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Abstract: This paper presents a method for recovering Micro Air Vehicles
(MAVs) in flight using a mothership and towed drogue. A method for
modelling the dynamics of the mothership-cable-drogue system, based
on Gauss’s principle, is presented. The differential flatness property of
the system is exploited to calculate mothership trajectories from desired
drogue orbits, and a Lyapunov based controller is proposed that enables
accurate mothership trajectory tracking. A drag-based controller for the
drogue is also described. Methods to enable the MAV to estimate and
track the drogue orbit are discussed. The modelling and control methods
are illustrated through simulation and flight results.
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1 Introduction

In recent years, the use of Unmanned Air Systems (UASs) has increased
dramatically in both military and civilian fields, with applications ranging from
Intelligence, Surveillance, and Reconnaissance (ISR) to wilderness search and rescue.
In most current applications large and costly UASs, such as the Predator and
the Global Hawk, are used for their high-altitude and long-endurance capabilities.
However, as the potential applications for UAS technologies increase, the emphasis
on smaller platforms is also growing. Micro Air Vehicles (MAVs), with wingspans
typically less than 15 inches, have the potential to open new application areas
and broaden the availability of UAS technology. The potential of MAVs is driven
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primarily by their relatively low cost, superior portability, and, in some cases,
improved stealth. The net result is that MAVs may be used in greater numbers and
by personnel who otherwise would not have access to UAS technology. In certain
applications, the ability of individual personnel (such as soldiers, rescue workers, or
scientists) to carry and deploy MAVs in situ (on the battlefield, in a disaster area,
or around volcanoes) would be of considerable benefit.

The ability to deploy MAVs locally and in large numbers opens many
opportunities, but recovery of MAVs is problematic in certain scenarios.
For instance, if a soldier deploys a backpackable MAV on the battlefield to gather
time-critical ISR information, it is undesirable for the MAV to return to the soldier
because this could disclose his or her location to the enemy. Additionally, if a
large mothership deploys multiple MAVs in a remote location for ISR, wildfire
monitoring, or other surveillance, the MAVs may not have sufficient range to return
to a distant base. Similarly, in disaster areas that are too remote or dangerous, MAV
search or monitoring platforms may not be recovered by ground personnel.

One solution to this problem is to use a mothership as an aerial recovery
platform for MAVs. The primary challenge with this approach is the high speed
of the mothership relative to the MAV, which makes direct MAV/mothership
rendezvous and capture impractical. Furthermore, aerial recovery must be highly
accurate, as the rendezvous and capture must be coordinated in both time and
space. The approach taken in the present work is to employ a capture device
(drogue) that is towed by a larger mothership, as shown in Figure 1. In this method,
the mothership enters an orbit designed to cause the towed drogue to execute an
orbit of smaller radius and lower speed (less than the nominal speed of the MAV).
The MAV then enters the drogue orbit at its nominal airspeed and overtakes the
drogue with a relatively slow closing speed. In the terminal stages of rendezvous
and capture, a vision-based homing algorithm, such as proportional navigation
(PRONAV), is used to close the gap between MAV and drogue (Zarchan, 1990;
Siouris, 2004).

The aerial recovery approach described in this paper is therefore a challenging
problem in multi-vehicle modelling and control involving three vehicles: MAV,
mothership, and drogue. This paper focuses on novel contributions to four key
elements of the aerial recovery problem:

1 Modelling of mothership-cable-drogue system (Section 2). We present an
accurate forward dynamics model to predict trajectories of a passive drogue
for given trajectories of the mothership. This N -link model, based on Gauss’s
principle, enables simulation and testing of the interactions between the
mothership and a passive drogue.

2 Mothership path planning and control (Section 3). For the case of passive
drogues, which can only be controlled indirectly via the mothership, it is
necessary to have a method to calculate the orbit that the mothership must
execute to place the drogue in an orbit suitable for aerial recovery of a slower
MAV. An inverse dynamics model, based on the principal of differential
flatness, is developed to enable calculation of the required mothership orbit
from a specified drogue orbit. A Lyapunov-based backstepping control law is
also developed to ensure accurate tracking of the orbit by the mothership.
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3 Active drogue control for improved orbit tracking (Section 4). To complement
the indirect control of the drogue (via the mothership), we develop an active
drogue control approach based on modulation of the drogue drag coefficient.
We show that the drogue orbit radius may be controlled by changing the drag
of the drogue. This approach will allow more accurate orbit tracking to
facilitate the final MAV/drogue rendezvous.

4 MAV orbit estimation and tracking (Sections 5 and 6). After the mothership
and active or passive drogue establish a suitable orbit, the MAV must enter
the drogue orbit and approach the drogue for capture of the MAV to occur.
We develop methods that enable the MAV to estimate the drogue orbit from
GPS data, and track the orbit in preparation for final rendezvous. Future
work will address the problem of final approach and docking, including
hardware design and PRONAV algorithms.

As outlined, the primary purpose of this work is to model the dynamics
of mothership-drogue-MAV interactions, develop control laws to enable orbit
generation and tracking, and validate these concepts primarily through simulation.
Initial experimental results are provided for the orbit-generation component of aerial
recovery; future work will involve extensive flight tests to validate and refine the
remaining components.

Figure 1 Basic aerial recovery concept. The mothership recovers a MAV by towing a
drogue that is actuated and can manoeuvre and communicate with the MAV to
facilitate successful capture (see online version for colours)

Our approach is motivated by previous work on the dynamics of towed
cable systems. Skop and Choo (1971) show that if a towplane maintains a
constant-angular-rate orbit of radius R, and the drogue has sufficient aerodynamic
drag, then the drogue will execute a stable orbit of radius r � R. Furthermore,
since the angular rates of the towplane and the drogue must be the same, the speed
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of the drogue will be less than the speed of the towplane. Murray (1996) designs
a path planning algorithm for the towplane with the objective of minimising the
orbit radius of the drogue. In more recent work, Williams and Trivailo (2007a,
2007b) give a detailed description of the dynamics of circularly towed drogues and
design strategies for moving from one orbit configuration to another. The objective
in Williams and Trivailo (2007a, 2007b) is precision pickup and delivery of payloads
on the ground by a fixed-wing aircraft. More recently, Williams and Ockels (2009)
employed this approach to the problem of lifting payloads using multiple fixed-wing
aircraft. Their work proved the concept’s feasibility and studied the equilibria and
stability of such systems. The focus in Murray (1996), Williams and Trivailo (2007a,
2007b), and Williams and Ockels (2009) is on minimising the orbit radius of the
drogue. For aerial recovery of MAVs, we take a different approach to the problem.
As shown in Figure 1, rather than attempting to minimise the radius of the orbit of
the drogue, our objective will be to place the drogue in a stable orbit whose radius
r is greater than the minimum turning radius of the MAV.

2 Mathematical model of cable-drogue system

Mathematical models of cable-drogue or towed-cable systems are established in
the literature for both air and underwater environments. Several approaches
to modelling cable dynamics have been described. Choo and Casarella (1973)
compare various methods and describe the relative strengths and limitations of
each. They conclude that, despite the heavy computational workload required
for implementation, the finite element, or lumped mass technique is the most
versatile of the methods studied. Using the finite element approach, the cable in the
cable-drogue system may be modelled as a finite number of rigid links of uniform
length, and the drogue as a point mass, which is the last joint of the cable.
Figure 2 depicts this approach, with the cable modelled as N rigid links.

Figure 2 N -link lumped mass representation of cable-drogue system (see online version
for colours)
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The approaches to modelling the cable dynamics described in the literature require
that the internal and external forces are described explicitly. Murray (1996)
develops towed-cable dynamics based on the Lagrange approach, which requires
an explicit derivation of the tension in the cable. Cochran et al. (1992) develop
an approach to eliminating constraint forces in the cable that maintains constant
link lengths through a change of variables. Chin et al. (2000) apply partial
differential equations to model the cable-body system and solve them using the
finite difference method. Turkyilmaz and Egeland (2001) develop a two-dimensional
dynamic model for a towed cable for seismic survey studies. Williams and Trivailo
(2007a) derives the equations of motion of the system by introducing cable attitude
angles. These methods result in dynamic model equations that are complicated and
difficult to use for the purposes of simulation and control design.

Most of the methods reported in the literature use techniques that model
the cable as a series of N < ∞ rigid links with lumped masses at the joints.
As recommended in Choo and Casarella (1973), we also followed this approach.
However, most researchers develop models based on Euler-Lagrange equations,
which do not scale well to a large number of links. As an alternative, we develop the
mathematical model of cable-drogue systems using Gauss’s Principle, as described in
the work of Udwadia and Kalaba (1996). A similar approach was used in the context
of path planning for UAVs in McLain and Beard (2000). As will be demonstrated in
the next section, this method is well-suited to problems with complex internal forces,
as seen in mothership-cable-drogue interactions. Rather than computing internal
forces between cable links directly, the kinematic constraints are employed.

2.1 Gauss’s principle

Consider a system of n particles of mass m1, m2, . . . , mn. Let the vector
pi = (xi, yi, zi)T represent the position of the ith particle of this system in a
rectangular inertial reference frame (Udwadia and Kalaba, 1996). We assume that
the ith particle is subjected to a given impressed force Fi(t), so that its acceleration
without constraints would be given by the vector ai = Fi(t)/mi. The three
components of the vector ai correspond to the accelerations of the ith particle driven
by Fi in the three mutually perpendicular coordinate directions. Thus the equations
of motion without constraints on the particles of the system can be written as

Ma(t) = F(x(t), ẋ(t), t), (1)

where

F(t) = (FT
1 ,FT

2 , . . . ,FT
n )T

a(t) = (aT
1 ,aT

2 , . . . ,aT
n )T

x(t) = (pT
1 ,pT

2 , . . . ,pT
n )T

M = Diag(m1, m1, m1, m2, . . . , mn, mn, mn).

In the presence of constraints, the acceleration of each particle at time t will
differ from a(t). We denote this constrained acceleration by the 3n-vector
ẍ(t) = (p̈T

1 , p̈T
2 , . . . , p̈T

n )T . Gauss’s principle asserts that, among all the accelerations
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that the system can have at time t that are compatible with the constraints, the
accelerations that actually occur are those that minimise

G(ẍ) = (ẍ − a)T M(ẍ − a) = (M1/2ẍ − M1/2a)T (M1/2ẍ − M1/2a). (2)

Assuming that the m constraints can be expressed as linear equality relations
between the accelerations of the particles of the system, the constraints will always
be of the standard form

A(ẋ,x, t)ẍ = b(ẋ,x, t), (3)

where the matrix A is m by 3n and the vector b is an m-vector.
Minimising (2) subject to the constraint (3) implies that at each instant of time

t, the actual acceleration of the system of n particles is given by

ẍ = a + M−1/2(AM−1/2)+(b − Aa), (4)

where (·)+ is the unique Moore-Penrose inverse (Udwadia and Kalaba, 1996).

2.2 Dynamic equations of cable-drogue systems using Gauss’s principle

Figure 2 depicts the cable-drogue system with the cable modelled as N rigid links.
The forces acting on each link are lumped and applied at the joints, and the
drogue is the last joint of the cable. Let pi = (xi, yi, zi)T ∈ R3, i = 1, 2, . . . , N
be the location of the ith link. The position of the towplane or mothership is
pm = (xm, ym, zm)T ∈ R3. If the point masses associated with each link are
unconstrained, then the dynamic equations describing their motion are

p̈i = ai, i = 1, 2, . . . , N,

p̈m = am,

where ai, i = 1, 2, . . . , N, and am ∈ R3 are the unconstrained accelerations
driven by the applied forces in three dimensions. Alternatively, defining x =
(pT

1 ,pT
2 , . . . ,pT

N )T and a = (aT
1 ,aT

2 , . . . ,aT
N )T gives

ẍ = a. (5)

However, the motion of the point masses associated with each link are constrained
by the relationship

‖p1 − pm‖2 = l2,

‖pi+1 − pi‖2 = l2, i = 1, 2, . . . , N − 1,

where L is the cable length and l = L/N is the length of each link. These position
constraints may also be expressed in matrix form as

φ(x,pm) �




‖p1 − pm‖2 − l2

‖p2 − p1‖2 − l2

...
‖pN − pN−1‖2 − l2


 = 0. (6)
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Differentiating equation (6) with respect to time results in the velocity constraint

ψ(x,pm) �




(p1 − pm)T (ṗ1 − ṗm)
(p2 − p1)T (ṗ2 − ṗ1)

...
(pN − pN−1)T (ṗN − ṗN−1)


 = 0. (7)

Assuming that the motion of the mothership (pm, ṗm, p̈m) is known, the
acceleration constraints can be written in matrix form as

A(x)ẍ = b(ẋ, ṗm, p̈m), (8)

where

A =




(p1 − pm)T 0 · · · 0
−(p2 − p1)T (p2 − p1)T · · · 0

...
. . .

. . .
...

0 · · · −(pN − pN−1)T (pN − pN−1)T


 ,

b = −




‖ṗ1 − ṗm‖2

‖ṗ2 − ṗ1‖2

...
‖ṗN − ṗN−1‖2


 +




(p1 − pm)T p̈m

0
...
0


 .

Based on Gauss’s principle, the actual acceleration of the cable-drogue system (5)
subject to the constraints (8) is given by (4). The initial conditions for the system
must be chosen such that both φ(x,pm) = 0 and ψ(x,pm) = 0.

As indicated by McLain and Beard (2000), one of the drawbacks of this method
is that while solving equation (4), numerical errors may cause the constraints
φ(x,pm) and ψ(x,pm) to drift from zero. When this happens, equation (4) no longer
represents the physical dynamics of the cable. That is to say, no mechanism serves to
drive the constraints back to zero. To mitigate this problem, equation (4) is modified
as (McLain and Beard, 2000)

ẍ = a + M−1/2(AM−1/2)+(b − Aa) − γ1

(
∂φ

∂x

)T

φ − γ2

(
∂ψ

∂x

)T

ψ,

where γ1 and γ2 are positive constants that are tuned through simulation to give
satisfactory convergence for the selected link lengths of the cable model. For
example, for a 1000 metre cable modelled as 10 links (100 metres per link), γ1
and γ2 were given the values of 0.05 and 0.002, respectively. The additional two
terms cause the ODE solution to decrease the gradient of the constraints until
they are not violated. Selecting γ1 and γ2 properly guarantees that the modified
equation approximately represents the dynamics of the constrained physical system.
The mass matrix M = Diag(ml, ml, . . . , ml, md, md, md) ∈ R3N×3N , where mc is
the total mass of the cable, ml = mc/N is the mass of each link, and md is the mass
of the drogue.
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2.3 Dynamic model simulation results

The model presented in the previous section enables simulation of the
mothership-drogue dynamics. The simulation architecture used in this and
subsequent simulations is shown in Figure 3. In the simulations presented in this
paper wind is not considered, and the air density does not vary as a function of
altitude. Future work will address these issues.

Figure 3 Simulation system. The mothership flies in a constant-radius orbit and does not
feel tension from cable-drogue system. Passive and active drogue modes are
selectable by the user (see online version for colours)

Key simulation parameters are shown in Table 1 for a simulation in which the
mothership follows a fixed circular orbit at a constant velocity while towing a passive
drogue. Figure 4 shows that the steady radius of the drogue oscillates between
115m and 119m. The steady state drogue velocity is approximately 19.5m/s, which
is larger than the velocity of the MAV. Therefore, for the conditions considered,
the MAV cannot rendezvous with the drogue. Figure 5 shows the two-dimensional
top-down view and three-dimensional view of the simulated system. The cable bows
outward under the effect of the aerodynamic drag.

Figure 4 Simulation of passive drogue motion in response to a circular mothership orbit.
Shows north and east motion of the drogue (left) and the radius, velocity and
distance to the MAV of the drogue (right). Steady state is reached after
approximately 150 s (see online version for colours)
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Figure 5 Top-down and 3D views of the simulated mothership and passive drogue.
The dots on the cable represent joints (see online version for colours)

Table 1 Parameters for simulation of passive and active drogue control

Mothership Airspeed Altitude Orbit radius
50m/s 1000m 300m

Cable Links Length Diameter Mass
10 900 m 0.01 m 0.01 kg

MAV Airspeed
16.67 m/s

3 Mothership path planning and control

The previous section described methods for deriving the forward dynamic equations
for the mothership-cable-drogue system, which enables us to calculate the motion of
the drogue for a given motion of the mothership. In this section we develop methods
for the inverse problem: calculating the required mothership trajectory to achieve
a desired drogue trajectory. We also develop a Lyapunov-based backstepping
algorithm to cause the mothership to track the desired orbit accurately, with the goal
of achieving accurate drogue orbits. We assume that the drogue is passive, i.e., it is
only controlled indirectly via the mothership and cable, and that it is instrumented
with a small autopilot and therefore has access to its own acceleration, angular rates,
airspeed, and GPS location. Under these assumptions, the basic idea is to control
the motion of the mothership so that the drogue enters a specified stable orbit whose
radius r is greater than the minimum turning radius of the MAV, at an airspeed
that is slightly below the nominal airspeed of the MAV.

In recent decades, control strategies to address related problems have appeared
in the literature. The concept of differential flatness of the system is exploited
in Murray (1996) to plan towplane paths that minimise the motion of the drogue.
This work shows that the trajectory of the towplane is uniquely prescribed by the
motion of the drogue. Unfortunately, the algorithm as presented in Murray (1996)
has numerical stability issues. In Williams and Trivailo (2007a), sequential quadratic
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programming is used to plan open-loop trajectories for the towplane. Williams and
Trivailo (2007b) addresses the problem of entering and exiting the orbit with the
cable deployed, and open-loop strategies are derived that minimise the tension on
the cable and the drogue. Williams and Trivailo (2007b) also addresses the problem
of deploying the cable from the towplane using a winch after the towplane is in its
orbit. The majority of prior work in this area is related to the dynamics and stability
of the drogue; few studies have explored specific strategies for accurate control of
the mothership-cable-drogue system.

3.1 Mothership orbit calculation using differential flatness

The concept of differential flatness has been proved to be useful in the design of
advanced control and supervision schemes for nonlinear systems. Fliess et al. (1995)
introduces the measure to define flat systems and apply the differential flatness
theory to vertical take-off aircraft and articulated ground vehicles. Lu et al. (2005,
2007, 2008) show the application of differential flatness in vehicle trajectory tracking
problems using neural networks to implement dynamic inversion. We make use of
this property to calculate the inverse dynamics relating a desired drogue orbit to the
required orbit of the mothership.

Definition: The system ẋ = f(x,u, t) where the states x ∈ R
n and the inputs

u∈ R
m, is differentially flat if we can find a set of variables y ∈ R

m called flat
outputs and integers r and q such that

y = h(x,u, u̇, ü, . . . ,u(r))
x = h1(y, ẏ, ÿ, . . . ,y(q))
u = h2(y, ẏ, ÿ, . . . ,y(q+1))

that satisfy the system state equations.

Assuming that the only forces on the drogue are aerodynamic forces, gravity, and
tension forces from the cable, the cable-drogue system is differentially flat using
the trajectory of the drogue as a flat output. Therefore, specifying the desired
trajectory of the drogue will dictate the required trajectory for each cable link, and,
consequently, for the mothership.

Suppose that the trajectory of the drogue is C∞, i.e., it has derivatives of all
orders. We can then compute the tension components in the N th link of the cable
(at the end attached to the drogue) from

T x
N = mN ẍN − F x

N

T y
N = mN ÿN − F y

N

T z
N = mN z̈N − F z

N + mNg,

where F x
N , F y

N , F z
N are the aerodynamic forces acting on the drogue, expressed in the

inertial frame. Assuming the length of each link is a constant l = L/N , the location
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of the (j − 1)th mass point (located at the (j − 1)th joint) is related to the jth mass
point using

xj−1 = xj + l
T x

j

‖Tj‖

yj−1 = yj + l
T y

j

‖Tj‖
zj−1 = zj + l

T z
j

‖Tj‖
j = 2, 3, . . . , N.

where ‖ · ‖ denotes the Euclidean norm. Consequently, the forces on the (j − 1)th
mass point can be calculated by

T x
j−1 = mj−1ẍj−1 − F x

j−1 + T x
j

T y
j−1 = mj−1ÿj−1 − F y

j−1 + T y
j

T z
j−1 = mj−1z̈j−1 − F z

j−1 + T z
j + mj−1g

j = 2, 3, . . . , N.

At each time step, these equations are applied recursively to each link of the cable
until the trajectory of the mothership is calculated.

3.2 Mothership trajectory tracking using Lyapunov-based control law

Once the desired trajectory of the mothership is calculated using methods from
the previous section, a Lyapunov-based backstepping approach (Khalil, 2002)
can be used to find the control inputs that cause the mothership to track that
trajectory. This is inspired, in part, by the work of Skjetne et al. (2004) and
Aguiar and Hespanha (2007). Skjetne et al. (2004) proposes an output maneuvering
controller for a class of strict feedback nonlinear processes and applies it to path-
following for fully actuated ships. Aguiar and Hespanha (2007) combine adaptive
switching supervisory control with a nonlinear Lyapunov-based (backstepping)
tracking control law for underactuated autonomous vehicles.

The dynamic equations of the mothership can be written as

ṗn = V cos χ cos γ

ṗe = V sin χ cos γ

ṗd = −V sin γ

V̇ = −g sin γ − D

m
+

1
m

T +
FV

m

γ̇ = − g

V
cos γ cos φ +

g

V
(cos φ)n +

Fγ

mV

χ̇ =
L

mV cos γ
sin φ +

Fχ

mV cos γ

φ̇ = uφ
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where n = L
mg is the (controlled) load factor. The control inputs are the thrust

T , load factor n, and roll angle command uφ. The tension forces in the inertial
coordinate system can be expressed in velocity coordinates via the transformation


 FV

Fχ

−Fγ


 =


 cos γ cos χ cos γ sin χ − sin γ

− sin χ cos χ 0
sin γ cos χ sin γ sin χ cos γ





 T x

1
T y

1
T z

1


 ,

where (T x
1 , T y

1 , T z
1 ) are the components of tension in the inertial frame for the first

cable element connected to the mothership.
Assuming that the desired trajectory pd(t) ∈ R3 is smooth (it has derivatives of

all orders), and defining the candidate inputs as uc � (T, n, sin φ)T , then rearranging
the dynamic equations of the mothership yields


 V̇

γ̇
χ̇


 =




−g sin γ − D
m + Fv

m

− g
V cos γ cos φ + Fγ

mV

Fχ

mV cos γ


 +




1
m 0 0

0 g
V cos φ 0

0 0 L
mV cos γ





 T

n
sin φ




= F + Guc,

where

F =




−g sin γ − D
m + Fv

m

− g
V cos γ cos φ + Fγ

mV

Fχ

mV cos γ


 , G =




1
m 0 0

0 g
V cos φ 0

0 0 L
mV cos γ


 ,

uc =


 T

n
sin φ


 .

Step 1. Error dynamics: Let e � p − pd be the tracking error in the inertial frame,
where p = (pn, pe, pd)T is the location of the mothership. The dynamic equation for
the inertial tracking error is then given by

ė = ṗ − ṗd.

Step 2. Error convergence: Define the Lyapunov candidate function V1 � 1
2e

T e,
which has the time derivative

V̇1 = eT ė

= eT (ṗ − ṗd). (9)

At this stage of the development, we consider ṗ as a virtual control, where V̇1 can
be made negative definite by setting ṗ equal to ṗd − k1e for some positive constant
k1. Introducing the error variable

zd � ṗd − k1e,
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and adding and subtracting −k1eT e in equation (9) gives

V̇1 = −k1eT e + eT (ṗ − zd).

Step 3. Backstepping for zd: Consider the augmented Lyapunov candidate function

V2 � V1 +
1
2
(ṗ − zd)T (ṗ − zd) =

1
2
eT e +

1
2
(ṗ − zd)T (ṗ − zd),

with Lie derivative

V̇2 = −k1eT e + (ṗ − zd)T (e + p̈ − żd).

From the mothership dynamic equations, we have

p̈ =


 cos γ cos χ −V sin γ cos χ −V cos γ sin χ

cos γ sin χ −V sin γ sin χ −V cos γ cos χ
− sin γ −V cos γ 0





 V̇

γ̇
χ̇




= M(F + Guc),

where

M �


 cos γ cos χ −V sin γ cos χ −V cos γ sin χ

cos γ sin χ −V sin γ sin χ −V cos γ cos χ
− sin γ −V cos γ 0


 .

Therefore

V̇2 = −k1eT e + (ṗ − zd)T (e + MF + MGuc − żd).

By constraining V , γ, and χ to reasonable values, the matrices M and G will be full
rank. The product of two full-rank matrices is also full rank, and therefore MG is
invertible. Define

ξ � (MG)−1[żd − MF − e − k2(ṗ − zd)],

where k2 is a positive constant, and

η � sin φ.

If we select
(

T
n

)
=

(
1 0 0
0 1 0

)
ξ, (10)

and

zd
2 � η − (

0 0 1
)
ξ,
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then the time derivative of the zd
2 can be written as

ż2
d = η̇ − (

0 0 1
)
ξ̇

= uφ cos φ − (
0 0 1

)
ξ̇,

and

uc =


T

n
η


 = ξ + zd

2


 0

0
1


 .

Thus

V̇2 = −k1eT e − k2(ṗ − zd)T (ṗ − zd) + (ṗ − zd)T


MG


 0

0
1


 zd

2


 .

Step 4. Backstepping for zd
2 : Consider the augmented Lyapunov candidate function

V3 � V2 +
1
2
(zd

2)2,

with the time derivative

V̇3 = −k1eT e − k2(ṗ − zd)T (ṗ − zd) + zd
2


żd

2 + (ṗ − zd)T MG


0

0
1







= −k1eT e − k2(ṗ − zd)T (ṗ − zd)

+ zd
2


uφ cos φ − (

0 0 1
)
ξ̇ + (ṗ − zd)T MG


0

0
1





 .

If we choose

uφ =
1

cos φ


(

0 0 1
)
ξ̇ − (ṗ − zd)T MG


0

0
1


 − k3z

d
2


 , (11)

where k3 is a positive constant, then the time derivative of V3 becomes

V̇3 = −k1eT e − k2(ṗ − zd)T (ṗ − zd) − k3(zd
2)2 ≤ 0. (12)

Therefore, according to the Lyapunov stability theorem (Khalil, 2002), the point
(eT , (ṗ − zd)T , zd

2)T = 0 is uniformly asymptotically stable, and from equation (12)
we have

V3(t) ≤ V3(0)
‖e(t)‖2 + ‖ṗ(t) − zd(t)‖2 + [(zd

2(t)]2 ≤ ‖e(0)‖2 + ‖ṗ(0) − zd(0)‖2 + [(zd
2(0)]2.

Thus by the appropriate selection of k1, k2, and k3, e is bounded and converges to a
neighborhood of the origin. The control inputs (T, n, uφ) are given by equations (10)
and (11).
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3.3 Mothership path planning and control simulation results

In this section, the methods developed in Sections 3.1 and 3.2 are used to simulate
trajectory calculation and control of the mothership, given a desired drogue orbit.
Table 2 contains the parameters used in the simulation. The desired circular
trajectory (pdr

n , pdr
e , pdr

d ) of the drogue can be written in parametric form as

pdr
n (t) = Rdr sin

(
V dr

Rdr
t

)

pdr
e (t) = Rdr cos

(
V dr

Rdr
t

)

pdr
d (t) = −900 m,

t = [0, +∞).

Table 2 Parameters for simulation of mothership orbit calculation and control

Mothership Initial position Velocity range Mass
(0, 130, −1000)m 18–27m/s 1.76kg

Drogue Desired airspeed Desired altitude Desired orbit radius
V dr = 15m/s 900m Rdr = 100m

Cable Mass Length Diameter
0.01kg 100m 0.01m

MAV Airspeed
16.67m/s

where Rdr and V dr are defined in Table 2. The desired initial position (pm
n (0),

pm
e (0), pm

d (0)), velocity V m, and radius Rm of mothership to achieve the specified
drogue orbit may be calculated using the differential flatness property:

(pm
n (0), pm

e (0), pm
d (0)) = (99.57, 96.86, −908.71) m

V m = 20.84 m/s
Rm = 138.91 m.

Thus the initial position error of the mothership is (−99.57, 33.14, 91.29) m.
Figure 6 shows simulation results of the desired and actual trajectories of the
mothership, as well as the tracking error in the absence of wind. We see that
the mothership tracks the desired trajectory after a 50 s transient. Figure 7 shows
simulation results of the desired and actual trajectories of the drogue, as well as
the tracking error in the absence of wind. We see that the drogue converges to its
desired trajectory after a 70 s transient. Figure 8 shows the time evolution of the
characteristic parameters of the mothership. Since the initial position error of the
mothership is large compared to the airspeed of the mothership, the control inputs
all go to their limits in the first 50 s transient, and after that the mothership enters a
steady state. The tension force in the cable acts on the mothership in the centripetal
direction. The result is that, even though the roll angle φ goes to zero in the steady
state, the mothership is still able to fly in a circular orbit.
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Figure 6 Mothership trajectory and error driven by Lyapunov-based backstepping control
law in the absence of wind (see online version for colours)

Figure 7 Drogue trajectory and error driven by Lyapunov-based backstepping control law
in the absence of wind (see online version for colours)

Figure 8 Time evolution of the thrust T , load factor n, roll angle φ, path angle γ of the
mothership (see online version for colours)
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4 Active drogue control for improved orbit tracking

The previous section described a method for controlling the orbit of a passive drogue
indirectly through path planning and control of the mothership. In this section we
present a method to control the drogue orbit directly through drag modulation, with
the objective of improving upon the control achieved through indirect control alone.
It is assumed that the drogue is fitted with drag-inducing spoilers.

Most towed-cable systems described in the literature (e.g., Skop and Choo, 1971;
Murray, 1996; Turkyilmaz and Egeland, 2001; Williams and Trivailo, 2007a, 2007b;
Williams et al., 2008) are based on a passive (unactuated) drogue. Our approach is
motivated by Skop and Choo (1971), which shows that under zero-wind conditions,
if the mothership flies in a constant-angular-rate orbit of radius R, and the drogue
has sufficient aerodynamic drag, then the motion of the drogue has a stable orbit of
radius r � R. Since the angular rates of the towplane and the drogue are identical,
i.e.,

ω =
Vm

R
=

VN

r
,

where ω is the angular rate of the towplane and the drogue, and the Vm and VN are
the airspeeds of the mothership and the drogue, respectively, then

VN = r
Vm

R
. (13)

Therefore, we can regulate the drogue to a desired radius rd by regulating the
velocity of the drogue to V d

N = rdVm/R. A simple method to regulate drogue
velocity is to add spoilers to the drogue and to regulate the spoilers with
the control law

CDN
=

(
KP +

KI

s

)
(VN − V d

N ),

where CDN
is the (spoiler-controlled) drag coefficient, V d

N is the desired airspeed of
the drogue, VN is the current airspeed, s is the Laplace variable, and KP and KI

are positive proportional and integral gains, respectively.

4.1 Active drogue control simulation results

Simulations were created to demonstrate that the drag coefficient can be used
effectively to control the drogue radius. To compare the difference between the
drogue motion with and without active control, the drag controller is switched on at
t = 150 s. Given the parameters in Table 1, if the desired drogue radius is 60m, then
the desired drogue velocity is V d

N = 10m/s (see equation (13)). Figure 9 shows that
the steady state radius of the drogue converges to a smaller radius that oscillates
between 54m and 58m. The steady state drogue velocity oscillates between 9m/s
and 9.5m/s, allowing the chasing MAV to overtake and rendezvous with the drogue.
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Figure 9 Simulation of drogue motion using active drag control. Shows north and east
motion of the drogue (left) and the radius, velocity and distance to the MAV
of the drogue (right). Drag control is activated at t = 150 s. The steady state
radius is smaller than without drag control (see online version for colours)

5 MAV orbit estimation

In previous sections, a method was described for achieving a desired drogue orbit by
controlling the orbit of the mothership and the drag of the drogue. The purpose of
this section is to describe methods for another important element of MAV-drogue
rendezvous: the mathematical description of the drogue’s orbit and the estimation
of the orbit parameters from GPS data. In Section 6 we discuss methods to enable
the MAV to track the drogue orbit in preparation for final rendezvous. For this
paper, it is assumed that there is communication between the drogue and MAV,
allowing the drogue to transmit its position and heading (from an on-board GPS
receiver) to the MAV. The drogue orbit is estimated from the transmitted data and
a coordinated rendezvous approach is taken, rather than treating the drogue as a
target during the initial stages of rendezvous. The MAV assumes the same orbit as
the drogue, allowing a more natural initial rendezvous approach. During the final
stages of rendezvous, when the relative position between the MAV and drogue is
small, it is necessary to use some other rendezvous algorithm (e.g., vision-based
proportional navigation). This section focuses on the problem of estimating the
drogue orbit from GPS data. Section 6 describes a method that enables the MAV
to track the drogue orbit. Future work will address the final approach and docking
of the MAV and drogue through the use of vision-aided proportional navigation,
such as that described in Barber et al. (2007). This work is, in some ways, related to
research on autonomous aerial refueling of UAVs, which has been proposed using
vision alone (Kimmett et al., 2002) and integrated vision and GPS (Mammarella
et al., 2008). Unlike work on aerial refueling, however, aerial recovery research must
address the issue of dissimilar speeds of the mothership and MAV. Furthermore,
in the approach taken in this paper the MAV must travel in a circular or elliptical
path to achieve docking with the drogue, whereas docking for aerial refueling can
be accomplished with roughly linear trajectories.
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Ideally, the drogue will travel in a circular orbit in a plane parallel to the ground.
In practice, the actual drogue orbit is not circular and in the horizontal plane due to

• wind and other disturbances

• the numerical approximations inherent in the inverse dynamics to find the
required mothership orbit from the desired circular drogue orbit.

Consequently, for estimation purposes, the drogue orbit will be treated as an
arbitrarily rotated ellipse. The parametric equations for a planar elliptical orbit are
given by

x − x0 = a cos(t) cos(ψ) − b sin(t) sin(ψ)
y − y0 = a cos(t) sin(ψ) + b sin(t) cos(ψ) (14)

where x0 and y0 describe the centre of the ellipse, a and b are the major and minor
axes respectively, and ψ is the angle of rotation of the ellipse measured from the
x-axis. The strategy taken in this paper is to estimate the orbit along which the
drogue is travelling, projected onto the plane parallel to the ground. The MAV
tracks that orbit using a longitudinal controller, and a separate control loop is used
to match the MAV and drogue altitudes.

5.1 Fitzgibbon’s method

Early numerical methods for estimating the parameters of an ellipse were based on
general conic fitting, which could result in estimates that actually represented other
conics (hyperbolas or parabolas). Fitzgibbon et al. (1999) developed a constrained
least-squares fitting method for ellipses by including a constraint to guarantee that
the solution must be an ellipse. Fitzgibbon’s approach begins with the general
equation for a conic,

F (x, y) = a1x
2 + a2xy + a3y

2 + a4x + a5y + a6 = 0, (15)

and adds an ellipse-specific constraint given by

4a1a3 − a2
2 > 0. (16)

This is an inequality constraint, requiring that the left side of the equation be greater
than zero to result in the equation of an ellipse. It has been shown that recasting
this as an equality constraint, in which equation (16) is still satisfied, results in
valid parameter estimates whose values are not dependent on the particular constant
value used on the right side of equation (16). Essentially, since equation (15) can
be multiplied by a constant and the result is the same ellipse, equation (16) can be
set to an arbitrary constant without loss of generality. Thus equation (16) can be
written as

4a1a3 − a2
2 = 1, (17)

where the right side of the equality is arbitrarily set to the value of 1. This procedure
is desirable because the solution of the constrained optimisation problem is more
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straightforward for the case of equality constraints. Using the method of Lagrange
multipliers proposed by Gander (1981), the estimation problem can be posed as

DTDa = λCa subject to aTCa = 1, (18)

where

D =




x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

i xiyi y2
i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2

N xN yN 1




, (19)

C =




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , (20)

and

a =
[

a1 a2 a3 a4 a5 a6
]T

. (21)

Solving equation (18) yields six possible solutions for a; the correct least-squares
solution is the eigenvector that corresponds to the smallest positive eigenvalue. These
general ellipse parameters can be used to solve for the parameters in the parametric
equations of an ellipse, described by equation (14).

5.2 Numerically stable improvement

Fitzgibbon’s method has the drawback that the computation of the eigenvalues
is sometimes unstable and can yield infinite or complex results. This arises from
the fact that DT D is often nearly singular. Halir and Flusser (1998) proposed a
method for improving the accuracy and speed of the algorithm. This method, which
is based on Fitzgibbon’s method, makes use of the special structure of the matrices
to eliminate the singularities. The result is unstable only if all of the points lie on
the same line, in which case there is no suitable approximation for an ellipse.

5.3 Recursive least squares

The method introduced by Halir and Flusser is used to obtain an estimate of orbit
parameters from the first several GPS data points provided by the drogue. Once
an initial estimate of the orbit is calculated using this method, Recursive Least
Squares (RLS) (Moon and Sterling, 2000) is used to update the estimate for each
new GPS data point received from the drogue. The parameters to estimate are again
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represented by the vector a defined in equation (21). The parameter estimates are
updated using the following equations:

γn+1 =
1

λ + xT
n+1Pnxn+1

an+1 = an − γn+1Pnxn+1xT
n+1an

Pn+1 =
1
λ

(
Pn − γn+1Pnxn+1xT

n+1Pn

)
,

where P is initialised as the identity matrix. The vector x represents the most recent
GPS data received from the drogue, and λ is the forgetting factor, which controls
the responsiveness of the estimates and the level of filtering.

5.4 MAV orbit estimation simulation results

The Halir–Flusser method followed by RLS was applied to simulated GPS data
from the drogue, with additive Gaussian noise with a standard deviation of 5m.
Figure 10 shows the resulting estimated elliptical orbit. Figure 11 shows the
evolution of the estimate of x0 (the north position of the centre of the ellipse) as new
GPS data points are included in the recursion. It is clear that the estimate converges
to the true value of 50m. Figure 12 shows the evolution of the estimate of the ellipse
major axis. Again, the estimate converges to the true value. Estimates for the other
ellipse parameters (minor axis, rotation angle, and east location of the centre) follow
similar trends.

Figure 10 Estimated orbit from simulated noisy data. The solid line represents the true
orbit. The circles represent simulated noisy GPS data points. The dashed line
represents the estimated orbit (see online version for colours)
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Figure 11 Estimate of x0 using the Halir–Flusser method and RLS (see online version
for colours)

Figure 12 Estimate of the ellipse major axis using the Halir–Flusser method and RLS
(see online version for colours)

6 MAV orbit tracking

The objective is for the MAV to insert itself onto the drogue orbit at a point
behind the drogue, and then track the orbit at a speed slightly greater than that
of the drogue until rendezvous occurs. This section describes methods that enable
the MAV to enter and track the drogue orbit. The approach taken in this paper
is to decouple longitudinal control (for altitude tracking) from lateral control (for
horizontal orbit tracking). The horizontal orbit is the elliptical projection of the
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drogue orbit onto the horizontal plane, which is estimated using the methods
described in the section.

6.1 Lateral control

The lateral control to achieve elliptical orbit tracking of the MAV is done using
a vector field method (Nelson et al., 2007). Whether the MAV is on or off of the
elliptical orbit, its desired heading is calculated using

dy = −b2 (x − x0) +
k (y − y0)

a

(
1 − (x − x0)2

a2 − (y − y0)2

b2

)

dx = a2 (y − y0) +
k (x − x0)

a

(
1 − (x − x0)2

a2 − (y − y0)2

b2

) (22)

and

tan(ψ) =
∂y

∂x
. (23)

Figure 13 shows a simulation of the MAV entering and tracking an elliptical orbit
using the vector field approach. In this simulation, the MAV starts in the centre of
the ellipse, enters the elliptical orbit, and executes a complete orbit. The MAV tracks
the orbit to within one meter, as shown in Figure 14.

Figure 13 Elliptical orbit tracking. The dashed line represents the drogue orbit, and the
solid line represents the MAV trajectory as it tracks the desired orbit, starting
from an initial position at the centre of the orbit (see online version for colours)

6.2 Longitudinal control

The longitudinal control of the MAV is used to match the altitude of the MAV
to that of the drogue. The commanded altitude for the MAV is the altitude of the
drogue at its current position. The autopilot calculates a desired angle of attack for
the MAV using a PID controller. In simulation, the altitude of the MAV matches
the altitude of the drogue to within 1m for an entire orbit.
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Figure 14 Error in tracking an elliptical orbit for a single orbit. The error is consistently
less than 1 m for all locations on the orbit (see online version for colours)

7 Flight test results

Flight tests were conducted to demonstrate the mothership-drogue interactions
modelled in previous sections. In these tests, the mothership (a twin prop, 55-inch
wingspan, battery-powered, autonomous aircraft with a Kestrel autopilot; see
Figure 15) was hand launched while towing a hemispherical drogue instrumented
with a GPS data logger (Figure 16).

The mothership autonomously maintained a specified circular orbit, and
the resulting orbit of the drogue was observed using the on-board GPS data
logger. Figure 17 shows the mothership and drogue orbits in the horizontal
plane. In this case the specified radius of the mothership was approximately
85m, the mothership velocity was 14m/s, and the cable length was 125m.
The resulting orbit radius and velocity of the drogue were 55m and 9m/s,
respectively. This result illustrates the feasibility of achieving stable drogue orbits
at a smaller radius and decreased speed, which is a necessity for aerial MAV
recovery, and confirms the simulation results presented in Section 2. Figure 18
shows the orbits of the mothership and drogue in the North-vertical plane.
Due to wind, the drogue orbit is tilted out of the horizontal plane, despite the
horizontal mothership orbit. This validates the approach taken in Section 5, in
which the drogue orbit was treated as an out-of-plane ellipse, and parameters of
the projection of this ellipse on the horizontal plane were estimated. Furthermore,
the advantages of utilising decoupled altitude and orbit tracking control laws, as
described in Section 6, are also reinforced. Although a MAV did not track the
drogue orbit in this set of experiments, the results show a relatively consistent
and stable drogue orbit that could be estimated and tracked by a MAV in
future experiments.
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Figure 15 Mothership used in preliminary flight tests (see online version for colours)

Figure 16 Hemispherical drogue used in preliminary flight tests (see online version
for colours)

Figure 17 Experimental orbits of mothership and drogue with 125m cable and mothership
velocity of 13.5m/s (see online version for colours)
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Figure 18 Experimental altitude data for mothership and drogue with 125m cable and
mothership velocity of 13.5m/s (see online version for colours)

8 Conclusions and future work

In this paper we presented a novel approach to the aerial recovery problem for
micro air vehicles. In this approach, a mothership tows a drogue that establishes
a stable orbit at a speed that is slow enough to allow the MAV to overtake the
drogue as it moves along its orbit trajectory. The approach is motivated by the need
to have a small relative velocity between the MAV and the recovery vehicle, which
is not practical if the mothership is to capture the MAV directly. The focus of this
work is on modelling the system’s dynamics, developing mothership control laws to
enforce drogue orbits, developing methods to enable a MAV to estimate elliptical
drogue orbits, and designing control laws to allow the MAV to track the drogue.
A novel multi-link dynamic model, based on Gauss’s Principle, has been shown
to accurately represent the mothership-cable-drogue dynamics, and a simulation
environment was developed to enable simulation of mothership-drogue dynamic
interactions. An inverse dynamics method for calculating the required mothership
orbit to achieve a desired drogue orbit was also presented. Using a Lyapunov-
based backstepping approach, a control law was designed to enable stable tracking
of the required orbit by the mothership. Experimental results demonstrated the
feasibility of controlling the mothership to establish a stable orbit of a towed drogue.
An approach to controlling the drogue directly, using drag coefficient control, was
developed and simulated, showing that it is feasible to control the drogue orbit by
changing the drag of the drogue. Finally, methods to enable the MAV to estimate
and track the drogue orbit were developed. These methods will allow the MAV to
synchronise its motion with that of the drogue, in preparation for a final coordinated
rendezvous.

The methods developed in this work are essential components of aerial recovery
of MAVs. Their feasibility was demonstrated through simulation and experimental
flight test results. Although we have addressed some of the key questions in aerial
recovery, many important challenges remain that will be addressed in future work.
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First, the trajectory generation method should be able to account for wind, allowing
the mothership to modify its orbit to result in an essentially flat drogue orbit in the
presence of wind. In the flight tests presented in this paper, we showed that wind
disturbances result in non-horizontal drogue orbits. Current work seeks to address
this problem by

• designing appropriate inclined mothership orbits to result in horizontal drogue
orbits in the presence of wind

• employing active drogue control (via spoilers and active tether
extension/contraction control) to compensate for wind disturbances.

Future work will advance these approaches through control design, simulations,
and additional flight tests. Second, improvements must be made to the recursive
orbit estimation algorithms presented in this paper to guarantee that the recursive
estimates describe an ellipse, and not some other conic. A Kalman filter with
nonlinear state constraints is being explored as a solution to this problem
(Julier and LaViola, 2007; Yang and Blasck, 2006; Simon and Chia, 2002). Third,
methods must be developed to allow the MAV, which is travelling behind the drogue
in a stable orbit, to approach and dock with the drogue. We are exploring the use of
vision-aided proportional navigation, such as that described in Barber et al. (2007),
in which a MAV tracks and lands in the back of a moving truck. Ongoing
experimental flight tests will allow us to validate and refine each component of the
aerial recovery process.
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