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CO, Emission PRISMI

» Challenges with CO, emission is more than global warming!

» According to Environmental Protection Agency (EPA):

v Harm to agriculture and forests

v" Increased potential for enhanced spread of some waterborne and pest-
related diseases

v Species extinctions and ecosystem damage
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EIA Annual Energy Outlook of 2017 PRIS M

» Power sector will remain one of the major CO,, emitting sources in the US
v'26% contribution in 2015

v'23% contribution in 2050 with Clean Power Plan (CPP) regulations (26%
without CPP)

» Continuing dependence of the US power sector to fossil fuels
v'70% dependence in 2015
v'56% dependence in 2050 with CPP (62% without CPP)

» CO, capture and sequestration technology will cover 19% of the total CO,
reductions by 2050
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PRISM

@) Carbon Capture Technologies

» Oxy-combustion (1.69 MJ_/kg CO,)
» Chemical and Physical Absorption (1.72 MJ_/kg CO,)
» Membranes (1.3 MJ_/kg CO,)
» Cryogenic Carbon Capture (0.7 MJ_/kg CO,)
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Objectives PRISM

» Compare the dynamic performance of a coal-fired power plant
equipped with cryogenic carbon capture and amine-based
chemical absorption

» Volatile wind, electricity prices, and residential demand
» Both capture schemes are enabled with storage systems

» 90% carbon capture rate for both systems
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Cryogenic Carbon Capture (CCC) PRISM
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* Applied Energy Journal, Vol. 172 (2016), pp 66—79
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PRISM
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&) Comparison Basis PRIS M

» 300 MW/hr ramping rate in the coal-fueled power plant

» Similar residential electricity demand, energy price, and wind
power profiles

» Negligible CO, compression cost for the CCC (compression
In liquid form)

» $9.69/ton CO, compression cost for amine (compression in
gas form)

» Similar storage capacity
» Penalty applied for CO, emissions in both systems
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Minimization of Total Operating Cost PRIS M

» CCC cost function:
'D‘IIJET, CosttClC — Z{Cfﬂp-Enfrg_[.r 1+ CFuel 1+ CNGNet + (CCO7 Emission 4 CO&M,b 4 CO&M,CCC
n C."ni'f?m' } T
» Amine cost function:
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» Both systems were modeled in GAMS and solved on NEOS
servers using KNITRO solver
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Power vs. Demand PRIS M
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» Both systems meet the total electricity demand
» 100% utilization of the wind power
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@) Coal Power Generation and Capture Power Demand

PRISM
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Capture Demand Components PRIS M
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» Continuous CO, capture

» Reduction in electricity demand of mixed refrigerant compressor (CCC system) and
stripping operation (amine system) during periods with expensive electricity price

» Transfer of saved energy to the power grid, resulting in more grid stability
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Storage vs. Time

PRISM
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» Refrigerant storage during periods with cheap
electricity price and refrigerant retrieval when
electricity is expensive

November 2, 2017

» Reduction in CO, stripping load during periods

with expensive electricity price and increase in
stripping load when electricity is cheap
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Operating Costs PRIS ML

» Lower operational cost for the CCC process

Total Operating Cost (CCC)

: : = 0.83
Total Operating Cost (Amine)

Operating Cost per €O, Captured (CCC)
Operating Cost per CO, Captured (Amine)

0.88
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PRIS M
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» Both systems are able to meet the total electricity demand with
a CO, removal rate of 99%

» Large-scale energy storage improves the power grid stability by
empowering load management of the capture processes

» CCC requires 27% lower energy and costs 12% lower than
amine-based chemical absorption to capture the same level of

CO, (over 4 days)
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