Increased Stability of a Power Grid by Energy Storage of Cryogenic Carbon Capture

Seyed Mostafa Safdarnejad
James Richards
Jeffrey Griffiths
John Hedengren
Larry Baxter

Chemical Engineering Department
Brigham Young University (BYU)
April 2016
Stability of Power Grid

Power Supply Curve
NREC Region, 2010

Low Utilization = High Cost / MWh

Deloitte Center for Energy Solutions, 2011
New regulations for CO$_2$ emission from power plants:

- EPA’s regulation for existing power plants (2015)
 - 30% reduction in CO$_2$ from 2005 levels by 2030
- EPA’s regulation for new power plants (2015)
 - 1100 lbs/MWh CO$_2$ for gas-fired power plants
 - 1400 lbs/MWh CO$_2$ for coal-fired power plants
Solutions to Increase Stability

- Advanced Metering Infrastructure
- Demand Response
- Distribution Automation
- Renewable Resource Forecasting
- Distributed Storage (Electric Vehicles with V2G capability and batteries)
- Microgrids (distributed generation)
- Bulk energy storage (Pumped stored hydropower, compressed air energy storage, thermal storage)
Benefits of Energy Storage

- Grid frequency and voltage regulation (grid stabilization and power quality control)
- Shaving of load peaks
- Smoothing of renewable power variability (ramp rate control)
- Energy arbitrage
- Backup power
Cryogenic Carbon Capture (CCC)

Advantages of the CCC Process

- Lower energy consumption
- Scalable energy storage
- Rapid-load-change capability
- Flexible operation
- Energy recovery

Jensen, PhD Dissertation, Brigham Young University, 2015
Hybrid System of Power Generation and CCC

- Two refrigeration cycles
- Overproduction and storage of LNG during low electricity demand
- Using stored LNG during peak hours
- More power available by ramping down the refrigeration compressor load
- Power production in a gas turbine during peak demand
Improved Profitability through Integration

- Dynamic integration of CCC with power generation units
- Assumed 90% CO$_2$ capture rate
- Meet residential and CCC electricity demands
- Maximize operational profit of the hybrid system
- Minimize cycling of the coal power plant
Optimization Approach

- Objective function: ℓ_1-norm

 $\min_{x,y_m,u} \Phi = w_{hi}^T e_{hi} + w_{ho}^T e_{lo} + y_m^T c_y + u^T c_u + \Delta u^T c_{\Delta u}$

- Dead-band for the controlled variable
- Prioritize multi-objective functions
- Orthogonal collocation on finite elements for DAE to NLP conversion
- Active Set or Interior Point Solvers
 - APOPT or IPOPT
- APMonitor Modeling Language

Subject to:

- $0 = f(\dot{x}, x, u, d)$
- $0 = g(y_x, x, u, d)$
- $a \geq h(x, u, d) \geq b$
- $\tau_c \frac{\delta y_{t,hi}}{\delta t} + y_{t,hi} = sp_{hi}$
- $\tau_c \frac{\delta y_{t,lo}}{\delta t} + y_{t,lo} = sp_{lo}$
- $e_{hi} \geq (y_m - y_{t,hi})$
- $e_{lo} \geq (y_{t,lo} - y_m)$
Power Production vs. Electricity Demand

Baseline Boiler

- Meet the total electricity demand
- Refrigerant storage used in gas turbine
- 100% utilization of the wind power

Load-following Boiler
Impact of Energy Storage on Baseline Case

With Energy Storage & Combined Cycle Power Production

Without Energy Storage & Simple Cycle Power Production
Comparison of Power Production

Grounded Power = Total Power – Total Demand

With Energy Storage & Combined Cycle Power Production

Without Energy Storage & Simple Cycle Power Production
Profitability

- $13.6k/hr average profit
- $58k/hr average hourly revenue
- Recovery of most of the CCC constructional expenses by taking advantage of the arbitrage of energy
Cycling Cost

- Increased thermal, pressure, and mechanical related stress and fatigue

- Cycling scenarios: Cold start, Hot start, Warm start, and Load-following
Cycling Cost (Continued)

- **Rainflow cycle counting algorithm**

<table>
<thead>
<tr>
<th></th>
<th>With Wind</th>
<th>Without Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load-following</td>
<td>Baseline Boiler</td>
</tr>
<tr>
<td></td>
<td>boiler</td>
<td>Boiler</td>
</tr>
<tr>
<td># cycles in Boiler</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>(cost)</td>
<td>($88200)</td>
<td>($4410)</td>
</tr>
<tr>
<td># cycles in gas turbine</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>(cost)</td>
<td>($10880)</td>
<td>($13440)</td>
</tr>
<tr>
<td>Total cycling costs</td>
<td>$99080</td>
<td>$17850</td>
</tr>
</tbody>
</table>

- **Key Result:** **80-85% reduction in cycling damage with energy storage**
Conclusion

- CCC process removes 99% of CO$_2$ with lowest cost per kg CO$_2$
- Large-scale energy storage improves renewable adoption
- CCC + energy storage reduces cycling costs by 80-85%
- Reduction in the need to spinning reserves
- Power grid stability
Acknowledgements

- Sustainable Energy Solutions (SES)

- Graduate students in PRISM Group at BYU

- Undergraduate research assistants
Increased Stability of a Power Grid by Energy Storage of Cryogenic Carbon Capture

Seyed Mostafa Safdarnejad
James Richards
Jeffrey Griffiths
John Hedengren
Larry Baxter

Chemical Engineering Department
Brigham Young University (BYU)
April 2016