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Stability of Power Grid

2

Deloitte Center for Energy Solutions, 2011
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CO2 Capture Systems Impact Grid Stability

 New regulations for CO2

emission from power plants:

 EPA’s regulation for existing power plants 

(2015)

 30% reduction in CO2 from 2005 levels by 2030

 EPA’s regulation for new power plants 

(2015)

 1100 lbs/MWh CO2 for gas-fired power plants

 1400 lbs/MWh CO2 for coal-fired power plants
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Trends in global CO2 emissions, PBL Netherlands Environmental

Assessment Agency, 2015
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Solutions to Increase Stability

 Advanced Metering Infrastructure

 Demand Response 

 Distribution Automation

 Renewable Resource Forecasting

 Distributed Storage (Electric Vehicles with V2G capability and 

batteries)

 Microgrids (distributed generation)

 Bulk energy storage (Pumped stored hydropower, compressed 

air energy storage, thermal storage)
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Benefits of Energy Storage

 Grid frequency and voltage regulation (grid stabilization and 

power quality control)

 Shaving of load peaks

 Smoothing of renewable power variability (ramp rate control)

 Energy arbitrage 

 Backup power
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Cryogenic Carbon Capture (CCC)

 Advantages of the

CCC Process

 Lower energy consumption

 Scalable energy storage

 Rapid-load-change 

 capability 

 Flexible operation

 Energy recovery
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Jensen, PhD Dissertation, Brigham Young University, 2015
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Hybrid System of Power Generation and CCC
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 Two refrigeration cycles 

 Overproduction and storage of LNG during low electricity demand

 Using stored LNG during peak hours 

 More power available by ramping down the refrigeration compressor load

 Power production in a gas turbine during peak demand
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Improved Profitability through Integration

 Dynamic integration of CCC with power generation units

 Assumed 90% CO2 capture rate

 Meet residential and CCC electricity demands

 Maximize operational profit of the hybrid system

 Minimize cycling of the coal power plant
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Optimization Approach

 Objective function: ℓ1-norm

 Dead-band for the controlled variable

 Prioritize multi-objective functions

 Orthogonal collocation on finite elements for 

DAE to NLP conversion

 Active Set or Interior Point Solvers

 APOPT or IPOPT

 APMonitor Modeling Language
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Power Production vs. Electricity Demand

Baseline Boiler Load-following Boiler
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 Meet the total electricity demand

 Refrigerant storage used in gas turbine 

 100% utilization of the wind power
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Impact of Energy Storage on Baseline Case

With Energy Storage 

& Combined Cycle Power Production

Without Energy Storage

& Simple Cycle Power Production
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Compressor shifted 
to off-peak hours
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Comparison of Power Production 

With Energy Storage 

& Combined Cycle Power Production

Without Energy Storage

& Simple Cycle Power Production
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𝑮𝒓𝒐𝒖𝒏𝒅𝒆𝒅 𝑷𝒐𝒘𝒆𝒓 = 𝑻𝒐𝒕𝒂𝒍 𝑷𝒐𝒘𝒆𝒓 − 𝑻𝒐𝒕𝒂𝒍 𝑫𝒆𝒎𝒂𝒏𝒅

Power imbalance without 
energy storage
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Profitability

 $13.6k/hr average profit

 $58k/hr average hourly revenue

 Recovery of most of the CCC constructional expenses by 

taking advantage of the arbitrage of energy
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Cycling Cost

 Increased thermal, pressure, and mechanical related stress 

and fatigue

 Cycling scenarios: Cold start, Hot start, Warm start, and 

Load-following
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Cycling Cost (Continued)

 Rainflow cycle counting algorithm
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With Wind Without Wind

Load-following 

boiler

Baseline 

Boiler

Load-following 

boiler

Baseline 

Boiler

# cycles in Boiler 

(cost)

20 

($88200)

1 

($4410)

18

($79380)

1

($4410)

# cycles in gas 

turbine (cost)

17 

($10880)

21 

($13440)

23

($14720)

15

($9600)

Total cycling costs $99080 $17850 $94100 $14010

 Key Result: 80-85% reduction in cycling damage 

with energy storage
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Conclusion

 CCC process removes 99% of CO2 with lowest cost per kg CO2

 Large-scale energy storage improves renewable adoption

 CCC + energy storage reduces cycling costs by 80-85%

 Reduction in the need to spinning reserves

 Power grid stability
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