

Comparison in Dynamic Response of Energy-Storing Cryogenic and Chemical Absorption Carbon Capture Systems to Electricity Demand

Seyed Mostafa Safdarnejad
William Strahl
John Hedengren
Larry Baxter

Chemical Engineering Department
Brigham Young University (BYU)
November 2017

- ➤ Background
- Cryogenic Carbon Capture
- ➤ Chemical Absorption
- ➤ Modeling Basis & Results
- **≻**Conclusion

- ➤ Background
- Cryogenic Carbon Capture
- ➤ Chemical Absorption
- ➤ Modeling Basis & Results
- **>** Conclusion

CO₂ Emission

- ➤ Challenges with CO₂ emission is more than global warming!
- > According to Environmental Protection Agency (EPA):
 - ✓ Harm to agriculture and forests
 - ✓ Increased potential for enhanced spread of some waterborne and pestrelated diseases
 - ✓ Species extinctions and ecosystem damage

EIA Annual Energy Outlook of 2017

- > Power sector will remain one of the major CO₂ emitting sources in the US
 - ✓26% contribution in 2015
 - ✓23% contribution in 2050 with Clean Power Plan (CPP) regulations (26% without CPP)
- > Continuing dependence of the US power sector to fossil fuels
 - √70% dependence in 2015
 - √56% dependence in 2050 with CPP (62% without CPP)
- ➤ CO₂ capture and sequestration technology will cover 19% of the total CO₂ reductions by 2050

Carbon Capture Technologies

- ➤ Oxy-combustion (1.69 MJ_e/kg CO₂)
- ➤ Chemical and Physical Absorption (1.72 MJ_e/kg CO₂)
- ➤ Membranes (1.3 MJ_e/kg CO₂)
- ➤ Cryogenic Carbon Capture (0.7 MJ_e/kg CO₂)

Objectives

- Compare the dynamic performance of a coal-fired power plant equipped with cryogenic carbon capture and amine-based chemical absorption
- Volatile wind, electricity prices, and residential demand
- > Both capture schemes are enabled with storage systems
- > 90% carbon capture rate for both systems

- > Background
- Cryogenic Carbon Capture
- ➤ Chemical Absorption
- ➤ Modeling Basis & Results
- **≻** Conclusion

Cryogenic Carbon Capture (CCC)

Integrated System of Power Generation and CCC

- ➤ Background
- Cryogenic Carbon Capture
- ➤ Chemical Absorption
- ➤ Modeling Basis & Results
- **≻** Conclusion

Integrated System of Power Generation & Chemical Absorption

- > Background
- Cryogenic Carbon Capture
- ➤ Chemical Absorption
- ➤ Modeling Basis & Results
- **≻** Conclusion

Comparison Basis

- > 300 MW/hr ramping rate in the coal-fueled power plant
- Similar residential electricity demand, energy price, and wind power profiles
- ➤ Negligible CO₂ compression cost for the CCC (compression in liquid form)
- ➤ \$9.69/ton CO₂ compression cost for amine (compression in gas form)
- Similar storage capacity
- > Penalty applied for CO₂ emissions in both systems

Minimization of Total Operating Cost

> CCC cost function:

$$Oper. Cost^{CCC} = \sum (C^{Cap. Energy} + C^{Fuel} + C^{NGNet} + C^{CO_2 Emission} + C^{O&M,b} + C^{O&M,CCC} + C^{imbal})T$$

> Amine cost function:

$$Oper. \, Cost^{Chem.Abs.} = \sum (C^{Cap. \, Energy} + C^{Fuel} + C^{CO_2 \, Emission} + C^{O\&M,b} + C^{Solv.} + C^{Caus.} \\ + C^{Waste} + C^{Wat.} + C^{Trans.} + C^{Cap. \, Ramp} + C^{imbal})T$$

➤ Both systems were modeled in GAMS and solved on NEOS servers using KNITRO solver

CCC

Coal power (MW) Total power (MW) Total Demand (MW) Wind power (MW) Residential demand (MW) Capture demand (MW) Maximum coal power Minimum coal power

Amine

- ➤ Both systems meet the total electricity demand
- > 100% utilization of the wind power

Coal Power Generation and Capture Power Demand

Coal Power Generation

 $\frac{\text{Total Coal Power (CCC)}}{\text{Total Coal Power (Amine)}} = 0.94$

Capture Power Demand

Capture telementarise Department (CCC)
Capture telementarise Department (Amine) = 0.73

Capture Demand Components

- ➤ Continuous CO₂ capture
- ➤ Reduction in electricity demand of mixed refrigerant compressor (CCC system) and stripping operation (amine system) during periods with expensive electricity price
- > Transfer of saved energy to the power grid, resulting in more grid stability

Storage vs. Time

LNG Level in Tank (CCC)

Refrigerant storage during periods with cheap electricity price and refrigerant retrieval when electricity is expensive

CO₂ Captured vs. Stripped (Amine)

➤ Reduction in CO₂ stripping load during periods with expensive electricity price and increase in stripping load when electricity is cheap

Operating Costs

➤ Lower operational cost for the CCC process

$$\frac{\text{Total Operating Cost (CCC)}}{\text{Total Operating Cost (Amine)}} = 0.83$$

$$\frac{\text{Operating Cost per } CO_2 \text{ Captured (CCC)}}{\text{Operating Cost per } CO_2 \text{ Captured (Amine)}} = 0.88$$

- > Background
- Cryogenic Carbon Capture
- ➤ Chemical Absorption
- ➤ Modeling Basis & Results
- **≻**Conclusion

- ➤ Both systems are able to meet the total electricity demand with a CO₂ removal rate of 99%
- ➤ Large-scale energy storage improves the power grid stability by empowering load management of the capture processes
- ➤ CCC requires 27% lower energy and costs 12% lower than amine-based chemical absorption to capture the same level of CO₂ (over 4 days)

Acknowledgements

Sustainable Energy Solutions (SES)

> Undergraduate research assistants in the PRISM Group