 3 reviews the various estimation methods used in the oil and gas downstream,

upstream, and petrochemical industries. After establishing the need for updating process models

on various timescales, the five most commonly used estimation techniques are explained. As part

of the discussion, the advantages and disadvantages of each method are compared and contrasted.

A simple automated drilling application is used as a case study to demonstrate the strengths and

weaknesses of each algorithm. The case study includes measurement noise, outliers, drift, and an

incorrect initial condition. The use of nonlinear statistics to validate and establish a 95% confidence

interval for control model parameter estimates is explored. Additionally, generalized quantified

guidelines are given for Single Input Single Output (SISO) predictive control model parameter

estimation ranges.

Chapter 4 introduces a simple switched control scheme that selects control models of vari-

ous fidelity to take advantage of the benefits of each model in MPC. The switch transitions among

models in a smooth manner that avoids excessive MV movement. The controller is applied to

managed pressure drilling. Three models are used in the control scheme: a high fidelity model, a

reduced order first-principles model, and an empirical model. After explaining each model and the

switch itself, the control advantages and disadvantages of each model are discussed. The effective-

ness of the controller is demonstrated in common drilling scenarios, including a loss of feedback

measurements.

Chapter 5 builds on the previous switched control concept, but introduces a more advanced

switching algorithm. That allows the accuracy of a high fidelity simulator to be used in a control

law in real time. The advanced algorithm incorporates a model identification routine that uses the

high fidelity model to generate real time simulated data to estimate the empirical control model

parameters. The model identification procedure does not interrupt the process, and is suitable for

nonlinear processes where online model identification is needed due to model inaccuracies. After
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reviewing other work on high fidelity models in control, the controller stability is discussed. The

controller is applied to common drilling situations including a process disturbance scenario, and

shows satisfactory control.

Chapter 6 discusses the conclusions, highlights, and the future research directions of this

work. Future research directions include automated high fidelity model tuning methods, more

rigorous controller stability proofs, and nonlinear parameter joint confidence regions for tuning

procedure initialization.

Following the body of the text, several appendices contain the APMonitor, Python and

MATLAB computer code developed for this work. Appendix A contains the APMonitor MPC

initialization and controller code for subsea riser slugging control. Appendix B has the APMonitor

code that was used to develop the SISO control model parameter estimate guidelines. Appendix

C contains the novel basic switched control algorithm in APMonitor and MATLAB. It includes

code for the empirical, low-order, and high fidelity controllers that make up the basic switched

controller. Appendix D is similar in form to Appendix C, but contains the code for the advanced

switched controller that was developed in this work.

It should be noted that the author of this work has made several contributions to collabora-

tive research projects that are not included in this dissertation. These contributions include: Powell,

Kody M., Eaton, Ammon N., Hedengren, John D., and Edgar, Thomas F., A Continuous Formu-

lation for Logical Decisions in Differential Algebraic Systems using Mathematical Programs with

Complementarity Constraints, Processes, vol. 4, num. 1, 2016, DOI: 10.3390/pr4010007. The

contributions made to this paper were to identify and clarify the limitations of the novel formula

for inserting logical conditions in DAE systems, analyze the case study results for a level com-

parison, and explain existing alternative methods for handling logical decisions in gradient-based

optimization algorithms. This placed the novel complementarity formula in context for the wider

optimization community.

Also, significant contributions were made to: Aghito, Manuel, Eaton, Ammon N., Bjørkevoll,

Knut S., Nybø, Roar, and Hedengren, John D., Automatic Model Calibration for Drilling Au-

tomation, SPE Bergen One Day Seminar, SPE-185926-MS. The contributions include helping to

improve the optimal convergence criteria for a Monte Carlo style model parameter estimation al-
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gorithm, translating the algorithm from MATLAB to Python with platform benchmark testing, and

implementing a parallel processing structure for the algorithm.

Other contributions were made to Asgharzadeh Shishavan, Reza., Pixton, David S., Eaton,

Ammon N., Park, Junho, Perez, Hector D., Hedengren, John D., and Craig, Andrew, Addressing

UBO and MPD Challenges with Wired Drill Pipe Telemetry and Model Predictive Control, SPE/I-

ADC, Managed Pressure Drilling and Underbalanced Operations, 2014, DOI:10.2118/168953-

MS. Also, a presentation at the 2015 AICHE National Meeting in Salt Lake City, entitled Address-

ing Discontinuous Process Control Challenges with Multi-fidelity Model Predictive Control, was

given.
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CHAPTER 2. SUBSEA RISER SLUGGING CONTROL AND ARTERIAL WAX RE-
MEDIATION REVIEW

A major portion of this chapter is published as: Eaton, A.N., Safdarnejad, S.M., Hedengren, J.D.,

Moffat, K., Hubbell, C., Brower, D.V., and Brower, A.D., Post-Installed Fiber Optic Pressure

Sensors on Subsea Production Risers for Severe Slugging Control, ASME-OMAE, 2015, Volume

5B: Pipeline and Riser Technology, DOI: http://dx.doi.org/10.1115/omae2015-42196.

2.1 Introduction

Two-phase flow in pipelines can lead to an unstable flow regime known as slugging. When

slugging with large amplitudes of pressure and flow occurs in subsea oil well production risers it is

termed severe slugging. The undesired oscillations caused by severe slugging can slow oil and gas

production, and cause accelerated wear to production equipment. Many technologies have been

developed to control the effects of slugging including changing the design of separation equipment

to better accommodate the slugs, the addition of a large topside holding tank to catch the slugs, and

subsea phase separators that separate the liquid from the gas near the wellhead. These methods

are often expensive or sub-optimal solutions [21]. Another way to mitigate the effects of severe

slugging is through a choke valve at the topside of the production riser. The valve can be used

by a controller to dampen the oscillations caused by slugging. This inexpensive solution was

first reported as successful in 1990 [23] and has since been studied extensively. Several controllers

have been designed for slugging suppression including PI [23], cascaded PID [24], neural networks

[25], and gain-scheduling Internal Model Control (IMC) [26]; yet, predictive control has not been

attempted in the literature. The controllers that have been reported generally attempt to control the

pressure at the base of the riser. Many of the prior studies assume that pressure is measured or

estimated at the riser touchdown zone where the slugs are generated. However, most production

risers do not have a pressure measurement at the riser base, and slugging models may not be able to
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accurately estimate the necessary states. Without a pressure measurement in this area it is difficult

to create an effective feedback control loop. However, recent advances in post-installed fiber optic

clamp design now allow a pressure measurement near this location [38]. This chapter details

the plausibility of using a non-penetrating, post-installed fiber optic pressure measurement at a

production riser base for predictive control of riser slugging. Factors that may lead to poor sensor

calibration are discussed, and include corrosion and arterial wax deposition. Current methods to

monitor, prevent, and remediate wax pipeline deposition are reviewed. Advances in fiber optic

pipeline wax deposition monitoring technologies are also reviewed due to the enormous potential

to both monitor deposition within the pipeline and simultaneously measure pressure for control

applications.

2.2 Slugging Model

The slugging process was modeled in this study using a simplified three state model that

was developed by Storkaas [39]. While other higher order slugging models exist, the three-state

model is simple and sufficiently accurate for control purposes. The model consists of an L-shaped

riser as depicted in Figure 2.2. The major assumptions of the model are:

1. The liquid velocity in the section upstream of the riser is constant.

2. The gas volume in the upstream section is constant.

3. The liquid mass holdup in the riser section is described by one dynamic state (mL).

4. The gas mass holdup in the riser is described by one dynamic state (mG2) and is related to the

dynamic state of the gas mass in the upstream section (mG1) by a pressure-flow equation of

the low-point of the riser.

5. The gas behaves ideally.

6. There is a static pressure balance between the upstream pressure (P1) and the topside pressure

(P2).

7. The system is at a constant temperature. Refer to [39] for a complete description of the model

assumptions.
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The dynamic states in the model are expressed with Equation 2.1 as a liquid mass balance, Equation

2.2 as a gas mass balance upstream of the riser, and Equation 2.3 as a gas mass balance in the riser

section.

dmL

dt
= wL,in−wL,out (2.1)

dmG1

dt
= wG,in−wG1 (2.2)

dmG2

dt
= wG1−wG,out (2.3)

Here, mL is the mass of the liquid, mG1 is the mass of the gas in the section upstream of the

riser, and mG2 is the mass of the gas in the riser. The variable w in its various forms is the mass

flow rate with subscripts L for liquid and G for gas. The mass flow of gas upstream of the risers

given by Equation 2.4.

wG1 = νG1ρG1Â (2.4)

Here Â is the cross-sectional area of the flowing gas at the riser base, ρG1 is the density of

the gas in the upstream section of the system, and νG1 is the velocity of the gas at the low point of

the riser. This velocity of the gas in the section upstream of the riser is described by Equation 2.5.

νG1 = K2

(
H1−h1

H1

)√
P1−P2−ρLgcαLH2

ρG1
(2.5)

In this case, K2 is a multiplicative factor that adjusts the magnitude of the gas flow, H1 is

the critical liquid level at the low-point of the riser, h1 is the actual liquid level in the upstream

of the riser, P1 is the pressure in the section upstream of the riser, P2 is the pressure in the riser,

ρL is the density of the liquid, gc is the gravitational constant, αL is the average fraction of liquid
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in the riser, and H2 is the height of the riser. The valve was modeled using a simplified equation,

Equation 2.6.

wout = K1zc
√

(P2−P0)ρT (2.6)

Here wout is the total mass flow rate exiting the valve, K1 is a model tuning parameter, zc

is the valve percent opening, ρT is the average density of the fluid flowing through the valve, and

(P2−P0) is the pressure drop across the valve. Additionally, the fluid distribution in the riser is

modeled using Equation 2.7.

αLT = α
∗
LT +

qn

1+qn (αL−α
∗
LT ) (2.7)

αLT is the liquid fraction in the section immediately upstream of the control valve, α∗LT is

the liquid fraction without entrainment, q is a parameter that describes the transition between the

full entrainment and no entrainment. n is a tuning constant that changes the slope of the transition.

The equations presented here are the major equations used to define the model riser; for a complete

description refer to [39]. One of the limitations of this model is that the mass flow rates entering the

system (wL,in,wG,in) are constant. This attribute constrains the production to these values, and does

not allow the controllers to maximize production. Figure 2.1 shows the open loop response of the

riser base pressure, topside pressure, and mass flow rate out of the system as a function of valve

percent open. When the valve is 10% open, the slugs are effectively dampened. The minimum

valve position where slugging occurs is 13% open.

2.3 Controller

Two controllers were used in this study, a model predictive controller and a traditional PID

controller.

2.3.1 MPC Controller

One of the advantages of MPC over traditional controllers is its ability to predict future

modeled disturbances and respond to them before they affect the process. MPC uses a process
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Figure 2.1: Open loop response of the riser base pressure, topside pressure, and mass flow rate out
of the riser to valve percent open.

model to optimize the controllers output over a specified time horizon. The benefits of MPC come

at the expense of increased computation time. The model used for optimization in this controller

was a modified First Order Plus Dead-Time (FOPDT) model shown in Equation 2.8.

τp
dP1

dt
=−(P1−Pre f )+Kp(zc(t−θ)− zre f (t−θ)) (2.8)

Here, τp is the process time constant, Pre f is a reference pressure, zre f is a reference valve

position, and κp is the process gain. The MPC controller for this project was created in the APMon-
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itor modeling language. APMonitor uses collocation methods to convert the models Differential

and Algebraic Equations (DAEs) into a nonlinear programming (NLP) optimization problem [40].

The NLP problem is then given to an active set solver, APOPT, to find the optimal controller out-

put. The controller output is the valve position (zc), and the inputs are the constant mass flow rates

of liquid (wL,in) and gas (wG,in) into the pipeline. It also receives a pressure measurement from the

fiber optic sensors at the base of the riser (P1) and the topside (P2). The MPC controller uses an

`1-norm objective function in the optimization routine. This allows the controller to use a dead-

band set point instead of just a single value as with the standard `2-norm objective function. This

dead-band defines the range of acceptable values for the controlled variable, which in this case is

the riser base pressure (P1). This range of acceptable values gives the controller greater flexibility

in arriving at an optimal solution. The `1-norm objective function has also demonstrated better

rejection of measurement noise, outliers, and drift than a squared error objective function [6].

2.3.2 PID Controller

The PID controller used in this study was a modified version of the PID controller created

by [39]. The modifications include the addition of anti-reset windup and deletion of rate limiting

on the valve position. The derivative term was set equal to zero. After these modifications were

made the controller was appropriately tuned and included in the study as a benchmark controller.

2.4 Simulation

The riser slugging is simulated in MATLAB and Simulink. The pipeline-riser system is

simulated as a 0.12 meter (4.75 inch) diameter flowline with 4300 meters (2.67 miles) of line

upstream of the riser. The riser is 300 meters (984 feet) deep and runs for 100 meters (328 feet) to

the topside receiving facilities. The angle of incline at the base of the riser (θ ) is 1.57 degrees (see

Figure 2.2).

The gas and liquid mass flow rates entering the system are 0.36 kg/s (wG,in) and 8.64 kg/s

(wL,in) respectively. The system temperature is assumed constant at 308 K. The molecular weight

of the gas is 35 kg/kmol, and the liquid is pure oil with a density of 750 kg/m3. Finally, the

pressure of the topside receiver is assumed constant at 50 bar. The pressure at the riser base is used
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Figure 2.2: Illustration of the L-shaped riser simulated in this study.

as the controlled variable (CV) and the valve position is the manipulated variable (MV) for the

simulation. When the pressure oscillations are dampened, the flow will also stabilize. The addition

of a pressure measurement at the riser base completes the feedback control loop. The Simulink

diagram of the process is found in Figure 2.3.

2.5 Simulation Results

In this simulation, the controllers were activated at 33 minutes. The set point is 70 bar until

50 minutes when it moves to 75 bar. At 67 minutes it moves again to 69 bar (see Figure 2.4). The

controller output and the process response are shown in Figure 2.4.

Figure 2.4 demonstrates the superior performance of the MPC controller over the PID con-

troller. While the rise times of the MPC and PID controllers are identical, the MPC controller

achieves the set point quickly, while the PID controller has minor persistent offset.

2.5.1 Measurement Position and Time Delay

The effect of clamp position, and therefore pressure measurement delay, on riser slugging

control was explored. If the pressure measurement location is at the riser base, then there will

be no time delay in the measurement. However, if the position of the sensor clamp is moved

vertically up the riser then the time that the controller has to adjust to the slugs will decrease. If

a pressure measurement is only available on the topside then the measurement time delay will be
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Figure 2.3: The Simulink diagram of the slugging controllers used in the simulation. The lower
block is the MPC controller.

at a maximum and the controller will not have sufficient time to effectively control the slug. The

theoretical time delay was calculated using Equation 2.9.

θm =
H2ρLD2

4Win
(2.9)

In this equation, θm is the measurement time delay, D is the riser diameter, and Win is the

total mass flow of the system. All other variables are previously defined. The liquid density was
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Figure 2.4: Results of the riser slugging simulation. The top graph is the valve position (MV) and
the lower graph is the riser base pressure (CV). The PID controller is the solid line (red) while
the MPC is the dotted line (blue). The controller was activated at 33 minutes and the set point
was changed at 50 minutes and at 67 minutes. The lower plot shows the predictive controller
preforming slightly better than the PID controller. This is indicated by the minor persistent off-set
at from 55 to 67 minutes, and from 73 to 83 minutes. Also, the settling time of the MPC controller
for the initial set point is 37 minutes compared to 39 minutes for the PID controller.

used in this calculation because it will result in the maximum possible time delay. The actual

mixture density will be less and so will the delay. Using the liquid density constitutes the worst

case scenario. Applying Equation 2.9 to the simulated case gives a measurement time delay of 105

seconds. This represents what the delay would be if the topside pressure measurement were the

only measurement used in the control loop. Figure 2.5 shows the PID controller response to 105

seconds of time delay.
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Figure 2.5: PID controller response with only a topside pressure measurement (105 second time
delay). The top plot shows valve position, and the bottom plot shows riser base pressure. The
controller is activated at 33 minutes. The set point changes from 70 bar to 75 bar at 50 minutes,
then to 69 bar at 67 minutes.

This demonstrates the controller performance when only a topside pressure measurement

is available in the control loop. Additionally, the time delay was changed to simulate the point at

which the PID controller could no longer control the process. Figure 2.6 shows the PID controller

response to varying measurement time delay. With 50 seconds of time delay, corresponding to

167 meters of riser, the controller is unable to dampen the oscillations. This is the maximum riser

height that this controller can regulate using only topside pressure measurements.
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Figure 2.6: PID controller response with varying measurement time delay. The top plot shows
valve position, and the bottom plot shows riser base pressure. The controller is activated at 33
minutes. The set point changes from 70 bar to 75 bar at 50 minutes, then to 69 bar at 67 minutes.

2.6 Post-Installed Fiber Optic Sensor Clamp

This work builds upon prior work on the design and deployment of fiber optic subsea sens-

ing of temperature, pressure, vibration, strain, and flow assurance [38]. The post-installed and

non-penetrating sensor can be installed by a diver or remotely operated vehicle (ROV), depending

on the target depth. A pressure measurement at the riser base eliminates the need for estimators in

the control scheme and reduces computation time. With advances in subsea fiber optic monitoring

and post-installed clamp design, virtually any riser can be fitted with pressure measurements at the

base of the riser. There are two types of clamps that can be used to secure the optical fiber Bragg

grating (FBG) sensors to the pipe. The adhesive clamp and the friction clamp are shown in Figure

2.7. One of the major advantages of clamped FBG sensors over other fiber optic measurement
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systems, like Distributed Temperature Sensing (DTS), is that the exact location of the sensor is

known. The light interacts with gratings that have been etched into the glass core of the fiber, not

macromolecular phasing within the fiber such as is the case with DTS. FBG sensors are manufac-

tured by doping the optical fiber with Germania, then a laser is used to etch several gratings into

the fiber core with spacing that is similar to the wave length of the light used in the application.

Each grating on the fiber reflects a slightly different frequency allowing multiple FBGs to be mul-

tiplexed on one fiber [41]. FBGs act as an optical filter by allowing certain wavelengths to pass

through the grating while others are reflected (see Figure 2.8). Both the reflected signal and the

transmitted signal are interpreted by an optical interrogator allowing for measurement redundancy.

The spacing, and therefore refractive index, of the gratings changes when the fiber experiences a

change in temperature or spatial movement; from these readings, strain, pressure, and flow rate

can be calculated [42]. For example, when the pressure in a pipe increases, the pipe wall expands

minutely. This alters the grating spacing in the fiber, and the wavelength of light in the fiber is

shifted. This shift has a linear relationship with strain, and temperature, and is used to determine

the pressure [41]. When compared to traditional strain gages, FBGs were found to perform with

similar sensitivity (∼ 1.2pm/µε [43]) [44]. Also, when compared to thermocouple measurements

the FBGs performed with similar accuracy (±0.5◦C,[45]), but with a faster response time [42].

Because FBGs measure the expansion of pipe walls, they need to be calibrated when installed.

If there is pipe wall thinning due to corrosion, or thickening due to material deposition, then the

sensor can lose calibration.

2.7 Corrosion, Drifting, and Measurement Delay

For the controller to accurately regulate the choke valve and suppress slugging, it must

be able to quickly interpret any change in pressure in the pipe. If there is a time delay between

actual pressure change and the measurement by the FBG sensor, it could potentially cause the

controller to become unstable. Therefore, the relationship between pressure change and pipe wall

strain is explored. There are two principles that govern the change of strain. First, strain will

change instantaneously on the inside of the pipe surface following fluctuation in pressure when the

steel is modeled as linearly elastic [46]. This strain will then propagate through the thickness of the

material at the longitudinal speed of sound. This was measured to be 16,600 feet per second in 1020
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Figure 2.7: Adhesive clamp (left) and friction clamp (right) for installing a pressure sensor at the
riser touchdown zone.
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Figure 2.8: Diagram of FBG operational principles.

steel [47]. Assuming a 16 inch Schedule 80 pipe, the time required to detect a change in pressure is

4.23 microseconds. Compared to the average speeds of fluid flowing through the pipe, this amount

of time is negligible. Therefore, the pressure sensor will return information to the controller fast

enough to promptly adjust the choke valve opening. Re-calibration of the pressure sensor will

become necessary once certain strain-inducing mechanisms become significant. Creep will not

need to be considered since the pipe is operating at subsea temperatures [48]. However, corrosion

on the inside of the pipe will thin the pipe wall, increasing strain and causing the calibration curve
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to drift. A simulation where 0.01 inches of steel have corroded was analyzed and the results are

shown in Figure 2.9.
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Figure 2.9: Strain vs. Pipe wall thickness in simulated corrosion of 0.01 inches of the inside of the
pipe. Note: the relationship appears linear on this scale, but is actually nonlinear.

The method of calculating strain is based on contributions from both radial and tangen-

tial stresses [49]. Over this amount of corrosion, the strain rises by 2.6% as seen in Figure 2.9.

Therefore, depending on the rate of corrosion within the pipe, the pressure sensor will need to be

periodically re-calibrated in order to accurately measure the pressure.
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2.8 Riser Arterial Wax Deposition Monitoring

Another phenomenon that can cause interference with the pressure sensor calibration is

arterial wax deposition. Wax is a hydrocarbon molecule with chains longer than approximately

25 carbon atoms. It is naturally dissolved in crude oil, and is one of its major components. Wax

crystals form on a pipeline wall when the crude oil temperature drops below the Wax Appearance

Temperature (WAT) [50]. The precipitated wax can then lose momentum and deposit on the wall

of the pipe [51]. Figure 2.10 is a diagram of the wax deposition process in crude oil pipelines such

as subsea risers.
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Figure 2.10: Wax deposition in a crude oil pipeline.

Wax deposition constrains the cross-sectional flow area of the pipe and leads to inaccurately

calibrated fiber optic sensors and poor slugging control. It also increases drag in the pipe which

increases pumping costs. If wax deposits are left untreated, they harden within the pipe and make

cleaning the line nearly impossible [52]. Pipelines are typically cleaned through a process called

pigging. A pig is a device put into a side flowline that is tied into the main production line. It
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scrapes the pipe walls and pushes the wax buildup to the surface where it is removed from the line.

To assist pigging, operators implement wax prevention and treatment programs. The programs

generally include chemical additives such as pour point depressants and wax crystal modifiers

[53]. Monitoring wax deposition, along with rigorous line cleaning programs will lead to better

pressure sensing and rise slugging suppression.

Table 2.1 contains technologies and methods used to control arterial wax deposits. The

table is divided into three major categories: Used, Available, and Research, and three control

strategies: Monitoring, Prevention, and Remediation. The methods in the Used category are things

that are commonly used by the petroleum industry. Those in the Available category are mature

technologies that are on the market, but are not commonly used. The Research technologies have

demonstrated viability, but are not currently used or even on the market. The list is not exhaustive,

but does represent the most common methods and technologies for arterial wax deposition control.

Pipeline and flowline operators currently use few, if any, methods to actively monitor wax

deposition; yet, researchers have developed various wax deposition monitoring techniques. This

may be due to researchers attempting to address the lack of monitoring in industry, while operators

feel the cost of active wax monitoring outweighs its benefits. Whatever the case, the monitoring

techniques in Table 1 can be grouped into three major measurement categories, heat transfer ([65],

[64], [66], [69]), electromagnetic wave, ([68], [62], [71], [41], [57], [54]), and compression wave

([70], [67], [60]). The heat transfer methods aim to determine wax deposit thickness by measuring

the heat flux through the pipe wall. These techniques take advantage of the fact that wax acts as

an insulator which causes the pipe to lose less heat to the surroundings as deposits thicken. Elec-

tromagnetic waves have also been used to detect wax deposition. These techniques use the same

principles as medical imaging technologies such as Computer Aided Tomography (CAT) scan-

ning [71], [54]. Compression wave methods include ultrasound imaging [70] and sending pressure

pulses down the pipeline that reflect back when significant blockage has occurred [67]. While

many methods of actively monitoring wax deposition in crude oil pipelines have been developed,

none of them are commonly used by pipeline operators. Producers have favored wax deposition

simulation and regular pigging over online monitoring.
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2.9 Conclusion

The plausibility of using post-installed, non-penetrating fiber optic sensors for controlling

severe riser slugging is considered. Recent advances in clamp design allow these pressure sensors

to be post-installed on virtually any riser or pipeline. The effect of the measurement time delay is

investigated as dictated by the pressure device location. For this simulated system, a traditional PID

controller with topside-only pressure measurement performs poorly when the riser height exceeds

167 meters. In contrast, a PID controller with a pressure measurement at the touchdown zone of the

riser can successfully control slugging. A MPC controller is compared to this PID controller and

found to provide superior control of slugging. In addition to the predictive qualities of the MPC

controller, it also utilized an `1-norm objective function which will allow for better noise, drift

and outlier rejection in the field. Additionally, the corrosion effects on the sensor are simulated

and as corrosion occurs the sensors will need to be re-calibrated. Technologies for preventing,

monitoring, and remediating arterial wax deposition in risers and pipelines are reviewed. Potential

exists for developing novel active deposition control systems based on active monitoring of pipeline

deposition. The active monitoring capabilities and maturity of FBG sensors pose them to play a

significant role in pipeline control applications in the future.
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Table 2.1: Crude oil pipeline arterial wax deposition control technologies

Monitoring Prevention Remediation

Used • smart pigs • chemical deposition
inhibitors

• coiled tubing

• chemical drag reducers • cut out and replace
pipe

• cold finger (determines
deposition rate)

• dispersants

• deposition modeling and
estimation

• electrical heating

• external insulation • hot oil injection
• flow loop (determines
deposition rate)

• hot water injection

• operation at high flow
rates

• scrapper pigs

• pour point depressants • solvents (xylene)
• steam injection

Available • computed
tomography[54]

• various chemicals[55] • chemical reaction heat
generation[56]

• radioisotope
tracing[57]

• internal polymer
lining[58]

• microbial
treatments[58]

• distributed
temperature sensing[59]

Research • acoustic
chemometrics[60]

• various chemicals[61] • power ultrasonic
methods[58]

• capsule
monitoring[62]

• magnetic fluid
treatment[58]

• inductive heating[63]

• electrical
resistance[64]

• power ultrasonic
treatment[58]

• heat pulse
monitoring[65]

• heat transfer[66]

• optical fiber Bragg
gratings[41]

• pressure pulses[67]

• radiography[68]

• thermal wave
processing[69]

• ultrasound and strain
gauges[70]

• x-ray diffraction[71]
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CHAPTER 3. REVIEW OF INDUSTRIAL ESTIMATION TECHNIQUES WITH MODEL
PARAMETER ESTIMATION GUIDELINES

This chapter is published as: Hedengren, J.D. & Eaton, A.N., Overview of Estimation Methods

for Industrial Dynamic Systems, Optimization and Engineering, Springer, Vol. 18 (1), 2017, pp.

155-178, DOI:10.1007/s11081-015-9295-9.

3.1 Introduction

Over the past 10 years many sectors of the oil and gas industry have seen a dramatic in-

crease in the number and quality of available measurements. To capture the benefits of increased

available measurements, the information must be distilled into relevant and actionable informa-

tion [72], [73]. This chapter reviews the current industrial practice for estimation in the oil and gas

refining, chemicals, exploration, and production sectors and provides guidance on model accuracy

requirements for satisfactory control performance.

One opportunity is the increase in the available bandwidth to monitor the drilling process

with along string and down-hole measurements to monitor pressure, vibration, temperature, and

orientation. New technology has been deployed to drastically increase the data transmission rate

to the BHA or along the drill string. Mud pulsing was previously the most common form of

communication in which 3-45 bits per second could be transmitted from the BHA to the surface

monitoring system via a series of pressure waves through the inner pipe. In addition to providing

a communication pathway, the pumped mud removes tailings and cools the drill bit. As the depth

of drilling increases, the attenuation of mud pulses increases and mud pulse data is frequently

unavailable. Recently, wire-in-pipe technology has increased this rate by approximately 10,000

times (see Figure 3.1) [74], [75].

This increase in information allows two-way communication and presents opportunities for

improved monitoring and control of directional, managed pressure, and under-balanced drilling [76]–
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Figure 3.1: Best available data transmission rates in drill strings [2], [3]. The recent increase in
throughput and bi-directional communication has created a new opportunity for better utilizing
the information. Without interpretation, the increased data does not necessarily lead to increased
understanding or value.

[78]. Similar improvements in measurement technologies are occurring in other parts of the oil and

gas industry. This chapter reviews estimation techniques to garner the most useful data possible.

These include a filtered bias update, Implicit Dynamic Feedback (IDF), Kalman filtering, and

MHE [37].

MHE is an optimization approach that aligns process models with available measurements

to determine a best estimate of the current state of the process and any potential disturbances.

This presents the opportunity for earlier detection of disturbances such as gas influx into the bore-

hole, process equipment faults, and improved state estimates for process automation. Explicit ap-

proaches commonly used in current practice, such as measured variable bias updating and Kalman

filters, are compared to MHE approaches. The downside to MHE approaches is the increased

computational load required to solve the problem and the difficulty to obtain optimal tuning. This

chapter discusses techniques to overcome both of these obstacles to enable fast and reliable solu-

tions that are tuned to optimally utilize measurement information in model predictive applications.
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3.1.1 Time-Scales of Process Monitoring

Measurements of slow or fast processes pose unique challenges. The slow fouling of a heat

exchanger [79] or the fast build-up of hydrates [80] are two examples of processes with differ-

ent process time constants. With fouling or plugging as one of the top loss categories industry-

wide, there are many opportunities for utilizing measurement technology to monitor the short or

long term effects of these disturbances [81]. In particular, deep-sea pipeline monitoring poses a

challenge due to the remote environment, intermittent weather incidents, and gradual fatigue fac-

tors [82]. There is a need for improved monitoring of existing and new projects to give insight into

the conditions that lead to failure. Analytical models utilize the data to monitor and control the

operational integrity for flow assurance and riser integrity [83].

Frequency of Optimization Updates

Before discussing techniques for measurements, it is informative to review the correspond-

ing optimization applications. Optimization can occur after a model is synchronized to available

process measurements or inputs. Process optimization is used in the oil and gas industry at various

phases of the process lifecycle. As shown in Figure 3.2, optimization of process design occurs

once at the beginning of the lifecycle [84]. This may include sizing of vessels, valves, etc. Opti-

mization is also used to guide flow of products with supply chain optimization. This may occur on

a weekly to monthly basis [85], [86]. Dynamic optimization is concerned with long time periods as

well and covers processes such as defouling, turn-around operations, and production scheduling.

On an hourly basis, Real Time Optimization (RTO) with large-scale steady state models [87] is

used to determine new targets for plant-wide operations [88]. On the second to minute time-scales,

the steady-state conditions from the RTO application are passed to MPC applications that dynam-

ically drive the process to new target values [89], [90]. Recent work involves passing not only the

new target values but also the economics from the RTO applications to the MPC applications as

well [91], [92]. Ensemble methods increase the reliability of the control methods, much like re-

dundant sensors or physical equipment increase the reliability of operations by making the system

less sensitive to a single failure [93].
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Figure 3.2: Time-scales of optimization technologies applied in oil and gas industry.

Frequency of Model and Measurement Alignment

Just as optimization is applied at varying time-scales, measurement reconciliation is per-

formed at varying time-scales that are analogous to the optimization approaches (see Figure 3.3).
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Figure 3.3: Time-scales of measurement reconciliation applied in the oil and gas industry.

A sufficiently accurate model is required to optimize the design or control a process. During the

lifecycle of a facility, process modeling is typically conducted during the design and start-up of

a new process. Data from other related processes are typically used to generate an initial process

model which is then refined after the process unit comes online. Supply chain reconciliation seeks

to align a model to the available inventories, capacities, and constraints [94]. Dynamic data rec-

onciliation is a measurement estimation technique that uses large scale dynamic models, with a

time horizon ranging from hours to years, to reconcile measurements with model predictions [95]–

[99]. It is often used in conjunction with dynamic optimization to align a separate control model
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with dynamic data [100]. For RTO applications, a precursor step is to adjust fouling factors,

tray efficiencies, and other parameters with parameter estimation [88]. This parameter estimation

may include single or multiple steady state snapshots or the process measurements. One restric-

tion is that the process must be at steady state for the parameter estimation. Finally, MHE is a

multi-variable approach for optimal measurement reconciliation in a dynamic model [101]. MHE

applications are typically performed on a time scale faster than that of the process time constant of

interest. It typically executes in the range of seconds to minutes and can be used to provide state

and parameter updates to MPC applications.

3.1.2 Overview

This chapter is a review of strategies to incorporate measurements in optimization and

monitoring applications. The mathematical models used in these applications have unmeasured or

unmodeled disturbances that cause the model predictions to drift from actual values. This realign-

ment of model and measurement can occur with a variety of techniques ranging from simplified

to complex. When the application provides information in real-time, the results must be returned

within a specified cycle time. Details on efficient implementation of the techniques are also pre-

sented in this chapter with two motivating applications.

The focus of this chapter is on measurement reconciliation for fast time processes in the

range of seconds to minutes. New and established techniques are discussed that improve the infor-

mation extraction from measurements to allow a fundamental understanding of a process.

3.2 Numerical Solution with Dynamic Models

The approach taken in this chapter uses a simultaneous solution method as opposed to a

sequential method to solve the model equations and objective function [102], [103]. The general

model form consists of nonlinear DAEs in open equation format as shown in Equation 3.1.

0 = f
(

∂x
∂ t ,x,u,d

)
0 = g(y,x,u,d)

0≤ h(x,u,d)

(3.1)
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The optimizer calculates future states in the horizon that are uniquely specified by the initial

state x0, a given sequence of inputs u = (u0,u1,. . . ,uk−1), and a calculated set of disturbances d =

(d0,d1,. . . ,dk−1). In Figure 3.4, u and d are shown as discrete values over the horizon. Variables

calculated from differential and algebraic equations are continuous over the time horizon.

d i s t u r b a n c e s

d

d

d

d
d

MHE

Figure 3.4: Dynamic equations are discretized over a time horizon and solved simultaneously.

The solution of the open equation system is accomplished by converting the differential

terms to algebraic equations with orthogonal collocation on finite elements [104], also known as

direct transcription [105]. Order reduction may assist in understanding the most important states

that dominate the system dynamics [106], but, the full system can typically be solved directly.

The solution of the estimation problem is solved with an implicit solution technique such as

large-scale NLP solvers [95], [107]. Other methods include the direct shooting approaches [108]

or the explicit solution [109], [110] for simplified problems. The difference between competing

implicit solution techniques is how the state equations are satisfied. Direct single or multiple

shooting solves the state equations to a convergence tolerance for every iteration. Using orthogonal

collocation on finite elements, the state equations are only satisfied at a converged solution. This

generally leads to a more efficient solution, especially for large-scale problems with many decision

variables [16].

49



3.3 Review of Current Strategies

Advanced Process Control (APC) has produced significant benefits in the oil and gas in-

dustry, especially in refining and chemicals and more limited in exploration and production [111],

[112]. Simpler control applications such as PID controllers are often preferred in most single-input,

single-output controllers. Measurement reconciliation also ranges from simple to complex [113].

Simple techniques include filtered bias updates or IDF. More complex strategies include Kalman

filtering and MHE. Each of these techniques are discussed below.

3.3.1 Filtered Bias Update

A predominant approach for measurement feedback into many of the popular APC com-

mercial packages continues to be a filtered bias update [111]. Filtered bias update is also commonly

known as a low pass filter or an α filter. Adding an output constant or integrating disturbance

introduces insignificant computational overhead and is easy to tune. In the case of a constant dis-

turbance, an additive model bias b is updated at iteration k with a filter α as shown in Equation

3.2.

bk = α (z− y)+(1−α)bk−1, 0≤ α ≤ 1 (3.2)

In this case, the difference between the measured state z and the predicted model y is used to

update the offset of a controlled variable initial condition. With a weak filter with α near 1, almost

all of the measurement value is accepted for updating the model predicted value. Strong filters

that accept less of the measured value may cause the corresponding APC application to respond

slowly to unmodeled disturbances. The value of α is typically chosen to balance noise rejection

with speed of reaction. The strengths and drawbacks of the filtered bias update are summarized in

Table 3.1.

In order for the bias to be updated, certain qualifications may also be set to detect bad

measurements. These qualifications are commonly upper and lower validity limits as well as a

rate of change validity limit. The validity limits are applied to either the raw measurement or the

raw bias. If any of the validity limits are violated, the measurement is rejected and the bias value

remains constant. Rate of change validity limits are frequently set too restrictively for process
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Table 3.1: Filtered bias update trade-offs

Strengths of the Filtered Bias Update
Incorporated with many popular APC commercial packages
Single tuning parameter, α , that balances noise rejection with measurement tracking speed
Insignificant computational overhead
Drawbacks of the Filtered Bias Update
No capability to estimate parameters or unmeasured disturbances
No consideration of multivariable effects
Offset is present for integrating disturbances
Physical constraints may be violated

upset conditions such as shutdown or startup, necessitating the need for operator intervention or

automatic application switching to manual control.

3.3.2 Implicit Dynamic Feedback

IDF estimates unmeasured disturbances related to the predictions of the measured state

variables. IDF pairs a single measurement with a single unmeasured disturbance variable. The

analogy to control is the Single Input, Single Output (SISO) controllers such as the ubiquitous PID

controller. In the case of IDF, the unmeasured disturbance variable is adjusted to align the model

with a process measurement. IDF consists of two equations that can be solved simultaneously with

the control problem over a preceding horizon interval.

The IDF equations are similar to a PI controller. The IDF input is the difference between the

measured state z and model state y. This is similar to a PI controller with a SP = z and CV = y. The

output is an unmeasured Disturbance Variable (DV) of the model, d, and is analogous to the MV

of a PI controller. This DV is adjusted proportionally to the current and integrated measurement

errors, as shown in Equation 3.3a. However, Equation 3.3a is not implemented in practice because

of the integral term. To overcome this, the integral term ’I’ is differentiated, and the IDF equations

are solved as two separate expressions (see Equation 3.3b).

d = Kc (z− y)+
Kc

τI

T∫
t=0

(z− y)dt (3.3a)
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Figure 3.5: IDF horizon with simultaneous estimation and dynamic optimization.

Table 3.2: Implicit dynamic feedback trade-offs

Strengths of IDF
Only two differential equations are required to implement IDF
Similar tuning to a PID controller
Two intuitive parameters trade-off speed versus stability
Drawbacks of IDF
Restricted to one-to-one pairing of a measurement to an unmeasured disturbance
Potential wind-up of the integral term
One step estimation horizon makes it unsuitable for predictive applications (e.g. MPC)
Physical constraints cannot be enforced

d = Kc (z− y)+
Kc

τI
I,

∂ I
∂ t

= (z− y) (3.3b)

The tuning parameters for IDF are Kc and τI , the same as a PI controller. Using a large

value of τI and small Kc has the effect of heavily filtering the error term for feedback. In this case

the algorithm will take longer to match the plant. Using these tuning parameters and knowing

the quality and types of measurements enables trading off between speed of tracking the process

versus stability concerns. The advantages and disadvantages of IDF are listed in Table 3.2.

IDF has been successfully used for many years to provide on-line estimation measure-

ment biases, catalyst activities, kinetic parameter adjustment factors and heat transfer coefficients.
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However, IDF is limited to a past horizon length of one, pairing of only one measurement to one

disturbance, and the inability to handle constraints.

3.3.3 Kalman Filter

With a Kalman filter, sequential measurements are used to obtain the state of the system

with a linear model. To obtain this model, Jacobian information from Equation 3.1 is rearranged

into the discrete state space form (see Equation 3.4) where A, B, C are constant matrices, u is

the input variable vector, x is the state vector, y is the vector of model outputs. In this case, the

subscript k refers to the time step at which the model is computed.

xk+1 = Axk +Buk (3.4a)

yk =Cxk (3.4b)

The horizon of measurements is combined mathematically to generate the system’s state at

the current time with the Kalman filter as shown in Equation 3.5. The Kalman filter is divided into 4

subsets of equations. In Equation 3.5a the states x̄ and covariance P̄ are predicted in the absence of

new measurement information. In the next step (see Equation 3.5b), the predictions are compared

to the measured values. The innovation δ̃ and innovation covariance S are the comparison of the

model predictions to the measured reality. The innovation covariance S and covariance prediction

P̄ are then used to calculate the Kalman gain K in Equation 3.5c. As a final step, the new state and

covariance estimates are computed in Equation 3.5d. The Kalman gain relates the fraction of the

innovation δ̃ and state prediction x̄ that are used to construct the new state estimate xk. Similarly,

the Kalman gain relates the predicted covariance prediction to the new covariance prediction. Note

that the covariance update is independent of the measurement values zk and the time evolution is

only a function of constant matrices.

x̄ = Axk−1 +Buk

P̄ = APk−1AT +Q
(3.5a)
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Table 3.3: Kalman filter trade-offs

Strengths of Kalman Filtering
Optimal estimator for linear systems without constraints
Solution approach is accomplished through matrix multiplications
Covariance estimate provides confidence interval for state estimate
Drawbacks of Kalman Filtering
Restricted to linearized model state updates
Physical constraints cannot be enforced
Gating methods needed to use infrequent or variable delay measurements

δ̃ = zk−Cx̄

S =CP̄CT +R
(3.5b)

K = P̄CT S−1 (3.5c)

xk = x̄+Kδ̃

Pk = (I−KC) P̄
(3.5d)

The Kalman filter is optimal for unconstrained, linear systems subject to known normally

distributed state and measurement noise [114]. The Extended Kalman Filter (EKF) or Unscented

Kalman Filter (UKF) are an attempt to extend these techniques to nonlinear systems. A summary

of the trade-offs related to the Kalman filter are listed in Table 3.3.

EKF is able to predict the nonlinear state evolution by re-linearizing the model at each

time instant. Some effort has been made to incorporate constraints with EKF although the state

augmentation strategy for parameter estimation is still a limitation [115]. Kalman based techniques

suffer from a number of limitations. For nonlinear or constrained systems, optimization techniques

such as MHE are better suited to providing an estimate of the true system state.

3.3.4 Squared-error MHE

MHE outperforms EKF in the presence of constraints [114]. Recent advances in computa-

tional capability and methods have improved the application of MHE to fast [116] and large-scale
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Table 3.4: Trade-offs for MHE with a squared-error objective

Strengths of MHE (squared-error)
Least squares is an intuitive objective that is simple to implement
Model constraints can be added to model to improve the estimation accuracy
Optimal tuning has been established [123]
Drawbacks of MHE (squared-error)
Poor rejection of outliers or infrequent bad values common with real data
Difficult to obtain good estimates of P0, Q, and R
Dense tuning matrices impractical for large-scale systems
Iterative optimization solution that may fail to converge in the required cycle time

industrial systems [117]. Just as APC has demonstrated significant benefits by considering multi-

variate relationships [118], MHE is better able to utilize measurements and deliver a more accurate

description of the current state of the process and disturbances [119].

By using an optimization framework, the model and measurement values are aligned and

present detailed information about the system dynamics. This optimization framework uses a

receding horizon of process measurements. MHE attempts to optimally estimate the true state

of the dynamic system, given a real-time stream of measurements and a model of the physical

process. Offset free estimation and control is achieved by adding as many disturbance variables as

the number of measurements [120]–[122]. The MHE objective function is posed as a squared-error

minimization to reconcile the model with measured values. The trade-offs for MHE with a squared

objective function are summarized in Table 3.4.

In a MHE form amenable to real-time solution, the unmeasured DVs, d, are adjusted to

match the continuous model to discrete measured values [117].

min
d

Φ =
∥∥∥ z−y

y

∥∥∥2

Qy
+
∥∥d− d̂

∥∥2
Qd

s.t. 0 = f (ẋ,x,u,d)

0 = g(z,x,u,d)

0≤ h(x,u,d)

(3.6)

In Equation 3.6, Φ is the objective function value, z is a vector of measurements at all

nodes in the horizon (z0,. . . ,zk)T , y is a vector of model values at the sampling times (y0,. . . ,yk)T ,

Qy is the inverse of the measurement error covariance, f is a vector of model equation residuals,
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x represents the model states, u is the vector of model inputs, d is the vector of model parameters

or unmeasured disturbances, d̂ is the vector of prior unmeasured disturbances, Qd is a matrix for

the weight on changes of disturbance variables, g is an equality constraint function, and h is an

inequality constraint function.

A graphical representation of the MHE squared-error reconciliation is shown in Figure 3.6.

The objective for this measured value is a quadratic function with the minimum target between the

previous model and measured values.

Figure 3.6: Graphical representation of the squared-error for a single measurement in the horizon.

The full estimation problem allows violation of the state constraints [119]. State equality

constraints are relaxed and violations are penalized in the objective function. Without d the op-

timization problem found in Equation 3.6 does not allow state transition error because the state

equations are exactly satisfied at a converged solution [124]. This can be overcome by creating a
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discontinuous state yd and disturbance dd with an additional equation yd = x+ dd for each state

subject to state noise. This allows discontinuities in the yd states while preserving the continuity

of the x states. However, allowing state noise is undesirable when employing first principles mod-

els. For material and energy balances, allowing state noise reduces the predictive potential of the

model. Instead, only the decision variables are selected as x0 and dd instead of (x0,. . . ,xk, P) as in

the full MHE problem.

As the estimation horizon increases, the sensitivity of the solution at xk to x0 decreases.

With a first-order approximation, the value of the final state xk sensitivity decreases by e−
t

τp where

τp is the approximate process time constant. For sufficiently long time horizons, it is then only d

that has a significant effect on the current model state. Thus, it is generally unnecessary to estimate

the initial states x0 as degrees of freedom in the optimization problem.

3.3.5 `1-Norm MHE

A new form of MHE has been used in industry for a number of years that overcomes some

of the limitations of the squared-error MHE approach [6]. The objective function in Equation 3.7

is implemented in a form that is amenable to numerical solutions of large-scale models. The use of

an absolute value function is avoided by instead solving inequality constraints with slack variables.

The slack variables and inequalities create an objective function that is smooth and continuously

differentiable as a requirement for large-scale NLP solvers.

min
d

Φ = wT
m (eU + eL)+wT

p (cU + cL)

s.t. 0 = f (ẋ,x,u,d)

0 = g(y,x,u,d)

0≤ h(x,u,d)

eU ≥ y− z

eL ≥ z− y

cU ≥ y− ŷ

cL ≥ ŷ− y

eU ,eL,cU ,cL ≥ 0

(3.7)
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Here, Φ is the objective function value, z is a vector of measurements at all nodes in the

horizon (z0,. . . ,zk)T , y is a vector of model values at the sampling times (y0,. . . ,yk)T , ŷ is a vector

of previous model values at the sampling times (ŷ0,. . . ,ŷk)T , wm is a vector of weights on the model

values outside a measurement dead-band, wp is a vector of weights to penalize deviation from the

prior solution, f is a vector of model equation residuals, x represents the model states, u is the

vector of model inputs, d is the vector of model parameters or unmeasured disturbances, g is an

output function, h is an inequality constraint function, eU and eL are slack variables to penalize

model values above and below the measurement dead-band, and cU and cL are slack variables to

penalize model value changes above and below the previous values.

A graphical representation of the MHE `1-norm reconciliation is shown in Figure 3.7. Pa-

rameters are only adjusted if the measured value is more than the half of the dead-band away from

the previous model value. Otherwise, the model is not adjusted because the measurement lies

within the region of a flat objective function. In the case of Figure 3.7, the optimal solution lies at

the edge of the measurement dead-band. This will always be the case for measurements that are

more than half the dead-band distance from the prior model value.

The MHE `1-norm objective has a number of advantages and challenges compared with

other methods such as the Kalman filter or the MHE squared-error. The next section details the

trade-offs between the different techniques.

MHE `1-Norm Advantages

An important MHE `1-norm advantage is less sensitivity to data outliers, noise, and mea-

surement drift [6]. This is important when dealing with industrial data where instruments drift or

fail. Gross-error detection can eliminate a majority of bad data. With MHE `1-norm, any data

that isn’t filtered by gross-error detection has less impact on the parameter estimation and allows

improved reliability of the solution. A squared-error objective is more sensitive and disproportion-

ately weights values that are far from the model predictions.

An additional advantage of the MHE `1-norm is that only linear equations are added to

the objective function. Without additional nonlinear expressions, the solution is generally easier

for numerical solvers to find an optimal solution. In summary, the MHE `1-norm optimization

problem with measurement noise dead-band has a number of advantages over the MHE squared-
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Figure 3.7: Graphical representation of the MHE `1-norm for a single measurement in the horizon.

error form of the objective function. The trade-offs for MHE with an `1-norm objective function

are summarized in Table 3.5.

MHE `1-Norm Challenges

The challenges with the MHE `1-norm optimization problem include increased complexity

and size. Although the MHE `1-norm uses only linear expressions in formulating an objective

function, there are additional slack variables and inequality expressions, which increases the size

of the optimization problem.

Many of the MHE `1-norm challenges are due to the increased complexity in the solution

techniques. Commercial and academic software has been developed to meet this challenge. The

software used to generate the results in this chapter is the APMonitor Modeling Language [6].
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Table 3.5: Trade-offs for MHE with an `1-norm objective

Strengths of MHE (`1-norm)
Low sensitivity to occasional bad data
Linear objective function and sparse tuning techniques improve scaling to large-scale systems
Explicit measurement dead-band for improved noise rejection
Drawbacks of MHE (`1-norm)
Additional equality and inequality constraints and variables, leading to increased computation time
No optimal theory on best tuning parameters
Requires an iterative solver to reliably converge in a specified cycle time

Filtered bias updating, Kalman filtering, IDF, and MHE are implemented in this web-services

platform through MATLAB or Python.

3.4 Managed Pressure Drilling Flow Estimation

As an example application, consider the problem of determining the flow of mud through

the return annulus of a drilling pipe. In the return line, there is typically a flow paddle that rotates

proportional to the flow rate. This flow paddle measurement is not very accurate so additional

information such as pit tank level can be used to infer the return flow. Additionally, in MPD, a

choke valve is adjusted to maintain well pressure as shown in Figure 3.8.

The flow, pressure, and level measurements have noise, creating random fluctuations around

the true values. The flow through the choke valve can also be estimated from the valve position

and differential pressure across the valve (see Equation 3.8).

τp
∂qchoke

∂ t
+qchoke = K1 f (l)

√(
∆Pv

gs

)
(3.8)

For this example, the installed characteristic of the choke valve is assumed to be linear

( f (l) = l) and the valve is fast acting (τp = 1 sec). Both the state and measurement noise are

normally distributed with mean values of zero (see Figure 3.9). State noise has a standard deviation

σq = 0.1 and measurement noise has a standard deviation σr = 1.0.

The Kalman filter updates the state estimates by operating in two phases: predict and up-

date. In the prediction phase, the calculated flow is modified according to the equation that relates
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Figure 3.8: Schematic of Managed Pressure Drilling.

flow qchoke to the lift function f (l) and the differential pressure, ∆Pv. For Kalman filters, the

equation must first be linearized. With Extended Kalman filters, the nonlinear equations are re-

linearized about the current state estimate. The other parameters, including τp, K1, and gs, are

constants for a particular valve and fluid. For systems with multiple measurements, the covariance

is used to tune the Kalman filter. In this case with one measurement, the variance is used instead.

This information is essential for optimizing the update phase; yet state and measurement covari-

ance information can be difficult to obtain. The results of the Kalman filter with the upper and

lower 95% confidence intervals are shown in Figure 3.10.

In the update phase, a measurement of the flow is taken from the transmitter. Because

of the noise, this measurement has some uncertainty. The calculated variance from the predict
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Figure 3.9: Noise distributions of state and measurement noise. These distributions are used to
optimally tune the estimators.

phase determines how much the new measurement affects the updated prediction. If the model

prediction drifts away from the real flow, the measurements from the flow transmitter should pull

the flow estimate back towards the real flow but not disturb it to the point of introducing all of the

noise from the measurement.

This model update could also employ other measurements such as mud pump speed, choke

pressure, or supply tank level to infer the flow rate across the valve. For this simple example, only

the valve position and flow measurements are used to predict the flow with a linear, first-order

correlation. Each of the five techniques discussed in this chapter are compared over the same data

set as shown in Figure 3.11.

The filtered bias update and IDF have been tuned to give equivalent responses. After an

initialization period, they also align exactly with the Kalman filter results because the Kalman gain

becomes constant after the estimate of the covariance matrix Pk also converges to a constant value.
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Figure 3.10: The Kalman filter uses two phases, predict and update, to obtain an estimate of the
true flow. During the predict phase, the model calculates an updated flow due to the latest reported
model inputs. During the update phase, part of the flow measurement is used to update the state,
inversely proportional to the variance of the measurement error.
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Figure 3.11: Actual, measured, and estimated flows for filtered bias update, IDF, the Kalman filter,
squared-error MHE, and `1-norm MHE.
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Table 3.6: Estimator configuration values

Estimation Method Example Tuning Equivalent Tuning for One Measurement
Filtered Bias Update α = 0.0951 Set α equal to the Kalman Gain K
IDF Kc = 0.0951e−10,τI = 1e−

10
Set Kc

τI
equal to the Kalman Gain as Kc→

0
Kalman Filter Pk=0 = 0.5,Q = 0.01,R = 1.0 Set Pk=0 = Pk=∞ for equivalency to other

methods during initialization
squared-error MHE Horizon = 50, Qy = 100,

Qd = 10
For linear systems with quadratic objec-
tive MHE reduces to Kalman Filter [101]

`1-Norm MHE Horizon = 50 The `1-norm MHE does not have equiva-
lent tuning correlations to the other meth-
ods

The first four methods including filtered bias update, IDF, the Kalman filter, and the squared-error

MHE (with one horizon step) can be tuned to give equivalent results for this single measurement

case. Table 3.6 shows the tuning values that make each of the estimators equivalent for this example

case and in general.

In addition to signal loss, real data often contains bad data such as outliers, drift, and noise.

Outliers do not typically fit a standard normal distribution but are instead drastic deviations from

normal variation in the data. Outlier detection and removal is typically accomplished by setting

rate of change limits, upper validity limits, and lower validity limits. This gross error detection

eliminates many, but not all, of the data outliers. The effect of data outliers is shown in Figure

3.12 with the introduction of an outlier at cycle 50, drift starting at cycle 100, and increased noise

starting at cycle 150.

The results with bad data with an outlier, drift, and noise clearly indicate that all state esti-

mates, except the `1-norm MHE, are significantly affected by the bad data points. The insensitivity

to bad data is a key advantage of the `1-norm MHE approach. This insensitivity is due to the longer

time horizon used in MHE, and because the `1-norm does not square the error term. Squaring the

error artificially amplifies bad data.
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Figure 3.12: Outlier effect on the filtered bias update, IDF, the Kalman filter, squared-error MHE,
and `1-norm MHE. The `1-norm MHE is least sensitive to brief periods of bad data.

3.5 Estimation for Control Relevant Models

One important function of estimation methods is to improve the predictive qualities of a

model prior to forward prediction methods such as MPC. Process gains and time constants are

often used to characterize the relationship between a MV and associated CV in control applica-

tions. An issue that occasionally arises in linear MPC applications is that the process conditions

change and the model is no longer sufficiently predictive for satisfactory control performance. A

simplified MPC application is developed in this section with the objective of establishing guide-

lines for quantifying controller performance affected by process/model mismatch. This is done by

varying the combination of process gains and dynamics in the SISO control model, and evaluating

the MPC objective function.

In this MPC application, a first order linear process (τpdx/dt =−x+Kp u) with a gain

(Kp) of 1.0 and process time constant (τp) of 1.0 sec is controlled. The control horizon is set to

4.0 sec with a time discretization of 0.5 sec. The MPC controller minimizes the deviation of the

CV from a target value of 5.0, starting from an initial condition of 0.0. The model gain and time

constant are changed to incorrect values and the MPC performance is simulated over 20 control

cycles. With a 0.5 sec cycle time, there is a total of 10 sec simulated control time. The absolute
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value of the deviation from the target set point (5.0) is recorded for each combination of Kp and

τp values with a range of mismatch of 0.2 to 5.0 for each. Figures 3.13 and 3.14 show the control

performance over the range of mismatched models applied in the MPC controller.
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Figure 3.13: Contour plot of the control objective with varying mismatch of the process gain and
time constant.

If the model is used in a model predictive controller, a model gain that is lower than the

actual process gain may cause controller oscillation and instability. A model gain that is higher

than the actual process may cause sluggish control. Likewise, a model response (time constant)

that is slower (higher time constant) than the actual process time constant tends to cause controller

instability. On the other hand, a model response (time constant) that is faster (lower time constant)

than the actual process tends to cause sluggish controller response. The combination of a low gain

and high time constant leads to the highest objective function (poor performance and instability).

On the other hand, a high gain and low time constant lead to sluggish control, but the controller is

generally able to asymptotically drive the process to the correct set point. Put in more quantitative

terms, if the time constant is correctly estimated and the gain is overestimated 50%, then the

controller error will be 2.5%. Whereas, if the gain is underestimated by 50%, then the controller

error is 20%. Similarly, if the gain is correctly estimated and the time constant is over estimated
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Figure 3.14: Mismatch with too low model gain and too high time constant favor controller insta-
bility.

by 100%, then the controller error is 15%, while if overestimated by 100% the error is 8%. These

results support the conventional process control wisdom of estimated gain needing to be within

30% of the actual gain , and the time constant being within 50% for sufficiently effective control.

These concepts clarify the effects of control model error on controller performance. Using

these guidelines, the controller gain and time constant can be adjusted appropriately until more

time intensive model identification techniques can be used. A more rigorous method for increasing

confidence in the accuracy of a control model is by using linear or nonlinear confidence regions

for estimated parameters [125].
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3.5.1 Nonlinear Statistics in Control Model Parameter Estimation

Computing the nonlinear Joint Confidence Region (JCR) for estimated model parameters

gives statistical significance to the estimated variable values [126], [127]. The JCR is calculated

by solving Equation 3.9.

E(ϑ)−E(ϑ ∗)
E(ϑ ∗)

≤ U
N−U

FN,N−U,1−αc (3.9)

In Equation 3.9, E(ϑ) is the error between the process measurements and the control model pre-

dictions, E(ϑ ∗) is the error between the process measurements and the model predictions when

the best estimates of the model parameters are used. U is the number of model parameters in the

regression, N is the number of data points used in the regression, F is the F-statistic at N and N−U

degrees of freedom with a confidence level of 1−αc.

A simple case study explores the use of nonlinear statistics in online control model param-

eter estimation. The method is applied to a process similar to Figure 3.8. In drilling an oil or gas

well, the drill bit is cooled by the drilling fluid, or mud, which also moves the rock cuttings to the

surface and maintains pressure in the well annulus. The well annulus pressure consistently needs

to be greater than the geologic reservoir pressure to prevent hydrocarbons from entering the well

during the drilling process. If the mud pressure in the well is too high, it can damage the rock

formation; if it is too low, hydrocarbons from the subsurface reservoir can come to the surface in

an uncontrolled and dangerous manner. The well bore pressure must be maintained within a small

range of pressures that balances the reservoir fluid pressure to prevent damaged formations and

blowouts. Maintaining the pressure balance in the well is the goal of Managed Pressure Drilling

(MPD).

This example uses a MHE estimation scheme with Nonlinear Model Predictive Control

(NMPC) to control the wellbore pressure in a simulated oil well using MPD. The controller and

the MHE use a reduced order model, developed by Stamnes et. al. [128], which requires an

estimation of the annulus friction factor ( fa) and annulus density (ρa) at each time step. Figure

3.15 shows the simplified control scheme for this example.

The main mud pump flow rate and the choke valve pressure are manipulated at each time step to

drive the pressure at the drill bit to a given set point. Without accurate estimates of fa and ρa the
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Figure 3.15: Control flow diagram for the MPD controller.

controller can lose control over the process. These two parameters are estimated at each time step

using a squared-error MHE scheme. The MHE has an estimation horizon of four steps each eight

seconds apart. Over this time horizon, the error between the bit pressure measurement and the

model predicted bit pressure is minimized by adjusting fa and ρa in the model. The squared-error

is necessary when calculating the JCR because the theory used to develop the nonlinear JCR uses

the F-statistic which is formulated using the χ2 distribution. The χ2 distribution is founded in the

Central Limit Theorem that uses the variance, or square of the standard deviation. A theoretically

sound version of the nonlinear JCR based on the `1-norm has not yet been developed and is left for

future work [125].

Figure 3.16 shows the nonlinear 95% JCR for the estimated fa and ρa at four time steps in

the simulation. Bounds on the estimates were set in the MHE to ensure the estimated variable val-

ues were physically realizable. fa is given a lower bound of 1 m−5, and ρa is given a lower bound

of the known density entering the drillstring, which in this case is 1400 kg/m3. In a constrained

estimation problem these bounds become the limits of the JCR. For unconstrained estimation, the

JCR is defined by all possible solutions for a specified confidence level.
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(a) At 2 minutes simulation time. (b) At 2.3 minutes simulation time.

(c) At 2.5 minutes simulation time. (d) At 2.8 minutes simulation time.

Figure 3.16: The 95% joint confidence regions for estimated annulus density and friction factor at
four different time steps in a MPD simulation. The single contour line denotes the JCR, while the
point is the estimated values of the two model parameters. The JCRs have a lower bound of the
mud density entering the drillstring. The density units are kg/m3 and the friction factor units are
m−5.

The negative slope of the confidence region suggests the two parameters are strongly cor-

related. An analysis assuming error in both variables would give further insight into parameter

correlation, and would give better insight to the lack of curvature in the JCR. The vertical length

of the left bound of the JCR indicates that the simulated measurements from the well contain little

information on the annulus density compared to the friction factor. Future work may probe the

necessity of the annulus density in the model. However, the first principles-based control model

relies on the annulus density for pressure calculations and is theoretically necessary.
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It is interesting to note that the subplots in Figure 3.16 show the JCR reducing in area

as the simulation progresses. This corresponds to an increase in the confidence of the estimated

parameter values. This information can be used to identify problems with the control algorithm,

and can possibly be used in controller logic as well. For example, if the estimated parameter

value is outside of the JCR, or if the JCR is wide enough that little confidence is given in the

estimate, then a model identification procedure could be initiated. The proof of this concept is left

to future research. However, the technique has proven to be useful in preliminary evaluations of

the control model parameter interactions, and further work is needed to determine the importance

of the parameters in the model.

One drawback of the method presented here is the large computation time required to com-

pute the JCR at each time step. This is because at each time step a contour plot is generated to

define the confidence region. This adds a large computational burden to an already computationally

intensive control scheme. Nevertheless, the computation time can be improved by implementing a

parallel processing structure in the controller code.

3.6 Concluding Remarks

There is a recent increase in data availability in the oil and gas industry due to advances in

technology, improved networking, and regulatory requirements that require additional monitoring.

When measurements are viewed individually they provide insight into the true state of the process,

but do not offer a holistic view of the process. When combined with a process model, the data

provides an increased understanding of unmeasured disturbances or unmeasured states. This align-

ment of measurements and model predictions is accomplished with a variety of techniques ranging

from a simple bias update to large-scale optimization approaches. Two optimization approaches

discussed in this chapter include MHE with `1-norm and squared errors. Efficient solution of the

MHE approach is important for solving large-scale problems of industrial significance. Simulta-

neous solution of the objective function and model equations is an efficient approach to solving

large-scale models for data reconciliation. In many cases, the objective in state and parameter esti-

mation is to obtain a model that is sufficiently accurate for predictive control applications. Model

mismatch with a gain that is too low or time constant that is too high may lead to unsatisfactory
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control performance. Nonlinear statistical methods can give confidence in parameter estimates and

insight to the interactions of control model parameters.
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CHAPTER 4. BASIC SWITCHED CONTROL OF MANAGED PRESSURE DRILLING

This chapter is published as: Eaton, A.N., Beal, L.D.R., Thorpe, S.D., Janis, E.H., Hubbell, C.,

Hedengren, J.D., Nybø, R., Aghito, M., Bjørkevoll, K., Boubsi, R.E., Braaksma, J., van Og, G., En-

semble Model Predictive Control for Robust Automated Managed Pressure Drilling, SPE-ATCE,

2015, DOI: 10.2118/174969-MS

4.1 Introduction

To meet the growing demand for energy, more efficient, robust, and reliable technological

advances are needed in the petroleum industry. For example, there continue to be an average of 4

uncontrolled well situations in the Gulf of Mexico each year even after the Deepwater Horizon in-

cident and subsequent oil spill [4]. Pressure control is critical to successful drilling and completion

to avoid fractured formations and excessive mud loss due to high annulus pressure or gas influx

due to an annulus pressure lower than the formation pore pressure. There have been many sen-

sor, communication, and equipment advances in the upstream sector to meet these challenges with

technologies such as MPD and Wired Drill Pipe (WDP). With these advances, there is still a lack

of robust and stable automation to control pressure during many phases of drilling operation [5].

When automation is applied to more phases of drilling operation, it improves safety and efficiency

by responding to process disturbances and by operating within acceptable limits and closer to pro-

cess economic constraints than possible with traditional control. To attain these benefits, optimizer-

based automation and control techniques, such as MPC, require sufficiently accurate models of the

process. These models can be obtained from empirical data or from foundational principles such

as mass and energy balances. Foundational principles based models that very nearly approximate

the actual process are known as high fidelity simulators. High fidelity simulators historically have

been implemented in real-time controllers as soft-sensors for PID feedback controllers but the full

predictive and multivariate capability has been largely unused because of the excessive computa-
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tional requirements of these large-scale models[72]. To address this shortcoming, less accurate

first principles models are developed for real-time control purposes. These low-order control mod-

els generally express the major process input/output relationships and dynamics, yet the number

of equations and variables are significantly reduced, thereby reducing computational requirements.

A low-order MPD model was developed by Stamnes et al. [128] and later modified to use bottom

hole pressure measurements from wired drill pipe by Asgharzadeh Shishavan et al. [76]. While

these low-order models require less computation time than high fidelity models, they can be less

likely to converge to a control solution than controllers utilizing empirical based models using

MPC. While empirical models can be designed to be more robust against noise than their first-

principle counterparts, they require frequent re-tuning as process conditions change. However, it

is possible to capture the advantages of each model- high accuracy, reduced computation time,

and successful solution convergence by implementing an ensemble control scheme that switches

between the various models at the appropriate instance. This work introduces a novel ensemble

control structure for MPD that makes use of the strengths of multi-fidelity models− high fidelity,

low-order, and empirical. Additionally, the control structure offers the ability to tune and read-

just one model while another is used in control without interrupting the drilling process. It also

offers the benefit of increased reliability generally associated with redundant hardware and safety

systems. The remainder of the chapter is outlined as follows: A description of the MPD automa-

tion scenario used in this work, an account of the three controllers, namely the ”high fidelity”,

”low-order” and ”empirical” controllers, a discussion of the mechanism for switching between

the controllers, the results of the controller response to both normal drilling and pipe connection

procedures, a discussion of the results, and conclusions and further research.

4.2 Managed Pressure Drilling Simulation

MPD is a highly nonlinear process that involves the pressure hydraulics of compressible,

non-Newtonian drilling fluid (see Figure 4.1). During MPD the well bore pressure must be main-

tained within a small range of pressures that will balance the reservoir fluid pressure to prevent

both fractured formations and blowouts. In this paper the controllers reach and maintain the de-

sired well pressure at the bit by manipulating the mud pump flow rate and the choke valve opening.

Advances in MPD automation have not been ubiquitously implemented; but, it has been demon-
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strated that an automated controller can maintain borehole pressure and reject disturbances faster

and more accurately than manual control by using NMPC with high quality process data [76]. One

of the major challenges with implementing NMPC is the quality of the data sent by the downhole

instruments. The most common method of receiving continual pressure measurement data from

the BHA is through mud pulsing [129]. Currently, the data transmission rate of mud pulsing is at

most 80 bits per second [78]. The small bandwidth and long delay time of mud pulsing technology

pose a significant challenge to automating MPD, and improving the technology is an active area of

research [130]. In addition to mud pulse telemetry, some researchers and companies are exploring

other technologies such as WDP [129] which does not require mud flow to transmit BHA data to

the surface. While WDP removes measurement latency, the downhole data quality may be low due

to lack of sufficient pressure measurement accuracy and unavailability of data during pipe stand

connections. Because poor quality or intermittent data can lead to poor controller performance,

data validation and reconciliation are necessary for the predictive models to provide stable feed-

back control [73]. While many companies and researchers are exploring pressure control using an

observer to infer mud flow through the bit or down hole pressure [73], [131]–[134], this work uses

a multivariate MPC to control bit pressure. The bit pressure is either measured directly through

mud pulse telemetry or by using topside measurements to infer bit pressure when measurements

are unavailable or delayed. The advantages of multivariate MPC feedback control over controllers

that use PID and bit pressure estimation are reported in [135] and [76]. The predictive power of

MPC is demonstrated in this work. However, the techniques used here are most applicable to the

variations of MPD described by the SPE Advanced Drilling and Well Technology [136] textbook

that include a surface backpressure pump or a closed loop mud system such as Constant Bottom

Hole Pressure and Returns Flow Control techniques.

The drilling process is simulated using the SINTEF high fidelity flow model [137] con-

nected to Simulink and MATLAB. The simulated well is offshore in 20 m (65.6 feet) of water with

a 0.273 m (103
4 inch) diameter riser and casing. The drill pipe diameter is 0.127 m (5 inch), and

a 0.254 m (10 inch) Polycrystalline Diamond Compact (PDC) bit is used. The well has a True

Vertical Depth (TVD) of 2150 m and a Measured Depth (MD) of 4300 m. The ROP is 2 m/hr with

100 rad/s for the drillstring rotary speed (RPM). The mud temperature in the drillstring is 35 C, and
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Figure 4.1: Schematic of the MPD process with mud pulsed telemetry.

temperature is assumed constant throughout the well. Table 4.1 gives a summary of the simulated

well conditions.

Measurement noise was simulated by adding random noise, outliers and drift to the bit

pressure, choke valve pressure, choke valve flow rate, and mud pump flow rate output signals

before they entered each controller. The noise added to the original signal was approximately ±1

bar. An example of the corrupted measurement data signals is shown in Figure 4.2.
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Table 4.1: Summary of the simulated well parameters used in this work.

SI Units English Units

Casing diameter 0.273 m 103
4 in

Drill pipe 0.127 m 5 in

True Vertical Depth (TVD) 2150 m 7054 ft

Measured Depth (MD) 4300 m 14108 ft

Water depth 20 m 65.6 ft

Rate of Penetration (ROP) 2 m/hr 6.56 ft/hr

Temperature 35◦ C 95◦ F
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Figure 4.2: Original bit pressure signal (top) and signal corrupted with noise and outliers (bottom).
The corrupted signal is sent to the controllers in order to simulate real-world measurement data.

4.2.1 Ensemble Control Structure

The control scheme includes three separate MPC controllers and a logic switch that selects

the appropriate controller output to actuate the choke valve position and mud pump flow rate at

the well. The three MPC controllers each use different control models, a high fidelity model, low-

order model [76], and an empirical model. Each of these models receives measurements from the
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well that are corrupted with noise and outliers to simulate real measurement conditions. A simple

moving-average was used to filter some of the noise. Figure 4.3 shows a diagram of the ensemble

control system and its relationship to the drilling simulation. While ensemble controllers have been

researched in many applications, the novel contribution of this work is the implementation of an

ensemble controller with bumpless transitions in multivariate MPD control.

Figure 4.3: A simplified diagram of the simulated well and ensemble controller.

4.2.2 High Fidelity Controller

The high fidelity MPC controller uses the SINTEF flow model and a sequential solution

method to find an optimal combination of choke valve position and mud pump flow rate to maintain

the target bit pressure. For a detailed discussion of the equations and assumptions of this model see

reference [137]. The model is used in an active set solver optimization routine with a 60 second

time horizon. The optimization objective function uses the `1-norm and appropriate variable tuning

costs. The `1-norm calculates the absolute value of the model deviation minus the desired set

point. Tuning parameters for this high fidelity controller involve the length of the time horizon,

time-based weighting of the bit pressure error, the costs for changing the manipulated variables and

increasing the pump rate and the tolerance of the solver. The parameters are adjusted to obtain an

optimal solution in a realistic time frame with acceptable use of the choke valve and mud pump. A
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simple bias feedback was also built into the controller to ensure control despite some inaccuracies

in the well model used by the controller. The bias enables the model to correct for variations as

can be seen in Figure 4.4. This figure demonstrates the effect of the bias in diminishing pressure

offset.

Time (min)

Figure 4.4: High fidelity controller operating with (top) and without (bottom) a bias feedback. The
bit pressure set point is a dead-band region (rather than a single value) that is formulated using the
`1-norm in the MPC controller objective function.

Because of the long solution time required by the controller, its control suggestions are

only available to the ensemble switch every other control instance.

4.2.3 Low-order Controller

The low-order controller utilizes a reduced order observer model developed by Stamnes et

al. [128], adapted for control by Asgharzadeh Shishavan et al. [76], and further modified for mud

pulse telemetry in this work as shown in Equations 4.1-4.6. The controller uses this model in a

single control algorithm to control the well at each instance. The model has three state variables

that are shown in Table 4.2.

Pbit = Pc +ρa fahbit(qbit)
2 +ρagchbit (4.1)

qchoke = K1zc[ρa(Pc−Po)]
0.5 (4.2)
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Table 4.2: Description of variables used in the low-order drilling model with initial values.

Variable Definition Initial Value
Pp main pump pressure (State variable -SV) 86 bargauge
βd bulk modulus of the drillstring 14000 bargauge
Vd volume of the drillstring 19.909 m3

qpump flow rate of the main pump 1.8 m3/min
qbit flow rate of the fluid through the drill bit (SV) 1.8 m3/min
Pc choke valve pressure (SV) 52 bargauge
βa bulk modulus of the annulus 14000 bargauge
Va volume of the annulus 13.3515 m3

qback back pressure pump flow rate 0 m3/min
qchoke choke valve flow rate 1.8 m3/min
qres reservoir gas influx flow rate 0 m3/min
M effective density per unit length 3500 kgm−4

Ma effective density per unit length of annulus 800 kgm−4

Md effective density per unit length of drillstring 2700 kgm−4

fd friction coefficient of drillstring 1 bars2 m−6

fa friction coefficient of the annulus 623.87 m−5

ρd actual density in the drillstring 1490 kgm−3

ρa actual density in the annulus 1372.1 kgm−3

gc gravitational constant 9.81 ms−2

Pbit pressure at the bit 440 bargauge
hbit well depth 2150 m
K1 Valve coefficient 0.145
zc choke valve position 60% (open)
P0 pressure at the surface 1 barabsolute

dPc

dt
=

βa

Va
(qbit +qback−qchoke +qres) (4.3)

dqbit

dt
=

1
M
(Pp− fdq2

bit +ρdgchbit−Pbit) (4.4)

dPp

dt
=

βd

Vd
(qpump−qbit) (4.5)

M = Ma +Md (4.6)
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The low-order MPC controller uses a `1-norm objective function that allows the formula-

tion of a dead-band region for the set point, rather than one specific value. Within this region there

is no penalty on the objective function. This dead-band helps reject noise and mitigate unnecessary

control moves, helping extend the life of equipment and avoiding actions that vigilant operators

would find unnecessary. The absolute value of the error was also implemented in a unique way to

avoid the discontinuous first derivative of the objective function (which is inherent to an absolute

value function), increasing the probability of solver convergence. Details on the formulation and

implementation of this `1-norm dead-band objective function can be found in [6]. This controller

was tuned by adding a cost for changing the valve position and pump flow rate, and limiting the

amount the controller could move these variables at each control instance. The density of the mud

in the annulus and the annulus friction factor are required inputs to this model and need to be esti-

mated because they cannot be measured. Therefore, the controller is combined with online MHE,

which uses a similar `1-norm objective function as the controller, to estimate the annulus friction

factor and density in the annulus at each time step. The estimator uses the same model described

above.

4.2.4 Empirical Controller

The empirical controller model is based on measurement data from the simulated well. The

data is used to directly quantify the relationship of pump flow rate (qpump) to bit pressure (Pbit) and

of choke valve position (zc) to bit pressure. Dynamic data is gathered by stepping each of the MVs

up and down across their operating ranges while holding all other inputs constant. The MVs for

this process are the choke valve position and the mud pump flow rate. While the MVs are stepped,

the dynamic bit pressure response to these steps is recorded. Once the bit pressure response to the

step in MVs is recorded, a FOPDT model is used to fit the data by adjusting the gain (Kp) and time

constant (τp), according to Equation 4.7. Dead time (θ ) is assumed negligible for this process.

This type of model is used as a good approximation of nonlinear systems and is the most common
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Table 4.3: Values of the gains and time constants for the FOPDT model.

Pbit /qpump Pbit /zc

Kp 8247.4 (bar/m3s−1) -46.749 (bar/%open)

τp 9.0812 (s) 0.96126 (s)

model to generically relate inputs to outputs. In Equation 4.7, x represents pbit , and u represents

the inputs (qpump, zc) into the model.

τp
dx
dt

=−x+Kpu(t−θ) (4.7)

Table 4.3 shows the values of the gain and time constant for the Pbit /qpump relationship and

the Pbit /zc relationship that were determined from the tests.

In an industrial application the Kp and τp values could be fit dynamically from real-time

data to achieve a similar result. Once the individual input/output relationships were established,

they were concatenated into a single matrix. This matrix was used to generate a state space model

for Multiple Input Single Output (MISO) MPD process control. The empirical MPC controller

also uses the `1-norm objective function and set point dead-band used in the low-order controller.

Similar to the low-order controller, the empirical controller was tuned by adjusting the allowable

rate of change for each MV and giving a penalty in the objective function for deviation from current

positions.

4.2.5 Empirical Switch

The ensemble switch receives the suggested pump flow rate and valve opening control

moves from each of the individual controllers and outputs a final control move for implementation

in the drilling process. The decision of which controller suggestion to implement is based on a hi-

erarchical procedure. The high fidelity controller is used at all times when it is available. However,

the long time required for optimal solution convergence often disqualifies these control sugges-

tions. Also, the added complexity of the model can occasionally result in the model predictive

controllers not converging to a solution altogether, further disqualifying the recommended actions

from the high fidelity controller. When the high fidelity controller is unavailable, the low-order
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controller is used. The low-order controller requires the optimal solution convergence of both an

MHE estimator and an MPC controller. If this controller fails to converge within the allotted time

step, its suggestions are not implemented by the ensemble switch. When this situation is combined

with an unavailable high fidelity controller, the empirical controller is used to maintain the pres-

sure at the bit. If all three controllers fail, then the ensemble controller will fail also. This marks

one of the shortcomings of this method. However, the probability of all three controllers failing

in the same time step is less than the probability of a single controller failing. The control model

redundancy increases the chances of stable process control.

One of the challenges associated with ensemble controller switching encountered in this

and other works [93] is the tendency of the MVs to jerk when switched between controllers. This

occurs because multiple optimal combinations of pump flow rate and valve position are possible

due to the slight colinearity of these variables. The values of these optimal combinations for a given

time instance are shown in a contour plot that shows all possible combinations of valve position

and pump flow rate and the effect on the controller objective function in Figure 4.5.

It should be noted that the valley of optimal solutions is curved. This prevents averag-

ing the individual controller recommendations because an averaged set of moves would fall in a

sub-optimal region. Different combinations of these MVs are found by each of the individual con-

trollers. While all may be optimal, the combinations are distinct and can cause an unacceptable

jerk in the bit pressure during controller switching, as shown in Figure 4.6. The jerky transition is

exemplified by the poor transition from control by the low-order controller to the empirical con-

troller at 20 min. The transition from the high fidelity controller to the low-order controller also

causes a ±5 bar swing in bit pressure before stabilizing.

To overcome this challenge, the current process pump flow rate and valve position are feed

into each of the controllers. The individual controllers that are not presently implemented use the

current process values as an initial starting point for the optimization routine. They separately con-

verge to the same or similar values for flow rate and valve position. This strategy keeps jerking at

a minimum when switching between controllers. When this strategy is applied there is a seamless

transition between controller suggestions, as demonstrated in the results section.
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Figure 4.5: Plot of all possible MV control moves and their effect on the high fidelity controller
objective function. The contours represent the values of the controller objective function which
minimizes the error between the well measurements and the model predictions. The area of mini-
mal error in pump flow rate and valve position combinations denotes the optimal operating region.

4.3 Results and Discussion

4.3.1 Normal Drilling Conditions

Normal drilling conditions are simulated with a bit pressure set point of 400 bar. In this

simulation, each controller is demonstrated by simulating a failure in the high fidelity controller at

10 minutes and low-order controller failure at 20 minutes. The results are shown in Figure 4.7.

This figure shows the choke valve position and pump flow rates recommended by each

controller, the selected controller moves and the resulting bit pressure, with its allowable band of
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Figure 4.6: Demonstration of poor switching behavior when bit pressure (top), valve position
(center), and pump flow rate (bottom) switch between controllers during normal drilling. The high
fidelity controller is used until 10 minutes when control is switched to the low-order controller. At
20 minutes the empirical controller is used to control the well. This figure shows the unacceptable
jumps in valve position and pump flow rate when switching among controllers, and how it affects
bit pressure control.

±1 bar from the 400 bar set point. The smooth transition between controllers is demonstrated. The

low-order controller demonstrates the least stable control in this test, but it is still able to maintain

the bit pressure within 1 bar of the desired set point. While the empirical controller performance

is much more acceptable than the low-order controller in this instance, the low-order controller is

preferred because the tuning is accurate over a wider range of operating conditions. The empirical

controller has been tuned to process data at the current well conditions, but will quickly lose tuning

as drilling continues and conditions change. Using online data to tune the empirical model when

it is not in use is addressed in Chapter 5.

4.3.2 Pipe Connection

To simulate a pipe connection procedure, the main mud pump flow is scaled down to zero

as the backpressure pump ramps up to maintain a steady flow of 600 L/min through the choke

valve. The bit pressure set point is changed to 340 bar, ±5 bar, and the ROP and RPM are set to 0
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Figure 4.7: Bit pressure (top), valve position (center), and pump flow rate (bottom) when the
controller switches between controllers during normal drilling. The high fidelity controller is used
until 10 minutes when control is switched to the low-order controller. At 20 minutes the empirical
controller is used to control the well.

during the 1 minute connection procedure. Since there is no mud flowing through the drill string,

mud pulse telemetry is not available so all measurement feedback systems are turned off. The

empirical controller does not account for this procedure in its model so the ensemble switch will

not select any recommendations made by the empirical controller. Figure 4.8 shows the results

of the pipe connection procedure with moves recommended by the high fidelity controller. The

controller demonstrates impressive performance by maintaining the bottom hole pressure within 5

bar of the set point.

The lack of feedback measurements in this procedure forces the controllers to rely solely

on the quality of their predictive models. The high fidelity model is the most accurate, and its

predictive power is demonstrated here. However, the low-order model is not as detailed, and does

not account for many of the more complex dynamics associated with a pipe connection procedure.

The same procedure is simulated with control moves solely from the low-order model. The results

are shown in Figure 4.9.
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Figure 4.8: Ensemble controller performance during a simulated pipe connection procedure. The
ensemble controller switch uses the high fidelity controller during this procedure.

The low-order controller maintains an acceptable bit pressure for almost the first half of the

procedure; the pressure stays within the 5 bar dead-band most of the time. However, lack of bit

pressure measurements do not allow the model to be updated. Instead, the complex fluid dynamics

of stopping and starting the pump and drill string rotation eventually causes the well conditions to

stray unacceptably away, and the bit pressure spikes accordingly. However, once sufficient mud is

flowing and mud pulse telemetry measurements are available (around 10.5 min), the model very

quickly adapts itself and brings the bit pressure to an acceptable level. Clearly the high fidelity

controller performance is superior; however, it may not always be available. Figure 4.10 shows

the results of simulated high fidelity controller availability during a pipe connection procedure.

When the high fidelity controller suggestions are inaccessible, the ensemble switches to the low-

order controller to maintain the bit pressure within ±5 bar of the 340 bar set point. In Figure

4.10, the sharp changes in bit pressure correspond to the loss of high fidelity control moves, this

happens at 4, 6.5, and 9 minutes. While the low-order controller is able to regain control over the
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Figure 4.9: Poor ensemble controller performance during a simulated pipe connection procedure.
The ensemble controller switch uses the low-order controller during this procedure and the predic-
tive accuracy of the model is not sufficient to maintain desired pressure control.

bit pressure, the overshoot is unacceptable. This behavior is likely due to the lower accuracy and

lower predictive capability of the low-order model. However, with further tuning, the controller

could control the process in an acceptable manner. This simulation demonstrates that the model

hierarchy becomes increasingly important in situations like pipe connection when measurement

feedback is lost and the controllers rely solely on their model predictive accuracy.

The power of this work is the functionality and versatility of the ensemble switch. The

main purpose of the ensemble switch is to seamlessly implement the most accurate controller

available to maintain acceptable bit pressure. Due to the slight co-linearity of the pump flow rate

and valve position on bit pressure (see Figure 4.5), each controller is able to find unique, yet

optimal solution. This leads to drastic fluctuations in MVs when changing between controllers

and the associated unwanted fluctuations in bit pressure. To achieve a seamless transition, the

unused controllers are fed the current outputs of the ensemble switch as initial values for their
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Figure 4.10: Ensemble controller performance during a simulated pipe connection procedure. Loss
of high fidelity controller recommendations occurs at 4, 6.5, and 9 minutes. At these times, the low-
order controller is used to control the process until the high fidelity controller becomes available.
As bit pressure measurements are unavailable, the controllers rely solely on the accuracy of their
model predictions to maintain the bit pressure. This figure demonstrates the need for accurate MPC
models in MPD.

optimization routine. This strategy allows the optimizers to converge to MV suggestions that are

near the current conditions, and facilitates smooth transitions between controllers. Additionally,

the multiple control models in the ensemble controller allow for individual controllers to be tuned

without interrupting drilling operations. This allows for regular maintenance of all controllers

without impacting drilling productivity.

4.4 Conclusion

An ensemble controller consisting of a switch and three multi-fidelity MPC controllers is

implemented in a MPD simulation that uses a high fidelity pressure dynamics well model. The

switch implements each controller based on the model accuracy and availability. A high fidelity
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controller is always used when available, a low-order controller is used when the high fidelity is

unavailable, and an empirical controller is used when the other controllers are unavailable due

to feedback noise or failed solver convergence. The most significant challenge associated with

switching between controllers is a sudden jump in the bit pressure during the switch. This is due

to the slight colinearity of the MVs and the unique solutions of each controller. This is overcome

by feeding the output of the current choke opening and mud flow rate to the controllers not in

use and adding a penalty for deviating from those values. This allows for smooth and successful

switching between the various controllers during normal drilling. Additionally, during a simulated

pipe connection procedure, when no mud flow causes the loss of bit pressure measurements, the

controllers must rely solely on the predictive capabilities of their respective models. In this case,

the high fidelity controller is able to maintain acceptable bit pressure, while the empirical and

low-order models fail to do so. Once the controller performance is improved, future research will

include exploring the ensemble controller performance in other common drilling scenarios such as

unwanted reservoir gas influx, stick/slip, and surge and swab effects.

90



CHAPTER 5. ADVANCED SWITCHED CONTROL OF MANAGED PRESSURE DRILLING

This chapter is published as: Eaton, A.N., Beal, L.D.R., Thorpe, S.D., Janis, E.H., Hubbell, C.,

Hedengren, J.D., Nybø, R., Aghito, Real time model identification using multi-fidelity models in

managed pressure drilling, Computers & Chemical Engineering, Volume 97, 2017, Pages 76-84,

DOI: 10.1016/j.compchemeng.2016.11.008

5.1 Introduction

High fidelity simulators are first principles based models that closely approximate reality,

and are characterized by dynamic nonlinear equations. The most rigorous process models can con-

tain more than 106 equations and variables [138]. Such models have been used in Computational

Fluid Dynamics (CFD), operator training simulators, and in process systems engineering for over

50 years [11]. Another common use for rigorous first principles models is to derive less rigorous,

yet more computationally manageable, control models [139], [140]. The value of first principles

models in real time feedback control is most apparent in MPC, which is the most widely used

advanced control method in refining, chemical, and petrochemical processes [9].

Ideally, a control model would exactly describe plant dynamics in every operating con-

dition. While this is not possible due to computational and complexity limitations, high fidelity

simulators are rigorous models that accurately describe real processes over a wide range of operat-

ing conditions, thus requiring significantly less tuning from operational data than empirical models.

Empirical model identification can be disruptive to operations and very costly, although this has

greatly improved with closed loop identification techniques [141]. Also, closed loop control sys-

tems can become unstable even with highly accurate models, and several robust control strategies

have been developed to guarantee stability for linear and nonlinear MPC applications [28]–[30],

[142]. A control model must have a certain level of accuracy before any guarantees of controller

stability and performance can be made. Accurate model predictions can lead to fewer iterations be-
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cause the optimizer is able to minimize the error between the process and the model more quickly

than inaccurate models. If the error is inherently small, it can quickly be brought within the spec-

ified tolerance with linear or quadratic convergence rates that are typical of Sequential Quadratic

Programming (SQP) solvers near the solution. Accordingly, it has been demonstrated that im-

proved models provide better control than less rigorous models in MPC [32]. Additionally, many

processes, such as polymer grade transitions and oil well drilling, are extremely nonlinear to the

extent that linear model approximations are insufficient to control the process.

In addition to performance improvement, highly accurate model predictions allow a con-

troller to maintain control over a process, over the prediction horizon, even when there is no process

feedback due to sensor failure, etc. While sensor failure is common in oil and gas well drilling, loss

of measurement feedback is more common during normal operations due to pipe connection pro-

cedures. Maintaining control during the temporary and intermittent loss of feedback is the major

motivation for using high fidelity simulators in real time control.

While high fidelity simulators have many benefits, rigorous models are difficult to imple-

ment in NMPC feedback control due to the short (typical range is 1 second to 10 minute) cycle

time in which a large NLP problem must be solved. If the optimization is not completed within

the cycle time, controller instability will occur [143], [144]. Because of this limitation, rigorous

models have not been widely implemented in real time control. However, recent improvements in

algorithm design and hardware capabilities have opened up the possibility of using the accuracy

of high fidelity simulators in real time feedback loops. For example, multiple control algorithms

have been developed that compute the full NLP problem offline and perform only a sensitivity

calculation online [145]–[147]. These sensitivity based methods have been demonstrated in con-

trolling reactors [145], distillation columns [147], [148], power plants [148], and adsorption beds

[149]. Others have used large scale models in Dynamic Real Time Optimization (DRTO) [32],

[150], [151]. However, this work introduces a method for using high fidelity simulators in NMPC

by implementing a switched control scheme. The method uses dynamic online model assessment

and control model identification from high fidelity simulated data.
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5.2 High Fidelity Switched Control

Switched and hybrid systems have been extensively studied [152]–[154], and MPC variants

have also been developed [155], [156]. The formulation of stability and performance guarantees

have been developed in switched linear and nonlinear MPC by several researchers [142]. However,

none of these previous studies have attempted to incorporate high fidelity simulators into the con-

trol law to improve model predictions, and subsequently controller performance and stability. The

objective of this work is to couple high fidelity model predictions with the speed and stability of

linear MPC by dynamically identifying the empirical control model in a switched control scheme.

The switched controller presented in this work uses a high fidelity nonlinear, first princi-

ples based model running in parallel with the physical process. Also, a linear, empirical model

predictive controller and a nonlinear model predictive controller with a simplified low-order model

run parallel with each other. The output suggestions of these controllers are fed into a switching

algorithm that implements the linear controller suggestions into the nonlinear process. When the

linear model prediction error exceeds a specified tolerance, the algorithm samples the high fidelity

model with step inputs to produce a simulated data set of the current operating conditions. Then it

uses regression techniques to fit the new gain and time constant in the linear, empirical model to

the current simulated data set. While this model identification occurs, the algorithm implements

the low-order NMPC controller suggestions to maintain control over the process. Figure 5.1 shows

a diagram of the proposed controller scheme.

This strategy allows the slow, yet very accurate predictive capabilities of the high fidelity

model to be implemented into a fast, yet locally accurate linear model, all without interrupting the

process. It allows control model identification without disrupting operations. As shown in Figure

5.1, this control scheme takes advantage of the accurate predictions of the high fidelity simulator

while minimizing online computational costs. Online computation time can be further reduced by

computing in parallel on separate resources.

In addition to incorporating high fidelity predictions, this switched control scheme differs

from traditional gain scheduling and other switch schemes, such as Multiple Models Predictive

Control (MMPC)[155], in that there is no predetermined switching time or scheduling variable.

Also, the control models do not need to be identified before implementing the controller. This is
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Figure 5.1: Diagram of a switched control structure.

helpful in systems where model identification is disruptive to operations, or when identifying the

model before operations begin is not possible such as with automated oil well drilling.

5.3 Controller Stability

Even when each of the individual controllers in a switched system are asymptotically sta-

ble, destabilization due to switching among the controllers must be addressed before stability can

be guaranteed [157], [158]. Therefore, it is necessary that the switch itself and the individual con-

trollers are stable. For implementation of the present switched control algorithm, the individual

MPC controllers can be formulated to take advantage of the recent advances in NMPC stability

theory found in [159] and the included citations. In essence, stability can be achieved if a fea-

sible solution is found and the finite optimization horizon is sufficiently long. Methods exist to

efficiently calculate the horizon length required for stability to be ensured at each time step [160].

Other methods require the addition of terminal cost constraints or a continuous Lyapunov func-

tion. Yet, these stability methods are insufficient for hybrid systems because of the discontinuous
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derivatives associated with switching [142]. The stability of this switching algorithm is addressed

in a way that is unique to this control scheme.

Stability of switched and hybrid MPC systems has been centered around piecewise affine

systems [142], [161]. In other words, switched piecewise affine systems, such as MMPC or

Switched MPC (SMPC), switch among controllers with locally affine regions. The switching is

from a locally accurate controller to a neighboring locally accurate controller [159]. In contrast,

this work presents a scheme that switches among NMPC controllers that are accurate in the same

operating regions. This redundant control model structure has several benefits including online

model maintenance and some desirable stability properties. For instance, one of the major issues

with discontinuous switching of redundant continuous NMPC controllers is the jump in controller

outputs that can occur upon switching [162]. This sudden change in process inputs can result in

poor or lost control. This jump occurs because the individual NMPC optimizers can find local

minima of a nonconvex problem resulting in differing MV suggestions to achieve the same CVs.

Factors such as MV move suppression or the multivariate nature of the problem contribute to this

discontinuity between MV suggestions to reach the same CV targets. When switching among

controller suggestions, the undesirable jump is manifest. One of the contributions of this work

is addressing switch stability by synchronizing the NMPC controllers. This is accomplished by

initializing each of the NMPC optimization problems, at each time step, with the current process

conditions. Because each controller starts with the same initial conditions, and use the same opti-

mization routine, each converges to similar solutions and transitions between solutions are smooth.

Also, the switching is induced when control model predictions no longer match process measure-

ments within a specified accuracy. This means that switching between controllers will only occur

if it stabilizes the system. After a switch is made, another switch cannot occur for a given ”dwell

time”, this prevents instability associated with switch chatter [163]. With the assumption that the

individual controllers are stable, and combined with the previously stated synchronization tech-

niques, switch stability is implied.

5.4 Simulated Managed Pressure Drilling

The switched control strategy is demonstrated on a simulated oil well drilling process. An

oil well is created by drilling into the earth for several hundred to several thousand feet, stopping
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to insert and cement casing pipe to the well bore, then repeating the process until the target depth

is reached. As the well deepens, more drill pipe is connected to the drillstring. At the bottom of

the drillstring, a BHA, consisting of measurement and steering equipment, is attached to the drill

bit. The drill bit is cooled by the drilling fluid, or mud, which also moves the rock cuttings to the

surface and maintains pressure in the well annulus (see Figure 5.2). The well annulus fluid pressure

consistently needs to be greater than the geologic reservoir fluid pressure to prevent hydrocarbons

from entering the well during the drilling process. If the mud pressure in the well is too high it

can damage the rock formation; if it is too low hydrocarbons from the subsurface reservoir can

come to the surface in an uncontrolled and dangerous manner. When this catastrophe happens it is

known as a blowout. The well bore pressure must be maintained within a small range of pressures

that will balance the reservoir fluid pressure to prevent fractured formations and blowouts. To help

achieve this pressure balance, a variation of traditional drilling, called MPD, was developed. A

simplified schematic of MPD is shown in Figure 5.2. MPD uses pressure measurements from the

BHA to inform the driller of the need to adjust the main mud pump flow rate and choke valve

opening to reach the desired pressure target in the well. A back pressure pump is used to maintain

well pressure during pipe connection procedures when the main mud pump is disconnected from

the drillstring.

Automation of MPD is advancing in industrial practice with mass balance control of the

drilling mud being the most common practice. Another automated MPD method takes advantage

of a highly calibrated high fidelity simulator whose predictions are used as feedback for a controller

which manipulates the choke valve to control the bit pressure in the real process [137]. It has also

been demonstrated that an automated controller can maintain borehole pressure and reject distur-

bances faster and more accurately than manual control by using NMPC with high quality process

data [36]. One of the major challenges with implementing NMPC is the quality of the data sent

by the downhole instruments. The most common method of receiving continual pressure measure-

ment data from the BHA is through mud pulsing [129]. In mud pulsing, a pressure transducer sends

pressure waves through the annulus fluid to a receiver at the surface. The pulses are then decoded

into pressure measurements. Currently, the maximum data transmission rate of mud pulsing is 80

bits per second [164]. One of the major limitations of mud pulsing technology is the need to have

the mud flowing for it to work. This makes receiving downhole pressure measurements impossible
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Figure 5.2: Simplified schematic of the automated MPD process.

when the mud pump stops for regular events such as pipe connection procedures. Additionally,

the small bandwidth and long delay time of mud pulsing technology pose a significant challenge

to automating MPD with direct downhole pressure measurements, and improving the technology

is an active area of research [130]. Other researchers are moving away from mud pulsing in favor

of other technologies such as WDP [129]. Regardless of the means of transmission, the downhole

data quality is substantially low (± 20 bar) for traditional sensors and better (± 1 bar) for newer

sensors [165] that have been developed to meet MPD control requirements. Even with the new

pressure sensors, the inherently harsh borehole environment and the discontinuous nature of the

drilling process make data collection and reliability a challenge.
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Additionally, several abnormal events can occur during drilling operations. For example,

drilling into an unexpected high pressure reservoir can offset the well/reservoir pressure balance

and allow an unwanted influx of gas into the well bore. This situation is known as unwanted gas

influx or kick, and is characterized by an increase in pressure in the annulus as the gas rises to the

surface and increased flow rate in the annulus that acts as a disturbance to the process. In practice,

the drilling process is stopped and shut in until the gas is circulated out and the well is controlled

with a change in mud weight or choke valve position. In automated MPD, the set point for the

choke pressure is increased to stop the influx of gas. Then, drilling operations are slowly brought

online after the mud density is increased sufficiently to balance the new pressure at the bit. Con-

trolling a kick is known as well control, and is an active area of research in industry and academia.

Kicks, pipe connection procedures, delayed bit pressure measurements, and measurement noise are

all factors included in the simulation to better simulate issues encountered in industrial practice.

In these simulations, the mud pump flow rate and choke pressure are the MVs and the CV

is the pressure at the bottom of the well. As the drill bit is always at the bottom of the well, the bit

pressure is used for the CV. An empirical model and a low-order first principles model are used in

parallel MPC controllers as depicted in Figure 5.3. These controllers are described in Sections 4.1

and 4.2.

5.4.1 Empirical Controller

The empirical controller model uses a linear FOPDT model, as seen in Equation 5.1, with

gain (Kp), time constant (τp), and dead time (θ ) that are fit to simulated data from the SINTEF

Flow Model high fidelity simulator [137] in the procedure described in Section 3. The simulated

data are generated by artificially stepping each of the MVs up and down in slow succession across

prescribed operating ranges.

τp
dx
dt

=−x+Kpu(t−θ) (5.1)

In Equation 5.1, x represents the bit pressure (Pbit) and u is a vector representing the mud

pump flow rate (qpump) and the pressure upstream of the choke valve (Pc) which are model inputs.
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Figure 5.3: Diagram of the switched control structure used in this work.

Once the individual input/output relationships are established, they are concatenated into a single

matrix. This matrix is used to generate a state space model for the MISO MPD process controller at

each identification routine. The MPC controller uses an `1-norm objective function that allows the

formulation of a dead-band region for the set point, rather than one specific target value. Equation

5.2 shows the generalized `1-norm control formulation.

min
x,y,u

Φ = wT
hieU +wT

loeL + yT cy +uT cu +∆uT c∆u

s.t. 0 = f
(d x

d t ,x,y, p,u
)

0 = h(x,y, p,u)

0≤ g(x,y, p,u)

τc
d yt,hi

d t + yt,hi = sphi

τc
d yt,lo

d t + yt,lo = splo

eU ≥ y− yt,hi

eL ≥ yt,lo− y

(5.2)
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In this formulation, Φ is the objective function, x, y, and u are vectors of the process states,

the model predictions, and the model inputs respectively. In the MPD case, u would be a vector

of the mud flow rate and choke pressure, y would equal x and be the bit pressure. whi and wlo are

penalty matrices for solutions outside of the dead-band region, while eU and eL are slack variables

for the dead-band high and low limits. cy, cu, and c∆u are cost vectors for the model predictions,

inputs, and change of inputs respectively. f is a generalized function of the model equations as

functions of x, y, u, p and d x
d t , where d x

d t is the time derivative of x and p is a vector of the model

parameters. Similarly, h is a generalized function of the system equality constraints, and g is a

generalized function of the systems inequality constraints. τc is the desired CV time constant, and

yt,hi and yt,lo are the upper and lower limits of the desired trajectory when changing set points. sphi

and splo define the set point dead-band region. The controller is tuned by adjusting the weighting

vectors: cy, cu, c∆u, whi, and wlo, and the CV time constant τc. The tuning favors adjusting the

choke pressure as much as possible before the pump is adjusted to reach the set point. This is

because the pump needs a flow rate sufficient to remove rock cuttings up the annulus. A sudden

drop in mud flow can cause the solids in the annulus to precipitate and lead to an expensive and

disruptive stuck pipe situation. Unnecessary control moves are further mitigated by the dead-band

region set point.

Within the dead-band region (between upper and lower limits) there is no penalty in the

objective function. The use of a dead-band helps reject noise and mitigate unnecessary control

moves [166], helping extend the life of equipment and avoiding actions that vigilant operators

would find unnecessary. The absolute value of the error is also implemented in a unique way

to avoid the discontinuous first derivative of the objective function (which is inherent to an ab-

solute value function), improving the effectiveness of gradient based solution techniques such as

SQP. Further details on the formulation and implementation of this `1-norm dead-band objective

function are found in [6].

5.4.2 Low-order Controller

The low-order controller uses a reduced order observer model developed by Stamnes et

al. [128], adapted for WDP control by Asgharzadeh Shishavan et al. [164], and further modified

for mud pulse telemetry in this work as shown in Equations 5.3-5.7. Descriptions of the model
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variables and parameters are shown in Table 5.1.

Pbit = Pc +ρa fahbit(qbit)
2 +ρagchbit (5.3)

dPc

dt
=

βa

Va
(qbit +qback−qchoke +qres) (5.4)

dqbit

dt
=

1
M
(Pp− fdq2

bit +ρdgchbit−Pbit) (5.5)

dPp

dt
=

βd

Vd
(qpump−qbit) (5.6)

M = Ma +Md (5.7)

The low-order MPC controller also uses the `1-norm objective function formulation used

by the empirical MPC controller. This controller was tuned by adding a cost for changing the valve

position and pump flow rate, and limiting the amount the controller moves these variables at each

time in the control horizon. Also, the density of the mud in the annulus and the annulus friction

factor are changing as rock cuttings are carried away during drilling. These two parameters are

required inputs to the model and need to be estimated because they cannot be measured. Therefore,

the controller is combined with online MHE, which uses a similar `1-norm objective function, to

estimate the annulus friction factor and density in the annulus at each time step. The estimator
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Table 5.1: Description of variables and parameters used in the low-order drilling model with initial
values.

Variable Definition Initial Value

Pp main pump pressure (State variable -SV) 86 bargauge

βd bulk modulus of the drillstring 14000 bargauge

Vd volume of the drillstring 19.909 m3

qpump flow rate of the main pump 1.8 m3/min

qbit flow rate of the fluid through the drill bit (SV) 1.8 m3/min

Pc choke valve pressure (SV) 52 bargauge

βa bulk modulus of the annulus 14000 bargauge

Va volume of the annulus 13.3515 m3

qback back pressure pump flow rate 0 m3/min

qchoke choke valve flow rate 1.8 m3/min

qres reservoir gas influx flow rate 0 m3/min

M effective density per unit length 3500 kgm−4

Ma effective density per unit length of annulus 800 kgm−4

Md effective density per unit length of drillstring 2700 kgm−4

fd friction coefficient of drillstring 1 bars2 m−6

fa friction coefficient of the annulus 623.87 m−5

ρd actual density in the drillstring 1490 kgm−3

ρa actual density in the annulus 1372.1 kgm−3

gc gravitational constant 9.81 ms−2

Pbit pressure at the bit 440 bargauge

hbit well depth 2150 m

P0 pressure at the surface 1 barabsolute
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uses the same low-order model described above. Equation 9 shows the objective function, slack

variables, and error equations for the MHE used in this work.

min
x,y,p

Φ = wT
m (eU + eL)+wT

p (cU + cL)+∆pT c∆p

s.t. 0 = f
(d x

d t ,x,y, p,u
)

0 = h(x,y, p,u)

0≤ g(x,y, p,u)

eU ≥ y− yx +
db
2

eL ≥ yx− db
2 − y

cU ≥ y− ŷ

cL ≥ ŷ− y

eU ,eL,cU ,cL ≥ 0

(5.8)

Here, p is a vector of the model parameters that are estimated, wm is a cost given for mea-

surement deviation, wp is a cost given for deviation from the previous solution, and ∆p is the

change in model parameters. eU and eL are slack variables for the dead-band upper and lower

limits, cU and cL are slack variables for the upper and lower limits of the prior model solution,

and c∆p is a cost for changing the previous parameter values. Also, yx is a vector of process mea-

surements, db is the size of the dead-band, and ŷ is the previous model values. A more complete

presentation of the estimation form of the `1-norm objective function is found in [6]. While the

`1-norm objective function has many advantages, one of the shortcomings is the lack of devel-

oped theory concerning the estimated parameter nonlinear confidence bands and noise covariance

[125]. It is not within the scope of this work to develop this theory, but it should be noted that the

nonlinear parameter confidence regions are considered in this work. The measurement variance

is addressed by setting the dead-band region at approximately the same size as the bit pressure

measurement noise in the system. This prevents the signal noise from significantly influencing the

parameter estimates, only when there is a shift outside the predicted dead-band zone. This practi-

cal approach assumes that the parameter estimates are sufficiently accurate when the predicted bit

pressure remains within the dead-band region.
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5.4.3 Controller Switch

The switch in this simulation uses the logic described in Section 4. Specifically, prior linear

model predictions are compared to physical process outputs over a horizon of 20 time steps at each

instance. When the bit pressure predictions exceed an absolute error of 1.7 bar, the low-order

NMPC controller is implemented in the feedback loop, and the linear model tuning procedure is

initiated as described in section 4.3.1. The past prediction horizon and the acceptable prediction

error are tuning parameters for this controller. Also, if the MPC optimization solution is infeasible

or not convergent for both controllers, then the switch defaults to the empirical controller as the

probability of convergence is greater for this controller.

Dynamic Model Identification

In the real time model identification procedure, the switch triggers the high fidelity model

to simulate the well at the current conditions. The mud pump flow rate is perturbed in a doublet test

(up, down, back to nominal conditions) to generate simulated dynamic data from the high fidelity

simulator. In this particular application, the simulated step test covers a 12 time step horizon. This

is repeated for the choke pressure, and then the simulated data is used to regress the empirical

model parameters. Figure 5.4 shows the step in MVs and the response of the CV for the model

identification procedure. Figure 5.4 also shows the fit of the model parameters to the simulated data

for a typical online model identification procedure. Figure 5.4 is representative of a typical fitting

procedure; however, each fitting instance will vary slightly from the results in this figure. Once the

new model parameters are identified, they are sent to the controller, and the switch continues to

monitor the accuracy of the model predictions for at least 5 time steps before another switch can be

made. This dwell time prevents switch chatter and the instabilities associated with it. In this work,

it is assumed that the high fidelity model parameters are accurate and do not require updating in

the time scales of these simulations. In longer times scales, such as industrial application, high

fidelity parameter model parameters should also be updated.
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Figure 5.4: Simulated step test, system response, and resulting fit for the empirical model identifi-
cation.

5.4.4 Oil Well Drilling Process

The drilling process is simulated using the SINTEF Flow Model high fidelity simulator

[137] as the plant. A separate instance of the model is used for tuning the linear model. The

model parameters that are clearly known a priori, such as drill bit diameter and density of the mud

in the drillstring, are identical in each instance of the model. However, unknown variables, such

as reservoir depth and rock type, and formation pressure are set to different values in the tuning

model. This ensures that the model predictions do not contain information that would not be known

in practice. Additionally, the low-order and empirical control models are updated with current well

information through feedback of the bit pressure. The ROP is held constant at 6.5 f t/hr in the

vertical well, and dynamic temperature effects are not included in the simulations.
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5.4.5 Simulation Results and Discussion

Two common drilling scenarios are simulated including normal drilling and unwanted gas

influx (kick). The results of these simulations are found in Sections 4.5.1 and 4.5.2 respectively.

Normal Drilling Operations

In this simulation, the controller receives measurements from the well every 7 seconds.

Figure 5.5 shows the results of the continuous drilling simulation with set point changes. The

bit pressure set point for this simulation is 380 bar. At 300 seconds the set point is adjusted

to 390 bar and then back to 380 bar at 840 seconds. The top plot of Figure 5.5 shows the bit

pressure remains within the dead band set point region even when the empirical control model

parameters are being identified and the low-order model is implemented in the feedback loop. The

switching between the controllers results in bumpless control. The third and fourth subplots show

the movements of the choke pressure and the mud pump flow rate respectively. As seen in the

top plot, the controller keeps the bit pressure within the set point range. The second plot shows

the individual controller predictions, and at about 370 seconds the empirical controller predictions

exceed the acceptable limit. This initiates the tuning procedure. The switching and tuning occurs

once again at 966 seconds after the set point change. The switching and tuning does not happen

during the set point changes indicating that the loss of control from the empirical model is not

due to poor tuning. It is interesting to note that the high fidelity predictions and the empirical

model predictions are identical except when the process dynamics change and the empirical model

is unable to maintain control. Once the model identification process is complete, the empirical

model predictions match the high fidelity model once again. This demonstrates that the control

scheme effectively incorporates the high fidelity model predictions into real time control.

Figure 5.6 shows the time of switching between controllers in the top plot, and a compar-

ison of real time and simulation time in the bottom plot. As long as the bottom plot is less than

one, as denoted by the black horizontal line, the computation time is faster than real time, and the

controller will complete the necessary calculations within the feedback cycle time.

To contrast the switched control scheme, Figure 5.7 shows the results of an NMPC con-

troller using the high fidelity model directly in the optimization routine. Due to the format of the
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Figure 5.5: Switched controller response to set point changes in bit pressure (Pbit).

high fidelity simulator used, this NMPC controller used a shooting method to solve the optimiza-

tion problem. The control horizon was 4 seconds and was solved using the IPOPT [18] solver

option in the fmincon function in MATLAB. The controller clearly maintains the bit pressure in

the set point region demonstrating very good control.

Figure 5.8 shows a comparison of actual time and simulation time for this simulation, and

it is clear that the computation time at each control cycle is too long for real time implementa-

tion. This simulation justifies the complexity of this switched control scheme. It implements the

accuracy of the high fidelity model for control with significantly reduced computation within the

feedback cycle time.

Unexpected Gas Influx

The controller is used in a simulated disturbance rejection scenario. Unexpected gas influx

from the reservoir into the well bore is a common occurrence in drilling. In this simulation the
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Figure 5.6: Controller switching times and computation time. When the Computation Time /
Simulation Time is below the line at 1 on the vertical axis, the computation occurs in real time.

drill bit suddenly hits an unexpected high pressure zone. When this happens, the high pressure

reservoir gas disrupts the well pressure balance. Table 2 shows the conditions for this simulation

at 130 seconds when the time of interest begins.

Figure 5.9 demonstrates the controller response to this moderate kick. The top subplot of

Figure 5.9 shows the controller effectively maintains the bit pressure within the specified set point

in the presence of a process disturbance. The kick begins at about 300 seconds and continues

throughout the remainder of the simulation (see Figure 5.9). The dashed black lines in Figure 9

denote the set point region. When the bit pressure is within these lines, the controller takes no

corrective actions. There is a small (< 2 bar) increase in bit pressure when the kick occurs due

to the sudden increase in reservoir pressure encountered by the bit. This pressure increase moves
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Figure 5.7: MPD control using only a high fidelity control model.

the bit pressure slightly outside of the set point region (at 310 seconds) and provokes a response

from the controller as seen in Figure 5.10. Because the mud is oil based and under high pressure,

the gas easily dissolves into the fluid which decreases the density of the mud and, consequently,

the hydrostatic pressure of the mud. This brings the bit pressure down even though there is little

change in the choke pressure or the mud flow. When the bit pressure drops below the set point

region at 420 seconds, the controller increases the choke pressure slightly until 450 seconds when

a switch is made to the low-order controller for the remainder of the simulation. The controller

continues to increase the choke pressure, and eventually the mud flow, because the addition of

dissolved gas into the mud column continues to lower the hydrostatic pressure on the bit.

It is interesting to note that the low-order controller is used for disturbance rejection as

seen in Figure 5.9. This is because the high fidelity model parameters are not updated by changing

process conditions, and it does not account for the disturbance in its predictions. Consequently,
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Figure 5.8: High fidelity controller computation time.When the Actual Time / Simulation Time is
below the line at 1 on the vertical axis, the computation occurs in real time. This controller could
not be implemented in real time.

Table 5.2: Values of key variables used in the gas influx simulation.

Variable Values at 130 sec. of simulation time
Mud pump flow rate 393.6 gal/min

Choke pressure 22.5 bargauge
Reservoir depth 7,874.5 ft

Mud density 11.7 lbs/gal
Bit pressure 378.7 bargauge

Well trajectory Vertical
Well depth (TVD) 7,874.2 ft

ROP 6.5 ft/hr
Kick size 30 bbls

Sample rate 10 sec

the predicted bit pressure is too high and it tunes the empirical model accordingly (see the second

subplot in Figure 5.9). At several instances the empirical controller attempts to minimize the

error between the predicted bit pressure and the set point, yet as the initial error is greater than

the switching tolerance, the controller tunes the empirical model back to the high fidelity model.

This continues until the high fidelity model parameters are updated. Meanwhile, the low-order

controller is updated by the process, and it is able to keep the bit pressure within the acceptable

range. The third subplot in Figure 5.9 shows the choke pressure progressively increases until it
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Figure 5.9: Controller response to a process disturbance of unwanted gas influx.

reaches the upper limit of 45 bar. At this point (about 1400 seconds) the choke pressure can no

longer be used to maintain the bit pressure and the previously constant mud pump increases flow

to compensate.

Figure 5.11 shows the controller switching and also a comparison of simulation time and

real time to demonstrate the controller can be used in real time. As long as the bottom plot of

Figure 5.11 is less than one, the controller will complete the computations within the required

feedback cycle times, and the controller will be stable.

Figure 5.12 shows the drilling mud pit gain, flow through the choke, and the simulated gas

influx from the reservoir to the well bore. The sudden increase in pit gain and choke flow are

primary signs that a kick is occurring. In a real situation the drilling crew would stop the process

and implement the appropriate well control procedures.
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Figure 5.10: Controller response to a set point violation that occurs at the onset of the kick.

5.5 Conclusion

A switched control scheme is presented that makes use of a high fidelity model running

in parallel with a process. The high fidelity model is used to generate simulated data to identify

the model parameters of a linear empirical control model in MPC. During the model identification

procedure, the switch implements a low-order control model to control the process. In this way the

model identification procedure does not disrupt the controller. The model identification procedure

is triggered when the error in the past predictions of a linear model exceeds a prescribed thresh-

old. The switched control scheme allows the highly accurate predictions of a high fidelity model

to be incorporated in real time control without the high online computational cost. The control

scheme is applied to a simulated managed pressure drilling process. The controller performance

is demonstrated under set point tracking and disturbance rejection scenarios. Future work on the

control scheme includes updating the high fidelity model parameters with process data with mov-
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Figure 5.11: Controller switching and simulation time.

ing horizon estimation, and controlling a process when feedback is lost and highly accurate model

predictions are necessary.
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Figure 5.12: Pit gain, choke flow, and gas influx rate for the kick simulation.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The objective of this work is to increase efficiency, safety, and environmental protection

through advanced process control of upstream energy production processes. The advanced meth-

ods used in this work include multi-fidelity model predictive control, moving horizon estimation,

nonlinear gradient based solvers, and predictive switching techniques. Novel algorithms are devel-

oped and applied in simulation to subsea riser slugging control and the automated oil well drilling

process. While the applications are specific to the upstream oil and gas industry, the control al-

gorithms employed in this work can be used in general applications as well. In addition to novel

control algorithms, novel industrially relevant control model parameter estimation techniques are

reviewed and heuristics are developed for gain and time constant estimates. In summary, the con-

tributions in this dissertation are:

• The development of a model predictive controller for severe subsea riser slugging control using

clamped fiber optic sensors at the riser base. The controller improves performance over a

PID controller for the same system.

• A method for identifying the feedback control advantages that come with the location of a pres-

sure sensor on a subsea riser.

• Guidelines for SISO control model identification that encourage a model predictive controller to

having acceptable performance and maintain stability under uncertainty.

• A scheme for giving statistical significance to model parameter estimates through the use of

nonlinear confidence intervals.
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• A basic switched control algorithm that uses multi-fidelity models in real-time feedback control.

The controller can maintain control without feedback by utilizing the predictions of a high

fidelity simulator.

• A procedure for executing smooth switches between independent model predictive controllers.

• An advanced switched control algorithm that expands the capabilities of the basic switched

controller. The predictions from a high fidelity simulator can be incorporated directly into the

control law. This controller does not require predetermined switching points as the switching

is determined by the accuracy of the current control model predictions.

• A technique for online control model parameter estimation without disrupting the process. A

high accuracy model of the process is used to generate simulated data which is then used to

identify a control model based off of the current operating region.

A model predictive controller for severe subsea riser slugging mitigation is introduced. The

controller uses recent advances in post-installed fiber optic sensor clamp design. These clamps

allow the addition of a pressure, temperature, and strain sensor at virtually any location on the

riser. Pressure sensing is necessary for acceptable feedback control of the process, and a sensitivity

analysis showing the effect of sensor location on controller response is reported. The results for a

4300 meter riser show that when a sensor is placed 33.5 meters above the riser base the controller

response begins to deteriorate with persistent minor offset, but is still acceptable. When the sensor

is placed 167 meters above the riser base the controller is unable to suppress the slugging or follow

step changes in the set point. With a sensor near the riser base, the MPC controller improves the

settling time by about 5% and has little persistent offset compared to a PID controller for the same

process.

A review of commonly used industrial estimation algorithms and the associated benefits

and drawbacks is presented. These methods include filtered bias update, Implicit Dynamic Feed-

back, Kalman filtering, squared error moving horizon estimation, and `1-norm moving horizon

estimation. The benefits and drawbacks of each technique are outlined, and an example drilling

automation application demonstrates each technique’s characteristics. The example demonstrates

the performance of each estimator in the presence of measurement noise, drift, and outliers. The
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example shows that the `1-norm moving horizon estimator provides a more accurate estimate of

the true process state for short periods of bad data than the other methods. Also, the relevance of

estimation methods to control model parameter updates is discussed. Guidelines are developed for

the effect parameter estimation error will have on controller performance. The analysis reveals that

the combination of overestimated gain and underestimated time constant leads to the least amount

of error in the controller. When considered independently, underestimated gains lead to increased

error, while overestimated time constants immediately lead to significant increased error in single

input/single output systems. Put in more quantitative terms, if the time constant is correctly esti-

mated and the gain is overestimated 50%, then the controller error will be 2.5%. Whereas, if the

gain is underestimated by 50%, then the controller error is 20%. Similarly, if the gain is correctly

estimated and the time constant is over estimated by 100%, then the controller error is 15%, while

if overestimated by 100% the error is 8%. These results support the conventional process control

heuristics of estimated gain needing to be within 30% of the actual gain, and the time constant

being within 50% for sufficiently effective control.

A basic switching control algorithm that makes use of the individual strengths of models

with varying fidelity was developed. The algorithm takes advantage of the highly accurate predic-

tions of a high fidelity model, the fast computation time of a nonlinear reduced order model, and

the guaranteed convergence of a linear empirical model. Additionally, the control structure offers

the ability to tune and readjust one model while another is used for control, without interrupting

the process. It also offers the benefit of increased reliability generally associated with redundant

hardware and safety systems. The control structure consists of three separate MPC controllers and

a switch that selects one of the controllers to implement in the process. Each controller has one

of the previously mentioned models, and each receives measurements from the process. For this

basic switch, the model with the highest fidelity always has first priority; however, it is not avail-

able at every time step due to the required computation time. The reduced order model has second

priority, and is implemented unless it does not converge to a solution. Lastly, the linear empirical

model is used when the others are not available. A novel method for bumpless switching among

controllers is presented. Each MPC optimization problem is started, at each time step, with the

current process conditions as the initial conditions. This forces the solvers to find similar solutions
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as each begins from the same initial values. This results in a smooth transition from one controller

to the next.

The bumpless switching method and controller are applied to a MPD simulation that uses

the SINTEF Flow Model high fidelity simulator as the oil well process, and the simulation includes

the addition of measurement signal noise. The objective of the controller is to keep the pressure

at the drill bit within ±1 bar of the target pressure. A simulated failure of the high fidelity and

low order models demonstrate the usefulness of the controller. The bit pressure is maintained in

the acceptable range, and the transition between control models is smooth. During a simulated

pipe connection procedure, there is no measurement feedback to the controller. Using the highly

accurate predictions of the high fidelity simulator, the controller is able to maintain the bit pressure

within ±5 bar of the set point. This basic switched control algorithm preceded a more complex

switched controller.

This work introduces an advanced switched control method that uses multi-fidelity control

models: high fidelity, nonlinear reduced order, and linear empirical. The objective in develop-

ing this controller is to enhance performance and reliability by incorporating high fidelity models

directly into the control law. Accordingly, the algorithm employs the same bumpless switching

technique described in Chapter 4. However, instead of the predetermined switching sequence used

in the basic controller, the advanced algorithm uses the linear empirical controller when possi-

ble. When controller performance becomes unacceptable, the algorithm implements the low or-

der model to control the process while the high fidelity model generates simulated data which is

used to estimate the empirical model parameters. Once this online model identification process is

complete, the controller reinstates the empirical model to control the process. This control frame-

work allows the widely accurate, yet computationally expensive, predictive capabilities of the high

fidelity simulator to be incorporated into the locally accurate linear empirical model while still

maintaining solver convergence guarantees. The entire process is done online, and in real time.

The advanced switching algorithm is demonstrated in a MPD application. Two common

drilling scenarios are simulated including normal drilling and unwanted gas influx, also known

as kick. In these simulations, the objective of the controller is to maintain the drill bit pressure

within ±1 bar of the set point. The normal drilling simulation gives a basic demonstration of

the switching procedure, and shows that it can track changing set points in real time. Once the
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empirical controller is unable to keep the bit pressure within the acceptable limits, the switching

and tuning procedures are triggered. The kick simulation shows the controller ability to reject

process disturbances, and also highlights some of the algorithms shortcomings. One drawback is

that high fidelity model parameters are not updated with changing process conditions. Updating

the model parameters is possible, but will require more computation, and is left for future work.

6.2 Future Work

This research has made significant advances in controller switching, high fidelity simulators

in real time control, and model estimation heuristics. Yet, to more fully develop these areas, more

work is required. This section discusses areas of future development in this work. It is divided

into three subsection: Control Algorithm developments, Application Specific developments, and

Theoretical developments.

6.2.1 Control Algorithms

A pipeline wax deposition controller could have a high impact if developed in the future. It

is possible to use fiber optic temperature sensors on the exterior of the pipeline to give a feedback

measurement for a MPC controller. As the wax deposit inside the pipeline continues to grow it

insulates the exterior of the pipe from the warmer oil flowing on the interior. Thus, temperature

could be used as a surrogate for wax deposition thickness. When the wax reaches a set tolerance,

the controller would trigger remedial action such as sending a pig to clean the pipeline. The

inclusion of high fidelity wax deposition models to predict the deposit growth time and thickness

would help in the optimization of such a controller.

The advanced switched controller presented in Chapter 5 lacks one key aspect. The high

fidelity model parameters are not updated with changing process conditions. This is made clear in

the unwanted gas influx simulation. As seen in that simulation, not updating the model parameters

leads to incorrect tuning of the empirical controller, and possibly a loss of control. To address

this issue, some preliminary work has been done using a Monte Carlo approach to estimate the

high fidelity model annulus friction factor and density. This approach requires large computational

resources, and parallel programming in the estimation algorithm. For more details on this method
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see: Aghito, Manuel, Eaton, Ammon N., Bjørkevoll, Knut S., Nybø, Roar, and Hedengren, John

D., Automatic Model Calibration for Drilling Automation, SPE-185926-MS, 2017. Another ap-

proach is to use a separate instance of the high fidelity model in a MHE scheme that would calculate

the necessary parameters, instead of using trial-and-error methods like the Monte Carlo simulation.

This more powerful MHE technique would require a versatile high fidelity simulator that can out-

put the parameters that are being estimated in the MHE, yet also use those variables as inputs for

the controller. This is difficult to do because many current high fidelity drilling simulators use tab-

ulated data for temperature and pressure dependent fluid properties. While this capability currently

does not exist in the SINTEF Flow model, efforts are being made to incorporate this feature into a

new model that is being developed for control purposes. Regardless of the method, it is important

to update the high fidelity model parameters for stable process control.

Another shortcoming of this work is the lack of validation through experiment. This work

has focused on control algorithm development, and has used low and high fidelity simulators as

the simulated plant. This approach is acceptable for creating novel control algorithms, but the

algorithms can be further refined by implementation in actual processes, including processes not

considered in this work. Lab scale and full scale implementations can give further insights into the

algorithm behavior, and can lead to significant improvements.

6.2.2 Application Specific

There are several potential areas for future controller development for the riser slugging and

drilling applications in this work. One area that would greatly improve the slugging controller is

the addition of more complete models in the simulation. The model used in this work is restricted

to constant flow and pressure values from the well. This constraint does not allow the controller to

maximize production from the well in addition to suppressing severe riser slugs. Including a plant

model that can allow maximization of well production would also call for a first principles model

in the controller. This area of algorithm development is ripe for contributions.

Another potential area of research in slugging control is the automation and optimization

of the offshore platform receiving and separation facilities. Models of the processes need to be

developed and fit for control purposes before control algorithm development can begin. This area

would combine well with the maximization of well production previously mentioned.
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In the drilling application, the use of the back pressure pump as the main mechanism for

controlling the bit pressure should be explored. This is because the main mud pump is used for

more than just pressure control. It also removes the rock cuttings from the well bore so the bit

does not get stuck. Cleaning the well bore is crucial in drilling, and adjusting the flow rate of

the main pump can cause cleaning issues. For example, a sudden drop in the main pump flow

rate to maintain the bit pressure within the given bounds may result in insufficient flow to keep

the rock cuttings suspended in the mud and moving towards the surface. This leads to undesired

and expensive disruptions to the drilling process. Setting the main mud pump to a constant and

sufficiently high flow rate, and using the choke valve and back pressure pump for pressure control

may lead to improved automated drilling. The challenge in this scenario will be maintaining control

when the bit pressure needs to drop below the pressure caused by the main mud pump flow.

Another potential direction for future research in switched control of drilling is combining

drillstring mechanics and pressure control to take advantage of multivariate effects. The founda-

tions of this concept were formed in previous research [167], and could be joined with the algo-

rithms in this work to maximize ROP and control wellbore pressure in a robust and reliable manner

needed for harsh oilfield conditions.

6.2.3 Theory

One future theoretical development of the advanced switched controller should be a more

formal stability proof. The stability of the controller is discussed in Chapter 5, but a rigorous

stability guarantee is not provided. This can be done by considering the stability of each of the

individual MPC controllers and the stability of the switch. One way to do this is to find a common

nonlinear Lyapunov function, or proving stability through the inherent gradient decent properties

of the nonlinear solvers used in the MPC algorithms.

This work uses the `1-norm in most of the MPC objective functions. Stability and robust-

ness theory has been developed for linear `1-norm objective functions [168], but not for nonlinear

counterparts. While work has been done on the stability of NMPC, it centers on the `2-norm ob-

jective function. Extending these stability guarantees to include the `1-norm objective function is

a potential area of future research.
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The guidelines for linear SISO MPC control model parameter estimation developed in this

work could be extended to MIMO systems. Additionally, nonlinear and perhaps even first princi-

ples based model estimation bounds could be studied and guidelines established. Further develop-

ment of these guidelines could include formulas for determining the bounds of model parameters

that will ensure control.

Additionally, the development of statistical analysis for online model parameter estimates

can give greater confidence in the estimates. Further development of this technique, including

using the estimation statistics to determine the need for model tuning, is a potential direction

of future work. In this scenario, the parameter estimate confidence regions are used for logic

decisions in the controller, not just estimate information. Further developments could include the

formulation of parameter joint confidence regions for estimates using the `1-norm. Currently, the

nonlinear joint confidence theory is based on the f statistic. The f statistic relies on the `2-norm

for its significance. This is due to the tenets of the Central Limit Theorem and its foundation in the

variance, which is the square of the standard deviation. It would be necessary to reformulate the

Central Limit Theorem in terms of the `1-norm, or else develop the joint confidence regions in a

manner that does not use the f statistic.
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quardt, J. Schlöder, and O. Stryk, Online Optimization of Large Scale Systems. Springer-
Verlag Berlin Heidelberg, 2001, ch. Introduction to model based optimization of chemical
processes on moving horizons, pp. 295–339. 56

[125] S. M. Safdarnejad, J. R. Gallacher, and J. D. Hedengren, “Dynamic parameter estimation
and optimization for batch distillation,” Computers & Chemical Engineering, vol. 86, pp.
18 – 32, 2016. 67, 69, 103

[126] J. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science. John Wiley
& Sons, 1977. 68

[127] G. A. Seber and C. J. Wild, Nonlinear Regression. Hoboken, New Jersey: John Wiley &
Sons, 2003. 68

[128] Ø. Stamnes, J. Zhou, G.-O. Kaasa, and O. M. Aamo, “Adaptive observer design for the bot-
tomhole pressure of a managed pressure drilling system,” in IEEE Conference on Decision
and Control, 2008. 68, 74, 79, 100

[129] D. Veeningen, “Along-string pressure evaluation enabled by broadband networked drill-
string provide safety, efficiency gains,” in Offshore Technology Conference, 2011. 75, 96,
97

[130] Y. Zhidan, W. Chunming, G. Yanfeng, S. Jing, H. Xiufeng, and L. Yuan, “Design of a rotary
valve orifice for a continuous wave mud pulse generator,” Precision Engineering, vol. 41,
pp. 111–118, 2015. 75, 97

[131] A. Nikoofard, T. A. Johansen, and G. O. Kaasa, “Design and comparison of adaptive es-
timators for under-balanced drilling,” in American Control Conference (ACC), 2014, pp.
5681–5687. 75

[132] I. S. Landet, A. Pavlov, and O. M. Aamo, “Modeling and control of heave-induced pressure
fluctuations in managed pressure drilling,” Control Systems Technology, IEEE Transactions
on, vol. 21, no. 4, pp. 1340–1351, 2013. 75

132



[133] A. Nandan, S. Imtiaz, and S. Butt, “Robust control of managed pressure drilling,” in Oceans
- St. John’s, 2014, pp. 1–8. 75

[134] Z. Jing, O. N. Stamnes, O. M. Aamo, and G. O. Kaasa, “Switched control for pressure
regulation and kick attenuation in a managed pressure drilling system,” Control Systems
Technology, IEEE Transactions on, vol. 19, no. 2, pp. 337–350, 2011. 75

[135] O. Breyholtz, G. Nygaard, J. M. Godhavn, and E. H. Vefring, “Evaluating control designs
for co-ordinating pump rates and choke valve during managed pressure drilling operations,”
in Control Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE, pp. 731–738. 75

[136] B. Aadnoy, I. Cooper, S. Miska, R. F. Mitchell, and M. L. Payne, Advanced Drilling and
Well Technology. Society of Petroleum Engineers, 2009. 75

[137] J. Petersen, R. Rommetveit, K. S. Bjørkevoll, and J. Frøyen, “A general dynamic model
for single and multi-phase flow operations during drilling, completion, well control and
intervention,” in IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition,
2008. 75, 78, 96, 98, 105

[138] C. Pantelides, M. Nauta, and M. Matzopoulos, “Equation-oriented process modelling tech-
nology: Recent advances and current perspectives,” in 5th Annual TRC-Idemitsu Workshop,
2015. 91

[139] W. Marquardt, “Nonlinear model reduction for optimization based control of transient
chemical processes,” in Chemical Process Control VI, J. B. Rawlings, B. A. Ogunnaike,
and J. W. Eaton, Eds., Tuscon, Arizona, 2001, pp. 12–42. 91
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APPENDIX A. RISER SEVERE SLUGGING CONTROLLER

This appendix contains the novel riser slugging controller in the MATLAB interface for

APMonitor. The controller code is in A.1, and the initialization code is in A.2.

Listing A.1: Slugging Controller in the APMonitor Modeling Language Interfaced with MATLAB

1 f u n c t i o n o u t p u t = c o n t r o l l e r ( i n p u t )

2 p e r s i s t e n t c o n t r o l l e r i n i t i a l i z e

3 p e r s i s t e n t i c o u n t s a

4 i f ( i s e m p t y ( i c o u n t ) ) ,

5 i c o u n t = 0 ;

6 end

7 i c o u n t = i c o u n t + 1 ;

8 p meas = i n p u t ( 1 ) ;

9 p s p = i n p u t ( 2 ) ;

10 p s p h i = p s p + 0 . 0 1 ;

11 p s p l o = p s p − 0 . 0 1 ;

12 % Only e x e c u t e f i r s t c y c l e

13 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

14 a d d p a t h ( ’apm ’ ) ;

15 % D ef in e S e r v e r

16 s = ’ h t t p : / / l o c a l h o s t ’ ;

17 % D ef in e a p p l i c a t i o n name

18 a = ’ s lug mpc ’ ;

19 % I n i t i a l i z e a p p l i c a t i o n

20 c o n t r o l l e r i n i t ( s , a ) ;

21 end

22 apm meas ( s , a , ’ p ’ , p meas ) ;

23 apm op t ion ( s , a , ’ p . sp ’ , p s p ) ;

24 apm op t ion ( s , a , ’ p . s p h i ’ , p s p h i ) ;

25 apm op t ion ( s , a , ’ p . s p l o ’ , p s p l o ) ;
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26 % s o l v e and d i s p l a y o u t p u t

27 s o l v e r o u t p u t = apm ( s , a , ’ s o l v e ’ ) ;

28 d i s p ( s o l v e r o u t p u t )

29 % show s t a t u s and cpu t ime

30 s t a t u s = apm tag ( s , a , ’ n l c . a p p s t a t u s ’ ) ;

31 c p u t i m e = apm tag ( s , a , ’ n l c . s o l v e t i m e ’ ) ;

32 d i s p ( [ ’ A p p l i c a t i o n S t a t u s : ’ i n t 2 s t r ( s t a t u s ) ’CPU Time : ’ num2s t r ( c p u t i m e ) ] ) ;

33 % r e t r i e v e new v a l v e p o s i t i o n

34 z = apm tag ( s , a , ’ z .NEWVAL’ ) ;

35 o u t p u t ( 1 ) = z ;

36 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

37 % Open a web v ie w er

38 apm web ( s , a ) ;

39 % Turn on f e e d b a c k s t a t u s a f t e r f i r s t c y c l e

40 apm op t ion ( s , a , ’ p . f s t a t u s ’ , 1 ) ;

41 % Reques t C o n t r o l Mode (1−3)

42 apm op t ion ( s , a , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

43 c o n t r o l l e r i n i t i a l i z e = t r u e ;

44 end

45 end

Listing A.2: Slugging Controller Initialization in the APMonitor Modeling Language Interfaced

with MATLAB

1 f u n c t i o n [ ] = c o n t r o l l e r i n i t ( s , a )

2 % C l e a r p r e v i o u s a p p l i c a t i o n

3 apm ( s , a , ’ c l e a r a l l ’ ) ;

4 %Load model

5 apm load ( s , a , ’ c o n t r o l . apm ’ ) ;

6 % l o a d d a t a

7 c s v l o a d ( s , a , ’ c o n t r o l . c sv ’ ) ;

8 %D ef in e P a r a m e t e r s

9 apm in fo ( s , a , ’FV ’ , ’K’ ) ;

10 apm in fo ( s , a , ’FV ’ , ’ t a u ’ ) ;

11 apm in fo ( s , a , ’MV’ , ’ z ’ ) ;

12 apm in fo ( s , a , ’CV’ , ’ p ’ ) ;

13 % s e t a d d i t i o n a l o p t i o n s
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14 apm op t ion ( s , a , ’ n l c . imode ’ , 6 ) ;

15 apm op t ion ( s , a , ’ n l c . r e q c t r l m o d e ’ , 1 ) ;

16 apm op t ion ( s , a , ’ n l c . m a x i t e r ’ , 1 0 0 ) ;

17 apm op t ion ( s , a , ’ n l c . c v t y p e ’ , 1 ) ;

18 apm op t ion ( s , a , ’ n l c . mv type ’ , 1 ) ;

19 apm op t ion ( s , a , ’ n l c . s o l v e r ’ , 1 ) ;

20 % some a d d i t i o n a l o p t i o n s

21 apm op t ion ( s , a , ’ n l c . m v s t e p h o r ’ , 1 ) ;

22 apm op t ion ( s , a , ’ n l c . h i s t h o r ’ , 1 0 0 0 ) ;

23 apm op t ion ( s , a , ’ n l c . w e b p l o t f r e q ’ , 5 ) ;

24 %s e t u p CV ( p choke v a l v e p r e s s u r e )

25 apm op t ion ( s , a , ’ p . t a u ’ , 3 0 ) ;

26 apm op t ion ( s , a , ’ p . s t a t u s ’ , 1 ) ;

27 apm op t ion ( s , a , ’ p . t r i n i t ’ , 1 ) ;

28 apm op t ion ( s , a , ’ p . f s t a t u s ’ , 0 ) ;

29 apm op t ion ( s , a , ’ p . wsphi ’ , 1 0 ) ;

30 apm op t ion ( s , a , ’ p . wsplo ’ , 1 0 ) ;

31 %s e t u p MV ( z v a l v e p o s i t i o n )

32 apm op t ion ( s , a , ’ z . s t a t u s ’ , 1 ) ;

33 apm op t ion ( s , a , ’ z . f s t a t u s ’ , 0 ) ;

34 apm op t ion ( s , a , ’ z . dmax ’ , 0 . 2 ) ; % r a t e o f change l i m i t s

35 apm op t ion ( s , a , ’ z . d c o s t ’ , 1 0 ) ; % add in g c o s t f o r change

36 apm op t ion ( s , a , ’ z . l ower ’ , 0 . 0 2 ) ; % lower l i m i t

37 apm op t ion ( s , a , ’ z . uppe r ’ , 0 . 3 3 ) ; % upper l i m i t

38 % time u n i t s (1= sec , 2=min , 3= hr , 4=day , 5= yr )

39 apm op t ion ( s , a , ’ n l c . c t r l u n i t s ’ , 1 ) ;

40 % 4 p o i n t s p e r t ime i n t e r v a l : 1 second

41 apm op t ion ( s , a , ’ n l c . nodes ’ , 3 ) ;

42 apm op t ion ( s , a , ’ n l c . c o l d s t a r t ’ , 1 ) ;

43 % r e a d csv f i l e

44 apm op t ion ( s , a , ’ n l c . c s v r e a d ’ , 1 ) ;

45 end
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APPENDIX B. CONTROL MODEL PARAMETER ESTIMATION HEURISTICS

Appendix B contains the code that develops the model parameter estimation heuristic for

single input single output systems. This code is written in MATLAB interfaced with APMonitor.

Listing B.1: Control Model Parameter Tolerance in the APMonitor Modeling Language Interfaced

with MATLAB

1 c l e a r a l l ; c l o s e a l l ; c l c

2 a d d p a t h ( ’apm ’ )

3 s = ’ h t t p : / / 1 2 7 . 0 . 0 . 1 ’ ;

4 a = ’ mismatch ’ ;

5 [ K mesh , t au mesh ] = meshgr id ( 0 . 2 : 0 . 1 : 5 , 0 . 2 : 0 . 1 : 5 ) ;

6 i c y c l e = 0 ;

7 t o t a l = s i z e ( K mesh , 1 ) * s i z e ( K mesh , 2 ) ;

8 f o r j = 1 : s i z e ( K mesh , 1 ) ,

9 f o r k = 1 : s i z e ( K mesh , 2 ) ,

10 i c y c l e = i c y c l e + 1 ;

11 d i s p ( [ ’ Cycle ’ i n t 2 s t r ( i c y c l e ) ’ o f ’ i n t 2 s t r ( t o t a l ) ] )

12 apm ( s , a , ’ c l e a r a l l ’ ) ;

13 apm load ( s , a , ’ model . apm ’ ) ;

14 c s v l o a d ( s , a , ’ model . c sv ’ ) ;

15 apm op t ion ( s , a , ’ n l c . imode ’ , 6 ) ;

16 apm in fo ( s , a , ’FV ’ , ’ t a u 2 ’ ) ;

17 apm in fo ( s , a , ’FV ’ , ’K2 ’ ) ;

18 apm in fo ( s , a , ’MV’ , ’ u ’ ) ;

19 apm in fo ( s , a , ’CV’ , ’ y ’ ) ;

20 apm op t ion ( s , a , ’ u . s t a t u s ’ , 1 ) ;

21 apm op t ion ( s , a , ’ u . d c o s t ’ , 0 1 ) ;

22 apm op t ion ( s , a , ’ u . f s t a t u s ’ , 0 ) ;

23 apm op t ion ( s , a , ’ y . s t a t u s ’ , 1 ) ;

24 apm op t ion ( s , a , ’ y . t a u ’ , 1 ) ;
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25 apm op t ion ( s , a , ’ y . s p h i ’ , 5 . 0 ) ;

26 apm op t ion ( s , a , ’ y . s p l o ’ , 5 . 0 ) ;

27 apm op t ion ( s , a , ’ y . wsphi ’ , 1 0 0 ) ;

28 apm op t ion ( s , a , ’ y . wsplo ’ , 1 0 0 ) ;

29 apm op t ion ( s , a , ’ y . t r i n i t ’ , 0 ) ;

30 apm op t ion ( s , a , ’ y . f s t a t u s ’ , 1 ) ;

31 apm op t ion ( s , a , ’ n l c . w e b p l o t f r e q ’ , 1 ) ;

32 apm meas ( s , a , ’ t a u 2 ’ , t au mesh ( j , k ) ) ;

33 apm meas ( s , a , ’K2 ’ , K mesh ( j , k ) ) ;

34 f o r i = 1 : 2 0 ,

35 apm ( s , a , ’ s o l v e ’ ) ;

36 s o l = apm so l ( s , a ) ; z = s o l . x ;

37 x ( i ) = apm tag ( s , a , ’ x . model ’ ) ;

38 y ( i ) = apm tag ( s , a , ’ y . model ’ ) ;

39 apm meas ( s , a , ’ y ’ , z . x ( 2 ) ) ;

40 end

41 o b j ( j , k ) = sum ( abs ( y ( 2 : end )−5) ) ;

42 end

43 end

44 f i g u r e ( 1 )

45 c = [ 0 . 0 0 1 0 . 0 1 0 . 1 1 2 3 4 5 6 8 10 15 20 30 50 70 1 0 0 ] ;

46 [C , h ] = c o n t o u r ( K mesh , tau mesh , obj , c ) ;

47 c l a b e l (C , h , ’ L a b e l s p a c i n g ’ , 2 5 0 ) ;

48 x l a b e l ( ’ Gain (K) M u l t i p l i e r ’ ) ;

49 y l a b e l ( ’ Time C o n s t a n t (\ t a u ) M u l t i p l i e r ’ ) ;

50 l e g e n d ( ’MPC O b j e c t i v e ’ )

51 f i g u r e ( 2 )

52 s u r f c ( K mesh , tau mesh , o b j ) ;

53 x l a b e l ( ’ Gain (K) M u l t i p l i e r ’ ) ;

54 y l a b e l ( ’ Time C o n s t a n t (\ t a u ) M u l t i p l i e r ’ ) ;

55 l e g e n d ( ’MPC O b j e c t i v e ’ )
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APPENDIX C. BASIC SWITCHED CONTROLLER

The basic switched controller is implemented in Simulink®. The Simulink file ties all of

the other MATLAB scripts together. Appendix C has the basic switch controller code in MATLAB

and APMonitor. C.1 contains the empirical controller code which calls on the empirical controller

initialization file which is found in C.2. The APMonitor/MATLAB code for the low order con-

troller and initialization are in C.3. The code for the high fidelity controller is in C.4. The high

fidelity controller does not use APMonitor and is in pure MATLAB, but does require the Optimiza-

tion Toolbox with the fmincon function to run properly. C.5 has the code for the switch logic in

MATLAB.

Listing C.1: Empirical Controller Code in the APMonitor Modeling Language Interfaced with

MATLAB

1 f u n c t i o n [ o u t p u t ] = E m p i r i c a l c o n t r o l l e r ( i n p u t )

2 p e r s i s t e n t c o n t r o l l e r i n i t i a l i z e

3 p e r s i s t e n t s a1 i c o u n t p c o p t xxx

4 g l o b a l Z c h o k e p a s t q p p a s t

5 i f ( i s e m p t y ( i c o u n t ) ) ,

6 i c o u n t = 0 ;

7 end

8 i c o u n t = i c o u n t + 1 ;

9 i f i c o u n t ==2

10 apm op t ion ( s , a1 , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

11 end

12 p a 1 m e a s = i n p u t ( 1 ) ;

13 p c meas = i n p u t ( 2 ) ;

14 q p meas = i n p u t ( 3 ) ;

15 z choke meas = i n p u t ( 4 ) ;

16 sp = i n p u t ( 5 ) ;

17 % Only e x e c u t e f i r s t c y c l e
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18 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

19 a d d p a t h ( ’apm ’ ) ;

20 % D ef in e S e r v e r

21 s = ’ h t t p : / / 1 2 7 . 0 . 0 . 1 ’ ;

22 % D ef in e a p p l i c a t i o n name

23 a1 = ’ nmpc emp ’ ;

24 % I n i t i a l i z e a p p l i c a t i o n

25 E m p i r i c a l c o n t r o l l e r i n i t ( s , a1 ) ;

26 end

27 apm meas ( s , a1 , ’ y [ 1 ] ’ , p a 1 m e a s ) ;

28 apm meas ( s , a1 , ’ u [ 1 ] ’ , q p meas ) ;

29 apm meas ( s , a1 , ’ u [ 2 ] ’ , z choke meas ) ;

30 apm op t ion ( s , a1 , ’ y [ 1 ] . sp ’ , sp ) ;

31 apm op t ion ( s , a1 , ’ y [ 1 ] . s p h i ’ , sp * 1 . 0 0 1 2 5 ) ;

32 apm op t ion ( s , a1 , ’ y [ 1 ] . s p l o ’ , sp * 0 . 9 9 8 7 5 ) ;

33 s o l v e r o u t p u t = apm ( s , a1 , ’ s o l v e ’ ) ;

34 d i s p ( s o l v e r o u t p u t )

35 y = apm so l ( s , a1 ) ;

36 m = y . x ;

37 y2h i = m. y 1 t r h i ( 1 ) ;

38 y2 lo = m. y 1 t r l o ( 1 ) ;

39 % check s o l u t i o n s t a t u s

40 s t a t u s = apm tag ( s , a1 , ’ n l c . a p p s t a t u s ’ ) ;

41 % g e t cpu t ime

42 c p u t i m e = apm tag ( s , a1 , ’ n l c . s o l v e t i m e ’ ) ;

43 q pump = apm tag ( s , a1 , ’ u [ 1 ] .NEWVAL’ ) ;

44 Z choke = apm tag ( s , a1 , ’ u [ 2 ] .NEWVAL’ ) ;

45 o u t p u t ( 1 ) = q pump ;

46 o u t p u t ( 2 ) = Z choke ;

47 o u t p u t ( 3 ) = y2h i ;

48 o u t p u t ( 4 ) = y2 lo ;

49 o u t p u t ( 5 ) = s t a t u s ;

50 Z c h o k e p a s t = Z choke ;

51 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

52 % Open a web v ie w er

53 apm web ( s , a1 ) ;
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54 apm op t ion ( s , a1 , ’ y [ 1 ] . f s t a t u s ’ , 1 ) ;

55 c o n t r o l l e r i n i t i a l i z e = t r u e ;

56 end

57 end

Listing C.2: Empirical Controller Initialization Code in the APMonitor Modeling Language Inter-

faced with MATLAB

1 f u n c t i o n [ ] = E m p i r i c a l c o n t r o l l e r i n i t ( s , a1 )

2 % C l e a r p r e v i o u s a l i c a t i o n

3 apm ( s , a1 , ’ c l e a r a l l ’ ) ;

4 %Load model

5 apm load ( s , a1 , ’ e m p i r i c a l m o d e l . apm ’ ) ;

6 c s v l o a d ( s , a1 , ’ c o n t r o l . c sv ’ ) ;

7 %D ef in e MVs

8 apm in fo ( s , a1 , ’MV’ , ’ u [ 1 ] ’ ) ; %q pump

9 apm in fo ( s , a1 , ’MV’ , ’ u [ 2 ] ’ ) ; %z c h o k e

10 %D ef in e CV

11 apm in fo ( s , a1 , ’CV’ , ’ y [ 1 ] ’ ) ;

12 %Dynamic NMPC C o n t r o l l e r mode

13 apm op t ion ( s , a1 , ’ n l c . imode ’ , 6 ) ;

14 apm op t ion ( s , a1 , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

15 % s e t a d d i t i o n a l o p t i o n s

16 apm op t ion ( s , a1 , ’ n l c . c v t y p e ’ , 1 ) ;

17 apm op t ion ( s , a1 , ’ n l c . s o l v e r ’ , 1 ) ;

18 apm op t ion ( s , a1 , ’ n l c . c t r l u n i t s ’ , 1 ) ;

19 apm op t ion ( s , a1 , ’ n l c . nodes ’ , 2 ) ;

20 apm op t ion ( s , a1 , ’ n l c . c o l d s t a r t ’ , 0 ) ;

21 apm op t ion ( s , a1 , ’ n l c . m a x i t e r ’ , 1 0 0 ) ;

22 % s e t up CV ( p b i t )

23 apm op t ion ( s , a1 , ’ y [ 1 ] . t a u ’ , 3 0 ) ;

24 apm op t ion ( s , a1 , ’ y [ 1 ] . s t a t u s ’ , 1 ) ;

25 apm op t ion ( s , a1 , ’ y [ 1 ] . t r i n i t ’ , 0 ) ;

26 apm op t ion ( s , a1 , ’ y [ 1 ] . t r o p e n ’ , 0 ) ;

27 apm op t ion ( s , a1 , ’ y [ 1 ] . f s t a t u s ’ , 0 ) ;

28 %s e t u p MV ( q pump )

29 apm op t ion ( s , a1 , ’ u [ 1 ] . s t a t u s ’ , 1 ) ;
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30 apm op t ion ( s , a1 , ’ u [ 1 ] . f s t a t u s ’ , 0 ) ;

31 apm op t ion ( s , a1 , ’ u [ 1 ] . l ower ’ , 0 . 0 0 1 ) ;

32 apm op t ion ( s , a1 , ’ u [ 1 ] . uppe r ’ , 0 . 0 7 6 ) ;

33 apm op t ion ( s , a1 , ’ u [ 2 ] . s t a t u s ’ , 1 ) ;

34 apm op t ion ( s , a1 , ’ u [ 2 ] . f s t a t u s ’ , 0 ) ;

35 apm op t ion ( s , a1 , ’ u [ 2 ] . l ower ’ , 0 . 1 5 ) ;

36 apm op t ion ( s , a1 , ’ u [ 2 ] . uppe r ’ , 0 . 8 5 ) ;

37 end

Listing C.3: Low Order Controller Code in the APMonitor Modeling Language Interfaced with

MATLAB

1 f u n c t i o n o u t p u t = l o w o r d e r c o n t r o l l e r ( i n p u t )

2 p e r s i s t e n t c o n t r o l l e r i n i t i a l i z e

3 p e r s i s t e n t s a i c o u n t sp new q i n f l u x m a x s t o p

4 g l o b a l f a i l

5 i f ( i s e m p t y ( i c o u n t ) ) ,

6 i c o u n t = 0 ;

7 end

8 i f i s e m p t y ( sp new )

9 sp new =0;

10 end

11 i c o u n t = i c o u n t + 1 ;

12 i f i c o u n t ==2

13 apm op t ion ( s , a , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

14 end

15 f a = i n p u t ( 1 ) ; % F r i c t i o n F a c t o r a t t h e b i t

16 r o a = i n p u t ( 2 ) ; % D e n s i t y o f t h e mud i n t h e a n n u l u s [ kg /mˆ 3 ]

17 p b i t m e a s = i n p u t ( 3 ) ; % B i t p r e s s u r e

18 p c meas = i n p u t ( 4 ) ; % Choke p r e s s u r e

19 h b i t m e a s = i n p u t ( 5 ) ; % B i t p o s i t i o n

20 q choke meas = i n p u t ( 6 ) *60 ; % Flow r a t e t h r o u g h t h e choke

21 q p meas = i n p u t ( 7 ) *60 ; % Mud pump p r e s s u r e

22 z choke meas = i n p u t ( 8 ) *100 ; % Choke v a l v e p o s i t i o n

23 sp new = i n p u t ( 9 ) ; % New S e t P o i n t f o r p b i t

24 q back meas = q choke meas − q p meas ; % Back p r e s s u r e pump

25 sp = sp new ;
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26 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

27 a d d p a t h ( ’apm ’ ) ;

28 % D ef in e S e r v e r

29 s = ’ h t t p : / / 1 2 7 . 0 . 0 . 1 ’ ;

30 % D ef in e a p p l i c a t i o n name

31 a = ’ nmpc low ’ ;

32 % I n i t i a l i z e a p p l i c a t i o n

33 l o w o r d e r c o n t r o l l e r i n i t ( s , a ) ;

34 end

35 i f i s e m p t y ( q i n f l u x m a x ) ,

36 q i n f l u x m a x =0;

37 end

38 i f i s e m p t y ( s t o p ) ,

39 s t o p =0;

40 end

41 %p a s s i n p r o c e s s p a r a m e t e r s

42 apm meas ( s , a , ’ f a ’ , f a ) ;

43 apm meas ( s , a , ’ p b i t ’ , p b i t m e a s ) ;

44 apm meas ( s , a , ’ p c ’ , p c meas ) ;

45 apm meas ( s , a , ’ h b i t ’ , h b i t m e a s ) ;

46 apm meas ( s , a , ’ q choke ’ , q choke meas ) ;

47 apm meas ( s , a , ’ r o a ’ , r o a ) ;

48 apm meas ( s , a , ’ z c h o k e ’ , z choke meas ) ;

49 apm meas ( s , a , ’ q p ’ , q p meas ) ;

50 apm meas ( s , a , ’ q back ’ , q back meas ) ;

51 %D ef in e new s e t p o i n t f o r p b i t

52 apm op t ion ( s , a , ’ p b i t . sp ’ , sp ) ;

53 apm op t ion ( s , a , ’ p b i t . s p h i ’ , sp +3) ;

54 apm op t ion ( s , a , ’ p b i t . s p l o ’ , sp−3) ;

55 % s o l v e and d i s p l a y o u t p u t

56 s o l v e r o u t p u t = apm ( s , a , ’ s o l v e ’ ) ;

57 d i s p ( s o l v e r o u t p u t )

58 y = apm so l ( s , a ) ;

59 m = y . x ;

60 y2h i = m. p b i t t r h i ( 1 ) ;

61 y2 lo = m. p b i t t r l o ( 1 ) ;
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62 % check s o l u t i o n s t a t u s

63 s t a t u s = apm tag ( s , a , ’ n l c . a p p s t a t u s ’ ) ;

64 i f i n t 2 s t r ( s t a t u s ) < 1 ,

65 f a i l = f a i l + 1 ;

66 end

67 % g e t cpu t ime

68 c p u t i m e = apm tag ( s , a , ’ n l c . s o l v e t i m e ’ ) ;

69 q p = apm tag ( s , a , ’ q p .NEWVAL’ ) ;

70 Z choke = apm tag ( s , a , ’ Z choke .NEWVAL’ ) ;

71 o u t p u t ( 1 ) = q p / 6 0 ;

72 o u t p u t ( 2 ) = Z choke / 1 0 0 ;

73 o u t p u t ( 3 ) = y2h i ;

74 o u t p u t ( 4 ) = y2 lo ;

75 o u t p u t ( 5 ) = s t a t u s ;

76 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

77 % Open a web v ie w er

78 apm web ( s , a ) ;

79 apm op t ion ( s , a , ’ p c . f s t a t u s ’ , 1 ) ;

80 apm op t ion ( s , a , ’ p b i t . f s t a t u s ’ , 0 ) ;

81 apm op t ion ( s , a , ’ q back . f s t a t u s ’ , 1 ) ;

82 apm op t ion ( s , a , ’ q p . f s t a t u s ’ , 1 ) ;

83 c o n t r o l l e r i n i t i a l i z e = t r u e ;

84 end

85 end

Listing C.4: High Fidelity Controller Code in MATLAB

1 f u n c t i o n [ r e c c h a n g e s ] = H i F i C o n t r o l l e r 2 ( i n p u t )

2 p e r s i s t e n t m o d i n i t x0 mode l Pa th d l l f i l e h e a d e r f i l e m o d i n s t b i g c o u n t

TimeStep ;

3 p e r s i s t e n t R T O u t P c o n t r o l l e r T i m e P c o n t r o l l e r B i t P o s i t i o n DepthHole t

F l o w I n C h o k e c o n t r o l l e r D e n s i t y I n C h o k e c o n t r o l l e r z ;

4 p e r s i s t e n t R T O u t c o n t r o l l e r MudFlowIn showt imeonce T i m e S t a r t ;

5 i f i s e m p t y ( m o d i n i t )

6 M u d i n i t = 0 . 0 4 ;

7 z i n i t = 0 . 5 ;
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8 MudFlowIn = [ ones ( 1 , 1 5 ) * .045 l i n s p a c e ( . 0 4 5 , 0 , 3 0 ) z e r o s ( 1 , 1 5 ) l i n s p a c e

( 0 , . 0 4 5 , 3 0 ) ones ( 1 , 1 5 ) * . 0 4 5 ] ;

9 %% H i F i i n i t

10 tempmode = 0 ; % 1 dynamic t e m p e r a t u r e model , 0 s t a t i c t e m p e r a t u r e model

11 TimeStep = 3 ; %s

12 TimeStep = TimeStep / ( 2 4 * 6 0 * 6 0 ) ;

13 T i m e S t a r t = 42160 ;

14 % D ef in e Flow Model d l l f i l e s

15 d l l f i l e = ’ FlowModel64r . d l l ’ ; % Fi l ename

16 h e a d e r f i l e = ’ FlowModel . h ’ ; % h e a d e r f i l e w i th f u n c t i o n

d e c l a r a t i o n s

17 d l l f i l e = d l l f i l e ;

18 c o n f i g f i l e = ’ c a s e 2 . wel ’ ;

19 s u r v e y f i l e = ’ c a s e 2 . s u r ’ ;

20 % Def ined o p e r a t i o n s e q u e n c e s −− i n i t i a l i z e v a r i a b l e s

21 Rota rySpeed ( 1 ) = i n p u t ( 1 ) ;% r a d / s

22 MudDensi tyIn ( 1 ) = i n p u t ( 2 ) ;% Kg / m3

23 Inpu tMudTempera tu re In ( 1 ) = i n p u t ( 3 ) ;% Ke lv in

24 ROP( 1 ) = i n p u t ( 4 ) ;% m/ hr

25 B i t P o s i t i o n ( 1 ) = 3700 ;% m (MD)

26 DepthHole ( 1 ) = 3700 ;% m (MD)

27 A c t u a l C h o k e P r e s s ( 1 ) = i n p u t ( 7 ) ;% Pa

28 S P p b i t = i n p u t ( 8 ) ;% Pa

29 z c h o k e = z i n i t ;

30 InputDesiredEMW ( 1 ) = 1900 ;% Kg / m3

31 S e t P o i n t P o s i t i o n ( 1 ) = 3700 ;% m (MD)

32 % D ef in e p o s i t i o n o f p r e s s u r e s e n s o r s

33 Choke = 0 ;

34 CasingShoe = 3700 ;

35 o b s e r v a t i o n P o i n t s c o n t r o l l e r =[ Choke 1 Cas ingShoe ] ;

36 atChoke = f i n d ( o b s e r v a t i o n P o i n t s c o n t r o l l e r ==Choke ) ;

37 a t C a s i n g S h o e = f i n d ( o b s e r v a t i o n P o i n t s c o n t r o l l e r ==

Cas ingShoe ) ;

38 belowChoke = f i n d ( o b s e r v a t i o n P o i n t s c o n t r o l l e r ==1) ;

39 % I n i t i a l i z e model and r e a d c o n f i g u r a t i o n d a t a

40 m o d i n s t = ’ F l o w M o d e l c o n t r o l l e r ’ ;
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41 % Clean up i n c a s e o f p r e v i o u s c r a s h e s

42 i f ( l i b i s l o a d e d ( m o d i n s t ) )

43 c a l l l i b ( mod ins t , ’ e n d d l l ’ )

44 u n l o a d l i b r a r y ( m o d i n s t )

45 c l e a r ( ’ R T O u t P c o n t r o l l e r ’ , ’ T i m e p c o n t r o l l e r ’ , ’ s t a t u s P c o n t r o l l e r ’

, ’ s e n s o r s D a t a P c o n t r o l l e r ’ )

46 end

47 % C r e a t e s u b f o l d e r and d e l e t e p r e v i o u s f i l e s

48 [ s ,m, mi ] = mkdir ( m o d i n s t ) ;

49 d e l e t e ( f u l l f i l e ( mod ins t , ’ * ’ ) )

50 % copy d l l and c o n f i g u r a t i o n f i l e s t o s u b f o l d e r

51 c o p y f i l e ( c o n f i g f i l e , f u l l f i l e ( cd , mod ins t , c o n f i g f i l e ) , ’ f ’ ) ;

52 i f e x i s t ( ’ s u r v e y f i l e ’ )

53 c o p y f i l e ( s u r v e y f i l e , f u l l f i l e ( cd , mod ins t , s u r v e y f i l e ) , ’ f ’ ) ;

54 end

55 c o p y f i l e ( d l l f i l e , f u l l f i l e ( cd , mod ins t , d l l f i l e ) , ’ f ’ ) ;

56 c o p y f i l e ( h e a d e r f i l e , f u l l f i l e ( cd , mod ins t , h e a d e r f i l e ) , ’ f ’ ) ;

57 h = fopen ( f u l l f i l e ( cd , mod ins t , ’ I npu tF i l eName . i n ’ ) , ’w’ ) ;

58 f w r i t e ( h , c o n f i g f i l e ) ;

59 f c l o s e ( h ) ;

60 % copy m o d i f i e d c o n f i g u r a t i o n f i l e f o r wel l , used f o r s i m u l a t i n g

c o n f i g u r a t i o n e r r o r s

61 i f e x i s t ( ’ c o n f i g f i l e c o n t r o l l e r ’ )

62 c o p y f i l e ( c o n f i g f i l e c o n t r o l l e r , f u l l f i l e ( cd , mod ins t , c o n f i g f i l e c n t r ) , ’ f ’ ) ;

63 h = fopen ( f u l l f i l e ( cd , mod ins t , ’ I npu tF i l eName . i n ’ ) , ’w’ ) ;

64 f w r i t e ( h , c o n f i g f i l e c o n t r o l l e r ) ;

65 f c l o s e ( h ) ;

66 end

67 % copy m o d i f i e d s u r v e y f i l e f o r w e l l model , used f o r s i m u l a t i n g

c o n f i g u r a t i o n e r r o r s

68 i f e x i s t ( ’ s u r v e y f i l e c o n t r o l l e r ’ ) c o p y f i l e ( s u r v e y f i l e c o n t r o l l e r ,

f u l l f i l e ( cd , mod ins t , s u r v e y f i l e c o n t r o l l e r ) , ’ f ’ ) ;

69 end

70 cd ( m o d i n s t ) ; % p a t h o f Inpu tF i l eName . in , which p o i n t s t o . wel i n p u t f i l e

w i th c o n f i g u r a t i o n d a t a

71 mode l Pa th = cd ;
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72 %l o a d d l l

73 [ no t found , w a r n i n g s ] = l o a d l i b r a r y ( d l l f i l e ( 1 : end−4) , h e a d e r f i l e , ’ a l i a s ’ ,

m o d i n s t ) ;

74 % I n i t i a l i z e Flow Model

75 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e s t r i n g ’ , ’ F i l e P a t h ’ , 8 ,

model Pa th , l e n g t h ( mode l Pa th ) , 0 ) ;

76 cd . .

77 %d e f i n e d a t a s t r u c t u r e s and p o i n t e r s

78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

79 % RealTime Outpu t d a t a s t r u c t u r e

80 R T O u t c o n t r o l l e r . bhEcdCalc = −999.99; % Calc Bottom h o l e ECD

81 R T O u t c o n t r o l l e r . bhTempCalc = −999.99; % Calc Bottom h o l e Temp

82 R T O u t c o n t r o l l e r . c sEcdCalc = −999.99; % Calc Cas ing shoe ECD

83 R T O u t c o n t r o l l e r . csTempCalc = −999.99; % Calc Cas ing shoe Temp

84 R T O u t c o n t r o l l e r . p i t G a i n C a l c = −999.99; % Calc P i t Gain

85 R T O u t c o n t r o l l e r . sppCa lc = −999.99; % Calc S t a n d p i p e p r e s s u r e

86 R T O u t c o n t r o l l e r . f l owOutCa lc = −999.99; % Calc Flow o u t

87 R T O u t c o n t r o l l e r . tempOutCalc = −999.99; % Calc Tempera tu r e Out

88 R T O u t c o n t r o l l e r . c m p L i f t H e i g h t = −999.99; % Subsea pump l i f t i n g h e i g h t

89 R T O u t c o n t r o l l e r . cmpPresSe t = −999.99; % CMP i n l e t p r e s s u r e s e t p o i n t

90 R T O u t c o n t r o l l e r . cmpSucPCalc = −999.99; % CMP s u c t i o n p r e s

91 R T O u t c o n t r o l l e r . cmpRpmCalc = −999.99; % CMP RPM

92 R T O u t c o n t r o l l e r . cmpPowCalc = −999.99; % CMP Power

93 R T O u t c o n t r o l l e r . cmpSurgeVolCalc = −999.99; % Surge t a n k b l a n k e t volume

94 R T O u t c o n t r o l l e r . pChoke = −999.99;

95 R T O u t c o n t r o l l e r . f r i c t i o n F a c t o r = −999.99;

96 R T O u t c o n t r o l l e r . b h P r e s C a l c = −999.99; % Calc bot tom h o l e p r e s s u r e

97 R T O u t c o n t r o l l e r . c s P r e s C a l c = −999.99; % Calc c a s i n g shoe p r e s s u r e

98 R T O u t c o n t r o l l e r . r o p C a l c = −999.99; % Calc ROP

99 R T O u t c o n t r o l l e r . d i f fWel lPoreEmwCalc = −999.99;

100 R T O u t c o n t r o l l e r . d i f fFracWel lEmwCalc = −999.99;

101 R T O u t c o n t r o l l e r . s u r g e V o l C a l c = −999.99; % C a l c u l a t e d Surge Volume .

102 R T O u t c o n t r o l l e r . t vdBot tomCalc = −999.99; % C a l c u l a t e d TVD a t bot tom .

103 R T O u t c o n t r o l l e r . pwdPresCalc = −999.99; % P r e s s u r e s e n s o r p o s i t i o n

104 R T O u t c o n t r o l l e r . pwdTempCalc = −999.99; % Tempera tu r e s e n s o r p o s i t i o n

105 R T O u t c o n t r o l l e r . v o l B l a n k e t R i s e r C a l c = −999.99;
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106 R T O u t c o n t r o l l e r . l e v e l M u d R i s e r C a l c = −999.99;

107 R T O u t c o n t r o l l e r . vo lMudRise rCa lc = −999.99;

108 R T O u t c o n t r o l l e r . volCMPRetLineCalc = −999.99;

109 R T O u t c o n t r o l l e r . ecdAtPosCa lc = −999.99; % ecd a t u s e r D e f i n e d pos

110 % D e f i n i t i o n o f d a t a p o i n t e r s

111 R T O u t P c o n t r o l l e r = l i b p o i n t e r ( ’ r e a l t i m e D a t a S t r u c t u r e O u t ’ , R T O u t c o n t r o l l e r

) ;

112 T i m e P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

113 s e n s o r s D a t a P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

114 s t a t u s P c o n t r o l l e r = l i b p o i n t e r ( ’ i n t 3 2 P t r ’ , 0 ) ;

115 g a s i n f l u x r a t e P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

116 % C o n f i g u r e w e l l model t o use t h e s e l e c t e d A c t u a l C h o k e P r e s s a s boundary

c o n d i t i o n

117 BoundaryPos ( 1 ) = 2 ;

118 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ OPTChange ’ , 9 ,

BoundaryPos , 1 , 0 , 0 ) ;

119 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’

U s e m e a s u r e d c h o k e p r e s s u r e a s b o u n d a r y ’ , 39 , 1 , 1 , 0 , 0 ) ;

120 % S e t maximum choke p r e s s u r e change r a t e t o 10 Bar / s

121 I n p u t C o n f i g u r ( 1 : 5 ) = −999; % o t h e r v a l u e s i n I n p u t C o n f i g u r a r e n o t

changed

122 I n p u t C o n f i g u r ( 6 ) = 10 e5 ; % Max choke p r e s s u r e change r a t e ( Pa / s )

123 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ I n p u t C o n f i g u r ’ , 14 ,

I n p u t C o n f i g u r , 0 , 5 , 0 ) ;

124 % S e l e c t Dynamic t e m p e r a t u r e model

125 I n p u t C o n f i g u r ( 1 : 3 ) = −999; % o t h e r v a l u e s i n I n p u t C o n f i g u r a r e n o t

changed

126 I n p u t C o n f i g u r ( 4 ) = tempmode ; % Tempera tu r e Mode

127 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ I n p u t C o n f i g u r ’ , 14 ,

I n p u t C o n f i g u r , 0 , 3 , 0 ) ;

128 v a l v e c o u n t = 0 ;

129 f o r t = 1 : 4 ,

130 %% Valve E q u a t i o n s

131 maxchange = 1 0 ; %b a r p e r i t e r a t i o n

132 %v a l v e p o s i t i o n l i m i t s

133 i f z c h o k e > 1
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134 z c h o k e = 1 ;

135 e l s e i f z c h o k e < 0

136 z c h o k e = 0 ;

137 end

138 i f t > 1

139 v a l v e c o u n t = v a l v e c o u n t + 1 ;

140 i f v a l v e c o u n t == 1 % of i t e r a t i o n s b e f o r e choke p r e s s u r e u p d a t e

141 A c t u a l C h o k e P r e s s ( t ) = ( ( ( ( F l o w I n C h o k e c o n t r o l l e r ( t −1) + . 0 1 2 5 )

*1000) / ( 3 . 5 * z c h o k e ) ) ˆ 2 ) * ( D e n s i t y I n C h o k e c o n t r o l l e r ( t −1) ) + 101325;

142 d i f f = A c t u a l C h o k e P r e s s ( t ) − A c t u a l C h o k e P r e s s ( t −1) ;

143 A c t u a l C h o k e P r e s s ( t ) = A c t u a l C h o k e P r e s s ( t −1) + s i g n ( d i f f ) *min

( maxchange *100000* TimeStep *(24*60*60) , abs ( d i f f ) ) ;

144 v a l v e c o u n t = 0 ;

145 e l s e

146 A c t u a l C h o k e P r e s s ( t ) = A c t u a l C h o k e P r e s s ( t −1) ;

147 end

148 e l s e

149 A c t u a l C h o k e P r e s s ( 1 ) = 52 * 100000;

150 end

151 i f t > 1

152 B i t P o s i t i o n ( t ) = B i t P o s i t i o n ( t −1) +( TimeStep *24) *ROP( 1 ) ;

153 DepthHole ( t ) =max ( [ B i t P o s i t i o n ( 1 : t ) DepthHole ( 1 ) ] ) ;

154 end

155 Time ( t ) = T i m e S t a r t + t * TimeStep

156 %% Run Well Model

157 %%%%%%%%%%%%%%%%%%%%%%%%%

158 i f ˜ e x i s t ( ’ t ’ )

159 t = 1 ;

160 end

161 r e a l T a b l e c o n t r o l l e r ( 2 : 4 3 ) = −999;

162 r e a l T a b l e c o n t r o l l e r ( 2 ) = Time ( t ) ; %Inpu tT ime

163 r e a l T a b l e c o n t r o l l e r ( 3 ) = B i t P o s i t i o n ( t ) ; %I n p u t B i t P o s i t i o n

164 r e a l T a b l e c o n t r o l l e r ( 6 ) = Rota rySpeed ( 1 ) ; %I n p u t R o t a r y S p e e d

165 r e a l T a b l e c o n t r o l l e r ( 9 ) = MudFlowIn ( t ) ; %InputMudFlowIn

166 r e a l T a b l e c o n t r o l l e r ( 1 0 ) = MudDensi tyIn ( 1 ) ; %In pu t Mud Den s i t y In

167 r e a l T a b l e c o n t r o l l e r ( 1 1 ) = DepthHole ( t ) ; %I n p u t D e p t h H o l e
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168 r e a l T a b l e c o n t r o l l e r ( 1 2 ) = 1900 ; %InputDesiredEMW

169 r e a l T a b l e c o n t r o l l e r ( 1 8 ) = A c t u a l C h o k e P r e s s ( t ) ;

170 r e a l T a b l e c o n t r o l l e r ( 2 1 ) = Inpu tMudTempera tu re In ( 1 ) ;

171 r e a l T a b l e c o n t r o l l e r ( 3 1 ) = 3700 ; %I n p u t S e t P o i n t P o s i t i o n

172 r e a l T a b l e c o n t r o l l e r ( 4 4 ) = 0 ; %I n S l i p s

173 % Send u p d a t e d r e a l t ime t a b l e t o FlowModel . d l l

174 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ I n p u t R e a l T i m e ’ , 14 ,

r e a l T a b l e c o n t r o l l e r , 43 , 0 , 0 ) ;

175 % Execu te FlowModel

176 ReturnCode = c a l l l i b ( mod ins t , ’ runf lowmode l ’ , T i m e P c o n t r o l l e r , 2 , 0 ,

0 ) ;

177 g e t ( T i m e P c o n t r o l l e r , ’ Value ’ )

178 R e t u r n C o d e g e t R e a l t i m e = c a l l l i b ( mod ins t , ’ g e t r e a l t i m e p a r a m e t e r s ’ ,

R T O u t P c o n t r o l l e r , 6 ) ;

179 d a t a c o n t r o l l e r = g e t ( R T O u t P c o n t r o l l e r , ’ Value ’ ) ;

180 b h P r e s c o n t r o l l e r = d a t a c o n t r o l l e r . b h P r e s C a l c ;

181 g e t d o u b l e D a t a P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

182 c a l l l i b ( m o d i n s t , ’ g e t d o u b l e ’ , ’ FlowInChoke ’ , l i b p o i n t e r ( ’ u i n t 3 2 P t r ’

, 1 1 ) , g e t d o u b l e D a t a P c o n t r o l l e r ) ;

183 F l o w I n C h o k e c o n t r o l l e r ( t ) = g e t ( g e t d o u b l e D a t a P c o n t r o l l e r , ’ Value ’ ) ;

184 c a l l l i b ( m o d i n s t , ’ g e t d o u b l e ’ , ’ Dens i t y InChoke ’ , l i b p o i n t e r ( ’

u i n t 3 2 P t r ’ , 1 4 ) , g e t d o u b l e D a t a P c o n t r o l l e r ) ;

185 D e n s i t y I n C h o k e c o n t r o l l e r ( t ) = g e t ( g e t d o u b l e D a t a P c o n t r o l l e r , ’ Value ’ ) ;

186 end

187 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ S a v e s t a t e m e m o r y ’ , 17 ,

1 , 0 , 0 , 0 ) ;

188 m o d i n i t = 1 ;

189 b i g c o u n t = 0 ;

190 z = t ;

191 %% I n i t i a l g u e s s

192 x0 = [ . 5 ] ;

193 end

194 R T O u t P c o n t r o l l e r = l i b p o i n t e r ( ’ r e a l t i m e D a t a S t r u c t u r e O u t ’ , R T O u t c o n t r o l l e r ) ;

195 showt imeonce = 1 ;

196 OPTIONS = o p t i m o p t i o n s ( ’ fmincon ’ , ’ A lgo r i t hm ’ , ’ i n t e r i o r −p o i n t ’ , ’ TolFun ’ , . 0 0 1 ) ;

197 [ x , FVAL, e x i t f l a g ] = fmincon ( @shootModel , x0 , [ ] , [ ] , [ ] , [ ] , [ . 0 1 ] , [ . 9 0 ] , [ ] , OPTIONS )
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198 i f e x i t f l a g > 0

199 s t a t u s = 1 ;

200 e l s e

201 s t a t u s = 0 ;

202 end

203 r e c c h a n g e s = [ x ( 1 ) . 0 4 s t a t u s F l o w I n C h o k e c o n t r o l l e r ( z )

D e n s i t y I n C h o k e c o n t r o l l e r ( z ) ] ;

204 x0 = x ;

205 z = z + 1 ;

206 f u n c t i o n e r r = shootModel ( g u e s s )

207 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ L oa d s t a t e me mo r y ’ ,

17 , 1 , 0 , 0 , 0 ) ;

208 Rota rySpeed ( 1 ) = i n p u t ( 1 ) ;% r a d / s

209 MudDensi tyIn ( 1 ) = i n p u t ( 2 ) ;% Kg / m3

210 Inpu tMudTempera tu re In ( 1 ) = i n p u t ( 3 ) ;% Ke lv in

211 ROP( 1 ) = i n p u t ( 4 ) ;% m/ hr

212 DepthHole ( 1 ) = i n p u t ( 6 ) ;% m (MD)

213 b i a s = i n p u t ( 8 ) ; %s i m p l e b i a s t o a l i g n

model / measurement

214 S P p b i t = i n p u t ( 9 ) *100000 ;%Pa

215 z c h o k e = g u e s s ( 1 ) ;

216 b i g c o u n t = b i g c o u n t + 1 ;

217 v a l v e c o u n t = 0 ;

218 e r r o r = 0 ;

219 f o r i = 1 : 1 ,

220 t = z + i ;

221 %% Valve E q u a t i o n s

222 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

223 maxchange = 1 0 ; %b a r p e r i t e r a t i o n

224 %v a l v e p o s i t i o n l i m i t s 1−90%

225 z c h o k e = min ( z choke , . 9 ) ;

226 z c h o k e = max ( z choke , . 0 1 ) ;

227 %%o c c a s i o n a l p r e s s u r e u p d a t e s , no d e r i v , change P l i m i t

228 v a l v e c o u n t = v a l v e c o u n t + 1 ;

229 i f v a l v e c o u n t == 1 %# of i t e r a t i o n s b e f o r e choke p r e s s u r e u p d a t e
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230 A c t u a l C h o k e P r e s s ( t ) = ( ( ( ( F l o w I n C h o k e c o n t r o l l e r ( t −1)

+ . 0 1 2 5 ) *1000) / ( 3 . 5 * z c h o k e ) ) ˆ 2 ) * ( D e n s i t y I n C h o k e c o n t r o l l e r ( t −1) ) + 101325;

231 d i f f = A c t u a l C h o k e P r e s s ( t ) − A c t u a l C h o k e P r e s s ( t −1) ;

232 A c t u a l C h o k e P r e s s ( t ) = A c t u a l C h o k e P r e s s ( t −1) + s i g n ( d i f f ) *min (

maxchange *100000* TimeStep *(24*60*60) , abs ( d i f f ) ) ;

233 v a l v e c o u n t = 0 ;

234 e l s e

235 A c t u a l C h o k e P r e s s ( t ) = A c t u a l C h o k e P r e s s ( t −1) ;

236 end

237 i f t > 1

238 B i t P o s i t i o n ( t ) = B i t P o s i t i o n ( t −1) +( TimeStep *24) *ROP( 1 ) ;

239 DepthHole ( t ) =max ( [ B i t P o s i t i o n ( 1 : t ) DepthHole ( 1 ) ] ) ;

240 end

241 Time ( t ) = T i m e S t a r t + t * TimeStep ;

242 %% Run Well Model

243 %%%%%%%%%%%%%%%%%%%%%%%%%

244 % Update v a l u e s f o r r e a l t ime i n p u t t a b l e

245 i f ˜ e x i s t ( ’ t ’ )

246 t = 1 ;

247 end

248 r e a l T a b l e c o n t r o l l e r ( 2 : 4 3 ) = −999;

249 r e a l T a b l e c o n t r o l l e r ( 2 ) = Time ( t ) ; %Inpu tT ime

250 r e a l T a b l e c o n t r o l l e r ( 3 ) = B i t P o s i t i o n ( t ) ; %I n p u t B i t P o s i t i o n

251 r e a l T a b l e c o n t r o l l e r ( 6 ) = Rota rySpeed ( 1 ) ; %I n p u t R o t a r y S p e e d

252 r e a l T a b l e c o n t r o l l e r ( 9 ) = MudFlowIn ( t ) ; %InputMudFlowIn

253 r e a l T a b l e c o n t r o l l e r ( 1 0 ) = MudDensi tyIn ( 1 ) ; %In pu t Mud Den s i t y In

254 r e a l T a b l e c o n t r o l l e r ( 1 1 ) = DepthHole ( t ) ; %I n p u t D e p t h H o l e

255 r e a l T a b l e c o n t r o l l e r ( 1 2 ) = 1900 ; %InputDesiredEMW

256 r e a l T a b l e c o n t r o l l e r ( 1 8 ) = A c t u a l C h o k e P r e s s ( t ) ;

257 r e a l T a b l e c o n t r o l l e r ( 2 1 ) = Inpu tMudTempera tu re In ( 1 ) ;

258 r e a l T a b l e c o n t r o l l e r ( 3 1 ) = 3700 ; %I n p u t S e t P o i n t P o s i t i o n

259 r e a l T a b l e c o n t r o l l e r ( 4 4 ) = 0 ; %I n S l i p s

260 % Send u p d a t e d r e a l t ime t a b l e t o FlowModel . d l l

261 ReturnCode = c a l l l i b ( mod ins t , ’ s e t m o d u l e t a b l e ’ , ’ I n p u t R e a l T i m e ’ ,

14 , r e a l T a b l e c o n t r o l l e r , 43 , 0 , 0 ) ;

262 % Execu te FlowModel
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263 ReturnCode = c a l l l i b ( mod ins t , ’ runf lowmode l ’ , T i m e P c o n t r o l l e r ,

2 , 0 , 0 ) ;

264 R e t u r n C o d e g e t R e a l t i m e = c a l l l i b ( mod ins t , ’ g e t r e a l t i m e p a r a m e t e r s ’

, R T O u t P c o n t r o l l e r , 6 ) ;

265 d a t a c o n t r o l l e r = g e t ( R T O u t P c o n t r o l l e r , ’ Value ’ ) ;

266 b h P r e s c o n t r o l l e r = d a t a c o n t r o l l e r . b h P r e s C a l c ;

% Bottom Hole P r e s s u r e

267 g e t d o u b l e D a t a P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

268 c a l l l i b ( m o d i n s t , ’ g e t d o u b l e ’ , ’ FlowInChoke ’ , l i b p o i n t e r ( ’

u i n t 3 2 P t r ’ , 1 1 ) , g e t d o u b l e D a t a P c o n t r o l l e r ) ;

269 F l o w I n C h o k e c o n t r o l l e r ( t ) = g e t ( g e t d o u b l e D a t a P c o n t r o l l e r , ’ Value ’ )

270 c a l l l i b ( m o d i n s t , ’ g e t d o u b l e ’ , ’ Dens i t y InChoke ’ , l i b p o i n t e r ( ’

u i n t 3 2 P t r ’ , 1 4 ) , g e t d o u b l e D a t a P c o n t r o l l e r ) ;

271 D e n s i t y I n C h o k e c o n t r o l l e r ( t ) = g e t ( g e t d o u b l e D a t a P c o n t r o l l e r , ’

Value ’ ) ;

272 %% b u i l d o b j e c t i v e f u n c t i o n

273 p o f f = abs ( S P p b i t − ( b h P r e s c o n t r o l l e r −b i a s ) ) / 1 0 0 0 0 0 ;

274 i f i < 2

275 i f showt imeonce == 1

276 d i s p ( [ ’ C o n t r o l move up t o ’ num2s t r ( g e t ( T i m e P c o n t r o l l e r , ’

Value ’ ) ) ’ recommended w/ t = ’ num2s t r ( t ) ] ) ;

277 d i s p ( [ ’ Mudflowin = ’ num2s t r ( MudFlowIn ( t ) ) ’ F lowinchoke =

’ num2s t r ( F l o w I n C h o k e c o n t r o l l e r ( t −1) ) ’ Dens inchoke = ’ num2s t r (

D e n s i t y I n C h o k e c o n t r o l l e r ( t −1) ) ] ) ;

278 showt imeonce = 0 ;

279 end

280 % deadband

281 i f p o f f > 2

282 e r r o r = e r r o r + p o f f *20* i ˆ 2 ;

283 e l s e

284 e r r o r = e r r o r + p o f f *2* i ;

285 end

286 e l s e

287 i f p o f f > 2

288 e r r o r = e r r o r + p o f f *10 / i ˆ 2 ;

289 e l s e
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290 e r r o r = e r r o r + p o f f * 1 / i ;

291 end

292 end

293 e r r o r = e r r o r + abs ( z choke−x0 ( 1 ) ) / 2 0 ;

294 end

295 e r r = e r r o r ;

296 end

297 end

Listing C.5: Basic switch controller logic in MATLAB

1 f u n c t i o n [ o u t p u t ] = S w i t c h T e s t ( i n p u t )

2 p e r s i s t e n t t ime c o n t r o l count down s a low a emp

3 a d d p a t h ( ’apm ’ ) ;

4 s = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

5 a emp = ’ nmpc emp ’ ;

6 a low = ’ nmpc low ’ ;

7 Emp ValvePos = i n p u t ( 1 ) ;

8 Emp MudFlow = i n p u t ( 2 ) ;

9 E m p s t a t u s = i n p u t ( 3 ) ;

10 Low ValvePos = i n p u t ( 4 ) ;

11 Low Mudflow = i n p u t ( 5 ) ;

12 L o w s t a t u s = i n p u t ( 6 ) ;

13 High ValvePos = i n p u t ( 7 ) ;

14 High MudFlow = i n p u t ( 8 ) ;

15 H i g h s t a t u s = i n p u t ( 9 ) ;

16 i f i s e m p t y ( t ime ) ;

17 t ime = 0 ;

18 c o n t r o l = 1 ;

19 count down = 0 ;

20 end

21 count down = count down − 1 ;

22 i f count down < 0 ;

23 count down = count down + 1 ;

24 end

25 i f H i g h s t a t u s < 1 ;

26 i f L o w s t a t u s < 1 ;
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27 c o n t r o l = 3 ;

28 e l s e

29 c o n t r o l = 2 ;

30 end

31 e l s e

32 c o n t r o l = 1 ;

33 end

34 %% o u t p u t s based on t h e p r e v i o u s l y d e f i n e d c o n t r o l number

35 s w i t c h c o n t r o l

36 c a s e 1 %use h i f i

37 apm op t ion ( s , a emp , ’ n l c . r e q c t r l m o d e ’ , 2 ) ;

38 apm op t ion ( s , a low , ’ n l c . r e q c t r l m o d e ’ , 2 ) ;

39 apm op t ion ( s , a emp , ’ u [ 1 ] . f s t a t u s ’ , 1 ) ;

40 apm op t ion ( s , a emp , ’ u [ 2 ] . f s t a t u s ’ , 1 ) ;

41 apm op t ion ( s , a low , ’ z c h o k e . f s t a t u s ’ , 1 ) ;

42 apm op t ion ( s , a low , ’ q p . f s t a t u s ’ , 1 ) ;

43 o u t p u t ( 1 ) = High ValvePos ;

44 o u t p u t ( 2 ) = High MudFlow ;

45 c a s e 2 %use low

46 apm op t ion ( s , a emp , ’ n l c . r e q c t r l m o d e ’ , 2 ) ;

47 apm op t ion ( s , a emp , ’ u [ 1 ] . f s t a t u s ’ , 1 ) ;

48 apm op t ion ( s , a emp , ’ u [ 2 ] . f s t a t u s ’ , 1 ) ;

49 apm op t ion ( s , a low , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

50 apm op t ion ( s , a low , ’ z c h o k e . f s t a t u s ’ , 0 ) ;

51 apm op t ion ( s , a low , ’ q p . f s t a t u s ’ , 0 ) ;

52 o u t p u t ( 1 ) = Low ValvePos ;

53 o u t p u t ( 2 ) = Low Mudflow ;

54 c a s e 3 %use emp

55 apm op t ion ( s , a emp , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

56 apm op t ion ( s , a emp , ’ u [ 1 ] . f s t a t u s ’ , 0 ) ;

57 apm op t ion ( s , a emp , ’ u [ 2 ] . f s t a t u s ’ , 0 ) ;

58 apm op t ion ( s , a low , ’ n l c . r e q c t r l m o d e ’ , 2 ) ;

59 apm op t ion ( s , a low , ’ z c h o k e . f s t a t u s ’ , 1 ) ;

60 apm op t ion ( s , a low , ’ q p . f s t a t u s ’ , 1 ) ;

61 o u t p u t ( 1 ) = Emp ValvePos ;

62 o u t p u t ( 2 ) = Emp MudFlow ;
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63 end

64 t ime = t ime + 1 ;

65 end
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APPENDIX D. ADVANCED SWITCHED CONTROLLER

Appendix D contains the advanced switched controller code in MATLAB and APMonitor.

D.1 contains the empirical controller code and initialization,D.2 contains the low order controller

code and initialization file, and D.3 has the moving horizon estimation code. D.4 contains the

empirical model identification code. Each of these scripts are written in the MATLAB interface for

APMonitor. However, the high fidelity controller is written in MATLAB only, and is found in D.5.

Listing D.1: Empirical Controller Code in the APMonitor Modeling Language Interfaced with

MATLAB

1 c l a s s d e f E m p i r i c a l C l a s s <h a n d l e

2 %% C l a s s d e f i n i t i o n f o r e v e r y t h i n g e m p i r i c a l l y r e l a t e d

3 % A v a i l a b l e f u n c t i o n s :

4 % c o n t r o l l e r i n i t ( )

5 % s i m u l a t i o n i n i t ( )

6 % s i m u l a t i o n ( p b i t , q p , p c )

7 % c o n t r o l ( o , i n p u t )

8 % c o n t r o l s o l v e ( o , i n p u t )

9 p r o p e r t i e s

10 s e r v e r = ’ h t t p : / / 1 2 7 . 0 . 0 . 1 ’ ;

11 c o n t r o l a p p ;

12 s i m u l a t e a p p ;

13 %d e v i a t i o n v a r i a b l e s

14 q p d e v = 0 ;%0 . 0 4 ;

15 p c d e v = 0 ; %2 0 ;

16 p b i t d e v =0;% 380 ;

17 show web = f a l s e ;

18 end

19 methods

20 f u n c t i o n c o n t r o l l e r i n i t ( o )

21 E m p i r i c a l c o n t r o l l e r i n i t ;
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22 i f o . show web

23 apm web ( o . s e r v e r , o . c o n t r o l a p p ) ;

24 end

25 end

26 f u n c t i o n s i m u l a t i o n i n i t ( o )

27 e m p s i m i n i t ;

28 i f o . show web

29 apm web ( o . s e r v e r , o . s i m u l a t e a p p ) ;

30 end

31 end

32 f u n c t i o n o u t p u t = s i m u l a t i o n ( o , p b i t , q p , p c )

33 apm meas ( o . s e r v e r , o . s i m u l a t e a p p , ’ y [ 1 ] ’ , ( p b i t−o . p b i t d e v ) ) ;

34 apm meas ( o . s e r v e r , o . s i m u l a t e a p p , ’ u [ 1 ] ’ , ( q p−o . q p d e v ) ) ;

35 apm meas ( o . s e r v e r , o . s i m u l a t e a p p , ’ u [ 2 ] ’ , ( p c−o . p c d e v ) ) ;

36

37 e m p s i m s o l v e r o u t p u t = apm ( o . s e r v e r , o . s i m u l a t e a p p , ’ s o l v e ’ )

38 y = apm so l ( o . s e r v e r , o . s i m u l a t e a p p ) ;

39 m = y . x ;

40 o u t p u t = m. y1 ( end ) +o . p b i t d e v ;

41 end

42 f u n c t i o n o u t p u t = c o n t r o l ( o , i n p u t )

43 p b i t = i n p u t ( 1 ) ;

44 p c = i n p u t ( 2 ) ;

45 q p = i n p u t ( 3 ) ;

46 sp = i n p u t ( 4 ) ;

47 apm meas ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] ’ , ( p b i t−o . p b i t d e v ) ) ;

48 apm meas ( o . s e r v e r , o . c o n t r o l a p p , ’ u [ 1 ] ’ , ( q p−o . q p d e v ) ) ;

49 apm meas ( o . s e r v e r , o . c o n t r o l a p p , ’ u [ 2 ] ’ , ( p c−o . p c d e v ) ) ;

50 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] . sp ’ , sp−o . p b i t d e v ) ;

51 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] . s p h i ’ , sp+1−o . p b i t d e v ) ;

52 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] . s p l o ’ , sp−1−o . p b i t d e v ) ;

53 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ n l c . r e q c t r l m o d e ’ , 2 ) ;

54 e m p c o n t s o l v e r o u t p u t = apm ( o . s e r v e r , o . c o n t r o l a p p , ’ s o l v e ’ )

55 o u t p u t = 1 ;

56 end

57 f u n c t i o n o u t p u t = c o n t r o l s o l v e ( o , i n p u t )
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58 p b i t = i n p u t ( 1 ) ;

59 p c = i n p u t ( 2 ) ;

60 q p = i n p u t ( 3 ) ;

61 sp = i n p u t ( 4 ) ;

62 apm meas ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] ’ , ( p b i t−o . p b i t d e v ) ) ;

63 apm meas ( o . s e r v e r , o . c o n t r o l a p p , ’ u [ 1 ] ’ , ( q p−o . q p d e v ) ) ;

64 apm meas ( o . s e r v e r , o . c o n t r o l a p p , ’ u [ 2 ] ’ , ( p c−o . p c d e v ) ) ;

65 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] . sp ’ , sp−o . p b i t d e v ) ;

66 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] . s p h i ’ , sp+1−o . p b i t d e v ) ;

67 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ y [ 1 ] . s p l o ’ , sp−1−o . p b i t d e v ) ;

68 apm op t ion ( o . s e r v e r , o . c o n t r o l a p p , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

69 e m p s o l v e r o u t p u t = apm ( o . s e r v e r , o . c o n t r o l a p p , ’ s o l v e ’ )

70 y = apm so l ( o . s e r v e r , o . c o n t r o l a p p ) ;

71 m = y . x ;

72 s t a t u s = apm tag ( o . s e r v e r , o . c o n t r o l a p p , ’ n l c . a p p s t a t u s ’ ) ;

73 c p u t i m e = apm tag ( o . s e r v e r , o . c o n t r o l a p p , ’ n l c . s o l v e t i m e ’ ) ;

74 q pump = apm tag ( o . s e r v e r , o . c o n t r o l a p p , ’ u [ 1 ] .NEWVAL’ ) ;

75 c h o k e p r e s s = apm tag ( o . s e r v e r , o . c o n t r o l a p p , ’ u [ 2 ] .NEWVAL’ ) ;

76 o u t p u t ( 1 ) = q pump +o . q p d e v ;

77 o u t p u t ( 2 ) = c h o k e p r e s s +o . p c d e v ;

78 o u t p u t ( 3 ) = s t a t u s ;

79 end

80 end

81 end

Listing D.2: Low Order Controller Code in the APMonitor Modeling Language Interfaced with

MATLAB

1 f u n c t i o n o u t p u t = l o w o r d e r c o n t r o l l e r ( wel l meas , w e l l i n p u t , Low MHE data ,

v a r a r g i n )

2 p e r s i s t e n t c o n t r o l l e r i n i t i a l i z e s a

3 sp = w e l l i n p u t . s p p b i t ;

4 f a = Low MHE data . f a ;

5 r o a = Low MHE data . r o a ;

6 p b i t m e a s = w e l l m e a s . p b i t ;

7 p c meas = w e l l i n p u t . c h o k e p r e s s ; % ensemble c o n t r o l l e r c h o i c e f o r

movement
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8 h b i t m e a s = w e l l m e a s . h b i t ;

9 q choke meas = w e l l m e a s . q choke * 6 0 ;

10 q p meas = w e l l i n p u t . mudflowin * 6 0 ; % c o n t r o l l e r c h o i c e f o r movement

11 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

12 % I n i t i a l i z e a p p l i c a t i o n

13 l o w o r d e r c o n t r o l l e r i n i t ;

14 c o n t r o l l e r i n i t i a l i z e = t r u e ;

15 end

16 apm meas ( s , a , ’ p b i t . sp ’ , sp ) ;

17 apm op t ion ( s , a , ’ p b i t . s p h i ’ , sp +1) ;

18 apm op t ion ( s , a , ’ p b i t . s p l o ’ , sp−1) ;

19 apm meas ( s , a , ’ h b i t ’ , h b i t m e a s ) ;

20 apm meas ( s , a , ’ q choke ’ , q choke meas ) ;

21 apm meas ( s , a , ’ q p ’ , q p meas ) ;

22 apm meas ( s , a , ’ p c ’ , p c meas ) ;

23 apm meas ( s , a , ’ p b i t ’ , p b i t m e a s ) ;

24 apm meas ( s , a , ’ f a ’ , f a ) ;

25 apm meas ( s , a , ’ r o a ’ , r o a ) ;

26 i f n a r g i n > 3

27 i f v a r a r g i n {1} == ’ s o l v e ’

28 apm op t ion ( s , a , ’ n l c . r e q c t r l m o d e ’ , 3 ) ;

29 L o w o r d e r s o l v e r o u t p u t = apm ( s , a , ’ s o l v e ’ )

30 d i s p ( L o w o r d e r s o l v e r o u t p u t )

31 y = apm so l ( s , a ) ;

32 m = y . x ;

33 % check s o l u t i o n s t a t u s

34 s t a t u s = apm tag ( s , a , ’ n l c . a p p s t a t u s ’ ) ;

35 q p = apm tag ( s , a , ’ q p .NEWVAL’ ) ;

36 p c = apm tag ( s , a , ’ p c .NEWVAL’ ) ;

37 o u t p u t ( 1 ) = q p / 6 0 ;

38 o u t p u t ( 2 ) = p c ;

39 o u t p u t ( 3 ) = s t a t u s ;

40 end

41 e l s e

42 apm op t ion ( s , a , ’ n l c . r e q c t r l m o d e ’ , 2 ) ;

43 L o w o r d e r s o l v e r o u t p u t = apm ( s , a , ’ s o l v e ’ )
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44 p b i t = apm tag ( s , a , ’ p b i t . PRED [ 1 ] ’ ) ;

45 o u t p u t ( 1 ) = p b i t ;

46 end

47 end

Listing D.3: Moving Horizon Estimation Code in the APMonitor Modeling Language Interfaced

with MATLAB

1 f u n c t i o n [ Low MHE data ] = Low MHE( w e l l i n p u t , w e l l m e a s )

2 p e r s i s t e n t c o n t r o l l e r i n i t i a l i z e s a

3 p b i t m e a s = w e l l m e a s . p b i t ;

4 p c meas = w e l l i n p u t . c h o k e p r e s s ;

5 h b i t m e a s = w e l l m e a s . h b i t ;

6 q choke meas = w e l l m e a s . q choke * 6 0 ;

7 q p meas = w e l l i n p u t . mudflowin * 6 0 ;

8 i f ( i s e m p t y ( c o n t r o l l e r i n i t i a l i z e ) ) ,

9 Low MHE init ; % I n i t i a l i z e a p p l i c a t i o n

10 c o n t r o l l e r i n i t i a l i z e = t r u e ;

11 end

12 apm meas ( s , a , ’ p b i t ’ , p b i t m e a s ) ;

13 apm meas ( s , a , ’ p c ’ , p c meas ) ;

14 apm meas ( s , a , ’ h b i t ’ , h b i t m e a s ) ;

15 apm meas ( s , a , ’ q p ’ , q p meas ) ;

16 apm meas ( s , a , ’ q choke ’ , q p meas ) ;

17 apm op t ion ( s , a , ’ f a . dmax ’ , 2 0 ) ;

18 apm op t ion ( s , a , ’ r o a . dmax ’ , 4 0 ) ;

19 apm op t ion ( s , a , ’ p b i t . meas gap ’ , 2 ) ;

20 s o l v e r o u t p u t = apm ( s , a , ’ s o l v e ’ ) ;

21 y = apm so l ( s , a ) ;

22 d i s p l a y ( s o l v e r o u t p u t ) ;

23 s t a t u s = apm tag ( s , a , ’ n l c . a p p s t a t u s ’ ) ;

24 f a = apm tag ( s , a , ’ f a .NEWVAL’ ) ;

25 r o a = apm tag ( s , a , ’ r o a .NEWVAL’ ) ;

26 Low MHE data . f a = f a ;

27 Low MHE data . r o a = r o a ;

28 end
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Listing D.4: Real Time Model Identification Code in MATLAB

1 c l a s s d e f H i F i C o n t r o l l e r C l a s s <h a n d l e

2 %% C l a s s f o r c r e a t i o n o f h igh f i d e l i t y c o n t r o l l e r

3 %A v a i l a b l e f u n c t i o n s :

4 %i n i t i a l i z e ( w e l l i n p u t , TimeStep , w e l l m e a s )

5 %e r r = p r e d i c t i o n s ( w e l l i n p u t , guess , x0 , b i a s )

6 %p r e d i c t i o n s = a d v a n c e i n s t a n c e ( w e l l i n p u t , moves )

7 %d a t a = s t e p t e s t s ( w e l l i n p u t , e m p i r i c a l )

8 p r o p e r t i e s

9 TimeStep ;

10 m o d e l i n s t a n c e = ’ F l o w M o d e l c o n t r o l l e r ’ ;

11 R T O u t P c o n t r o l l e r ;

12 T i m e P c o n t r o l l e r ;

13 g e t d o u b l e D a t a P c o n t r o l l e r ;

14 g a s i n f l u x r a t e P c o n t r o l l e r ;

15 B i t P o s i t i o n ;

16 DepthHole ;

17 R T O u t c o n t r o l l e r = s t r u c t ( ) ;

18 mpc hor i zon = 4 ;

19 end

20 methods

21 % i n i t i a l i z e model i n s t a n c e f o r c o n t r o l l e r

22 f u n c t i o n o = i n i t i a l i z e ( o , w e l l i n p u t , TimeStep , w e l l m e a s )

23 o . TimeStep = TimeStep ;

24 i n i t i a l i z e c o n t r o l l e r m o d e l s c r i p t ;

25 end

26 % run model i n s t a n c e t o r e t u r n o b j e c t i v e f u n c t i o n

27 f u n c t i o n e r r = p r e d i c t i o n s ( o , w e l l i n p u t , guess , x0 , b i a s )

28 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

L o a d s t a t e ’ , 10 , 1 , 0 , 0 , 0 ) ;

29 t = w e l l i n p u t . t ;

30 Time ( t ) = w e l l i n p u t . t ime ;

31 Rota rySpeed ( t : t +10) = w e l l i n p u t . r o t a r y s p e e d ;

32 MudDensi tyIn ( t : t +10) = w e l l i n p u t . m u d d e n s i t y i n ;

33 Inpu tMudTempera tu re In ( t : t +10) = w e l l i n p u t . i npu t mud temp ;

34 ROP( t : t +10) = w e l l i n p u t . ROP;
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35 o . B i t P o s i t i o n ( t : t +10) = w e l l i n p u t . b i t p o s i t i o n ;

36 o . DepthHole ( t : t +10) = w e l l i n p u t . d e p t h h o l e ;

37 InputDesiredEMW ( t : t +10) = w e l l i n p u t . des i red emw ;

38 S e t P o i n t P o s i t i o n ( t : t +10) = w e l l i n p u t . s e t p o i n t p o s i t i o n ;

39 b i a s = b i a s * 100000;

40 S P p b i t = w e l l i n p u t . s p p b i t * 100000;

41 A c t u a l C h o k e P r e s s ( t : t +10) = g u e s s ( 1 ) *100000;

42 MudFlowIn ( t : t +10) = g u e s s ( 2 ) ;

43 z = t ;

44 e r r o r = 0 ;

45 f o r i = 1 : o . mpc hor izon , % h o r i z o n l e n g t h

46 t = z + i ;

47 i f t >1

48 o . B i t P o s i t i o n ( t ) =o . B i t P o s i t i o n ( t −1) +( o . TimeStep *24) *ROP( t )

;

49 o . DepthHole ( t ) =max ( [ o . B i t P o s i t i o n ( 1 : t ) o . DepthHole ( 1 ) ] ) ;

50 end

51 % Run Well Model

52 s e t r e a l t i m e c o n t r o l l e r ;

53 % Send u p d a t e d r e a l t ime t a b l e t o FlowModel . d l l

54 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

I n p u t R e a l T i m e ’ , 14 , r e a l T a b l e c o n t r o l l e r , 43 , 0 , 0 ) ;

55 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ runf lowmode l ’ , o .

T i m e P c o n t r o l l e r , 2 , 0 , 0 ) ;

56 R e t u r n C o d e g e t R e a l t i m e = c a l l l i b ( o . m o d e l i n s t a n c e , ’

g e t r e a l t i m e p a r a m e t e r s ’ , o . R T O u t P c o n t r o l l e r , 6 ) ;

57 d a t a c o n t r o l l e r = g e t ( o . R T O u t P c o n t r o l l e r , ’ Value ’ ) ;

58 b h P r e s c o n t r o l l e r = d a t a c o n t r o l l e r . b h P r e s C a l c ;

59 e r r o r = e r r o r + i * abs ( S P p b i t −( b h P r e s c o n t r o l l e r −b i a s ) )

/10000+ abs ( A c t u a l C h o k e P r e s s ( t )−x0 ( 1 ) *100000) /1000000+ abs ( A c t u a l C h o k e P r e s s (

t ) −40*100000) /750000+ abs ( MudFlowIn ( t )−x0 ( 2 ) ) *20 ;

60 end

61 e r r = e r r o r ;

62 end

63 f u n c t i o n p r e d i c t i o n s = a d v a n c e i n s t a n c e ( o , w e l l i n p u t , moves )

64 % Read i n p u t p a r a m e t e r s
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65 t = w e l l i n p u t . t ;

66 Time ( t ) = w e l l i n p u t . t ime ;

67 Rota rySpeed ( t ) = w e l l i n p u t . r o t a r y s p e e d ;% r a d / s

68 MudDensi tyIn ( t ) = w e l l i n p u t . m u d d e n s i t y i n ;% Kg / m3

69 Inpu tMudTempera tu re In ( t ) = w e l l i n p u t . i npu t mud temp ;% Ke lv i n

70 ROP( t ) = w e l l i n p u t . ROP;% m/ hr

71 o . B i t P o s i t i o n ( t ) = w e l l i n p u t . b i t p o s i t i o n ;% m (MD)

72 o . DepthHole ( t ) = w e l l i n p u t . d e p t h h o l e ;% m (MD)

73 InputDesiredEMW ( t ) = w e l l i n p u t . des i red emw ;

74 S e t P o i n t P o s i t i o n ( t ) = w e l l i n p u t . s e t p o i n t p o s i t i o n ;

75 MudFlowIn ( t ) = moves ( 2 ) ;

76 A c t u a l C h o k e P r e s s ( t ) = moves ( 1 ) *100000;

77 % Run Well Model

78 %%%%%%%%%%%%%%%%%%%%%%%%%

79 i f t > 1

80 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

L o a d s t a t e ’ , 10 , 1 , 0 , 0 , 0 ) ;

81 end

82 s e t r e a l t i m e c o n t r o l l e r

83 % Send u p d a t e d r e a l t ime t a b l e t o FlowModel . d l l

84 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

I n p u t R e a l T i m e ’ , 14 , r e a l T a b l e c o n t r o l l e r , 43 , 0 , 0 ) ;

85 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ runf lowmode l ’ , o .

T i m e P c o n t r o l l e r , 2 , 0 , 0 ) ;

86 R e t u r n C o d e g e t R e a l t i m e = c a l l l i b ( o . m o d e l i n s t a n c e , ’

g e t r e a l t i m e p a r a m e t e r s ’ , o . R T O u t P c o n t r o l l e r , 6 ) ;

87 d a t a c o n t r o l l e r = g e t ( o . R T O u t P c o n t r o l l e r , ’ Value ’ ) ;

88 p r e d i c t i o n s . p p r e d = d a t a c o n t r o l l e r . b h P r e s C a l c / 1 0 0 0 0 0 ;

89 p r e d i c t i o n s . f l o w o u t c o n t = d a t a c o n t r o l l e r . f lowOutCa lc ;

90 p r e d i c t i o n s . p i t G a i n c o n t = d a t a c o n t r o l l e r . p i t G a i n C a l c ;

91 p r e d i c t i o n s . s u r g e V o l C a l c c o n t = d a t a c o n t r o l l e r . s u r g e V o l C a l c ;

92 showt imesave = g e t ( o . T i m e P c o n t r o l l e r , ’ v a l u e ’ )

93 s h o w t i m e a r r a y = Time − 42200 ;

94 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

S a v e s t a t e ’ , 10 , 1 , 0 , 0 , 0 ) ;

95 end
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96 f u n c t i o n d a t a = s t e p t e s t s ( o , w e l l i n p u t , e m p i r i c a l )

97 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

L o a d s t a t e ’ , 10 , 1 , 0 , 0 , 0 ) ;

98 min = round ( 6 0 / ( o . TimeStep *24*60*60) , 0 ) ;

99 t = w e l l i n p u t . t ;

100 Time ( t ) = w e l l i n p u t . t ime ;

101 Rota rySpeed ( t : t +12* min ) = w e l l i n p u t . r o t a r y s p e e d ;

102 MudDensi tyIn ( t : t +12* min ) = w e l l i n p u t . m u d d e n s i t y i n ;

103 Inpu tMudTempera tu re In ( t : t +12* min ) = w e l l i n p u t . i npu t mud temp ;

104 ROP( t : t +12* min ) = w e l l i n p u t . ROP;

105 o . B i t P o s i t i o n ( t : t +12* min ) = w e l l i n p u t . b i t p o s i t i o n ;

106 o . DepthHole ( t : t +12* min ) = w e l l i n p u t . d e p t h h o l e ;

107 InputDesiredEMW ( t : t +12* min ) = w e l l i n p u t . des i red emw ;

108 S e t P o i n t P o s i t i o n ( t : t +12* min ) = w e l l i n p u t . s e t p o i n t p o s i t i o n ;

109 A c t u a l C h o k e P r e s s ( t : t +12* min ) = w e l l i n p u t . c h o k e p r e s s *100000;

110 A c t u a l C h o k e P r e s s ( t +2*min : t +4*min ) = ( w e l l i n p u t . c h o k e p r e s s +5)

*100000;

111 A c t u a l C h o k e P r e s s ( t +4*min : t +6*min ) = ( w e l l i n p u t . c h o k e p r e s s −5)

*100000;

112 A c t u a l C h o k e P r e s s ( t +6*min : t +8*min ) = ( 8 0 ) *100000;

113 A c t u a l C h o k e P r e s s ( t +8*min : t +10* min ) = ( 1 0 ) *100000;

114 A c t u a l C h o k e P r e s s ( t +10* min : t +12* min ) = w e l l i n p u t . c h o k e p r e s s

*100000;

115 MudFlowIn ( t : t +12* min ) = w e l l i n p u t . mudflowin ;

116 MudFlowIn ( t +3*min : t +5*min ) = w e l l i n p u t . mudflowin + . 0 0 5 ;

117 MudFlowIn ( t +5*min : t +7*min ) = w e l l i n p u t . mudflowin − .005;

118 MudFlowIn ( t +7*min : t +9*min ) = . 0 5 5 ;

119 MudFlowIn ( t +9*min : t +11* min ) = . 0 1 5 ;

120 MudFlowIn ( t +11* min : t +12* min ) = w e l l i n p u t . mudflowin ;

121 z = t ;

122 f o r i = 1 :12* min , %h o r i z o n l e n g t h based on t i m e s t e p

123 t = z + i ;

124 i f t >1

125 o . B i t P o s i t i o n ( t ) =o . B i t P o s i t i o n ( t −1) +( o . TimeStep *24) *ROP( t )

;

126 o . DepthHole ( t ) =max ( [ o . B i t P o s i t i o n ( 1 : t ) o . DepthHole ( 1 ) ] ) ;
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127 end

128 % g e t w e l l t ime p a s s e d in , use as i n i t a l p o i n t f o r p r e d i c t i o n s

129 Time ( t ) = Time ( z ) + i * o . TimeStep ;

130 % Run Well Model

131 s e t r e a l t i m e c o n t r o l l e r

132 % Send u p d a t e d r e a l t ime t a b l e t o FlowModel . d l l

133 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

I n p u t R e a l T i m e ’ , 14 , r e a l T a b l e c o n t r o l l e r , 43 , 0 , 0 ) ;

134 % Execu te FlowModel

135 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ runf lowmode l ’ , o .

T i m e P c o n t r o l l e r , 2 , 0 , 0 ) ;

136 R e t u r n C o d e g e t R e a l t i m e = c a l l l i b ( o . m o d e l i n s t a n c e , ’

g e t r e a l t i m e p a r a m e t e r s ’ , o . R T O u t P c o n t r o l l e r , 6 ) ;

137 d a t a c o n t r o l l e r = g e t ( o . R T O u t P c o n t r o l l e r , ’ Value ’ ) ;

138 b h P r e s c o n t r o l l e r = d a t a c o n t r o l l e r . b h P r e s C a l c ;

139 p b i t ( t ) = ( b h P r e s c o n t r o l l e r ) /100000 ;

140 end

141 o u t p u t = [ ( Time ( z +2*min−10: end )−Time ( z +2*min−10) ) *60*60*24;

MudFlowIn ( z +2*min−10: end ) ; A c t u a l C h o k e P r e s s ( z +2*min−10: end ) / 1 0 0 0 0 0 ; p b i t (

z +2*min−10: end ) ] ’ ;

142 d l m w r i t e ( ’ d i s c r e t e s t a t e s . c sv ’ , o u t p u t ) ;

143 d a t a = o u t p u t ;

144 e m p i r i c a l . p c d e v = o u t p u t ( 1 , 3 ) ;

145 e m p i r i c a l . q p d e v = o u t p u t ( 1 , 2 ) ;

146 e m p i r i c a l . p b i t d e v = o u t p u t ( 1 , 4 ) ;

147 apm op t ion ( emp ser , e m p i r i c a l . c o n t r o l a p p , ’ u [ 1 ] . uppe r ’ , ( .076− o u t p u t

( 1 , 2 ) ) ) ;

148 apm op t ion ( emp ser , e m p i r i c a l . c o n t r o l a p p , ’ u [ 1 ] . l ower ’ , ( .005− o u t p u t

( 1 , 2 ) ) ) ;

149 apm op t ion ( emp ser , e m p i r i c a l . c o n t r o l a p p , ’ u [ 2 ] . uppe r ’ ,(120− o u t p u t

( 1 , 3 ) ) ) ;

150 apm op t ion ( emp ser , e m p i r i c a l . c o n t r o l a p p , ’ u [ 2 ] . l ower ’ ,(5− o u t p u t

( 1 , 3 ) ) ) ;

151 end

152 f u n c t i o n o = e n d d l l ( o )

153 c a l l l i b ( o . m o d e l i n s t a n c e , ’ e n d d l l ’ )
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154 c l e a r ( o . R T O u t P c o n t r o l l e r , o . T i m e P c o n t r o l l e r , ’

s t a t u s P c o n t r o l l e r ’ , ’ s e n s o r s D a t a P c o n t r o l l e r ’ )

155 u n l o a d l i b r a r y ( o . m o d e l i n s t a n c e )

156 end

157 f u n c t i o n o u t p u t = S S d a t a f o r m o d e l f i t ( o , w e l l i n p u t )

158 m = 1 ;

159 g a s i n f l u x r a t e P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

160 f i d = fopen ( ’ SSda ta . csv ’ , ’w’ ) ;

161 f p r i n t f ( f i d , ’ q p , p b i t , p c , q choke , q r e s \n ’ ) ;

162 mudflows = l i n s p a c e ( . 0 0 9 , . 0 6 3 , 1 0 ) ;

163 f o r j = 1 :10

164 chokes = l i n s p a c e ( 3 , ( 5 4 0 5 9 * mudflows ( j ) ˆ2+9E−10*mudflows ( j ) +1)

, 1 0 ) ;

165 f o r k = 1 :10

166 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

L o a d s t a t e ’ , 10 , 1 , 0 , 0 , 0 ) ;

167 t = w e l l i n p u t . t ;

168 Time ( t ) = w e l l i n p u t . t ime ;

169 Rota rySpeed ( t : t +100) = w e l l i n p u t . r o t a r y s p e e d ;

170 MudDensi tyIn ( t : t +100) = w e l l i n p u t . m u d d e n s i t y i n

171 Inpu tMudTempera tu re In ( t : t +100) = w e l l i n p u t . i npu t mud temp

172 ROP( t : t +100) = w e l l i n p u t . ROP;

173 o . B i t P o s i t i o n ( t : t +100) = w e l l i n p u t . b i t p o s i t i o n ;

174 o . DepthHole ( t : t +100) = w e l l i n p u t . d e p t h h o l e ;

175 InputDesiredEMW ( t : t +100) = w e l l i n p u t . des i red emw ;

176 S e t P o i n t P o s i t i o n ( t : t +100) = w e l l i n p u t .

s e t p o i n t p o s i t i o n ;

177 A c t u a l C h o k e P r e s s ( t : t +100) = chokes ( k ) *100000;

178 MudFlowIn ( t : t +100) = mudflows ( j ) ;

179 z = t ;

180 f o r i = 1 : 2 0 , %h o r i z o n l e n g t h

181 t = z + i ;

182 Time ( t ) = Time ( z ) + i * o . TimeStep ;

183 s e t r e a l t i m e c o n t r o l l e r

184 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e

’ , ’ I n p u t R e a l T i m e ’ , 14 , r e a l T a b l e c o n t r o l l e r , 43 , 0 , 0 ) ;
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185 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ runf lowmode l ’ ,

o . T i m e P c o n t r o l l e r , 2 , 0 , 0 ) ;

186 R e t u r n C o d e g e t R e a l t i m e = c a l l l i b ( o . m o d e l i n s t a n c e , ’

g e t r e a l t i m e p a r a m e t e r s ’ , o . R T O u t P c o n t r o l l e r , 6 ) ;

187 d a t a c o n t r o l l e r = g e t ( o . R T O u t P c o n t r o l l e r , ’ Value ’ ) ;

188 b h P r e s c o n t r o l l e r = d a t a c o n t r o l l e r .

b h P r e s C a l c ;

189 g e t d o u b l e D a t a P c o n t r o l l e r = l i b p o i n t e r ( ’ d o u b l e P t r ’ , 0 ) ;

190 c a l l l i b ( o . m o d e l i n s t a n c e , ’ g e t d o u b l e ’ , ’ FlowInChoke ’ ,

l i b p o i n t e r ( ’ u i n t 3 2 P t r ’ , 1 1 ) , o . g e t d o u b l e D a t a P c o n t r o l l e r ) ;

191 F l o w I n C h o k e c o n t r o l l e r = g e t ( o .

g e t d o u b l e D a t a P c o n t r o l l e r , ’ Value ’ ) ;

192 end

193 SSda ta (m, : ) = [ mudflows ( j ) *60 b h P r e s c o n t r o l l e r /100000

chokes ( k ) F l o w I n C h o k e c o n t r o l l e r *60 g a s i n f l u x r a t e c o n t r o l l e r * 6 0 ] ;

194 m = m + 1 ;

195 end

196 end

197 d l m w r i t e ( ’ SSda ta . c sv ’ , SSdata , ’−append ’ ) ;

198 f c l o s e ( ’ a l l ’ ) ;

199 p a r a m e s t ;

200 o u t p u t = 1 ;

201 end

202 f u n c t i o n o u t p u t = s a v e s t a t e ( o )

203 ReturnCode = c a l l l i b ( o . m o d e l i n s t a n c e , ’ s e t m o d u l e t a b l e ’ , ’

S a v e s t a t e ’ , 10 , 1 , 0 , 0 , 0 ) ;

204 end

205 end

206 end

Listing D.5: High Fidelity Controller Code in MATLAB

1 f u n c t i o n [ r e c c h a n g e s ] = H i F i C o n t r o l l e r ( i n p u t , h i f i c o n t , x0 , b i a s )

2 I t e r a t e C o n t r o l l e r = @( g u e s s ) h i f i c o n t . p r e d i c t i o n s ( i n p u t , guess , x0 , b i a s ) ;

3 OPTIONS = o p t i m o p t i o n s ( ’ fmincon ’ , ’ A lgo r i t hm ’ , ’ i n t e r i o r −p o i n t ’ , ’ TolFun ’ , . 0 0 1 , ’

MaxFunEvals ’ , 2 5 0 ) ;
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4 [ x , FVAL, e x i t f l a g , showmes tu f f ] = fmincon ( I t e r a t e C o n t r o l l e r , x0 , [ ] , [ ] , [ ] , [ ] , [ 1

. 0 0 9 ] , [ 4 5 . 0 6 3 ] , [ ] , OPTIONS ) ;

5 i f e x i t f l a g > 0

6 s t a t u s = 1 ;

7 e l s e

8 s t a t u s = 0 ;

9 end

10 r e c c h a n g e s = [ x ( 1 ) x ( 2 ) s t a t u s ] ;

11 end

Listing D.6: Advanced switch logic code.

1 c l a s s d e f Ensemble<h a n d l e

2 p r o p e r t i e s

3 emp pred = [ ] ;

4 l o w p r e d = [ ] ;

5 h i f i p r e d = [ ] ;

6 m e a s p b i t = [ ] ;

7 mud pump = [ ] ;

8 c h o k e p r e s s = [ ] ;

9 t ime = [ ] ;

10 c h o s e n c o n t s = [1 0 0 ] ;

11 t i m e h o r i z o n = 2 0 ;

12 SSE max = 1 ;

13 h i f i c o n t ;

14 w e l l m o d e l ;

15 e m p i r i c a l ;

16 w e l l i n p u t s t o r e = [ ] ;

17 TimeStep ;

18 end

19 methods

20 %% Rece ive measurement and p r e d i c t i o n s

21 f u n c t i o n o = r e c e i v e m e a s a n d p r e d ( o , emp pred , low pred , h i f i p r e d ,

new meas , mud , choke , t ime )

22 num ep = numel ( o . emp pred ) ;

23 e x t r a = num ep − o . t i m e h o r i z o n +1;

24 c u t o f f = max ( e x t r a , 0 ) ;
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25 o . emp pred = [ emp pred o . emp pred ( 1 : end−c u t o f f ) ] ;

26 o . l o w p r e d = [ l o w p r e d o . l o w p r e d ( 1 : end−c u t o f f ) ] ;

27 o . h i f i p r e d = [ h i f i p r e d o . h i f i p r e d ( 1 : end−c u t o f f ) ] ;

28 o . m e a s p b i t = [ new meas o . m e a s p b i t ( 1 : end−c u t o f f ) ] ;

29 o . mud pump = [ mud o . mud pump ( 1 : end−c u t o f f ) ] ;

30 o . c h o k e p r e s s = [ choke o . c h o k e p r e s s ( 1 : end−c u t o f f ) ] ;

31 o . t ime = [ t ime o . t ime ( 1 : end−c u t o f f ) ] ;

32 end

33 %% Choose c o n t r o l l e r s

34 f u n c t i o n [ c h o s e n c o n t s ] = c h o o s e c o n t r o l l e r s ( o , w e l l i n p u t )

35 e m p e r r = sum ( ( o . emp pred − o . m e a s p b i t ( 1 : numel ( o . emp pred ) ) ) . ˆ 2 )

36 l o w e r r = sum ( ( o . l o w p r e d − o . m e a s p b i t ) . ˆ 2 ) ;

37 h i f i e r r = sum ( ( o . h i f i p r e d − o . m e a s p b i t ) . ˆ 2 ) ;

38 i f e m p e r r > o . SSE max* numel ( o . emp pred ) | | numel ( o . emp pred ) < 5

39 o . c h o s e n c o n t s ( 1 ) = 0 ;

40 o . c h o s e n c o n t s ( 2 ) = 1 ;

41 %g i v e t h e new p a r a m e t e r s some t ime b e f o r e r e c a l c u l a t i n g

42 i f numel ( o . emp pred )>=5

43 d a t a = o . h i f i c o n t . s t e p t e s t s ( w e l l i n p u t , o . e m p i r i c a l ) ;

44 %c r e a t e d a t a f o r f i t t i n g

45 sysd = apm id ( da t a , 2 , 2 , 2 ) ;

46 %c l e a r o l d and l o a d new apm f i l e

47 apm ( o . emp ser , o . e m p i r i c a l . c o n t r o l a p p , ’ c l e a r apm ’ ) ;

48 apm load ( o . emp ser , o . e m p i r i c a l . c o n t r o l a p p , ’ s y s c . apm ’ ) ;

49 apm ( o . emp ser , o . e m p i r i c a l . s i m u l a t e a p p , ’ c l e a r apm ’ ) ;

50 apm load ( o . emp ser , o . e m p i r i c a l . s i m u l a t e a p p , ’ s y s c . apm ’ ) ;

51 %r e s e t e m p i r i c a l p r e d i c t i o n h i s t o r y

52 o . emp pred = [ ] ;

53 end

54 e l s e

55 o . c h o s e n c o n t s ( 1 ) = 1 ;

56 o . c h o s e n c o n t s ( 2 ) = 0 ;

57 end

58 end

59 end
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