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Abstract

A review of current trends in scientific computing reveals a broad shift to
open-source and higher-level programming languages such as Python and
growing career opportunities over the next decade. Open-source modeling
tools accelerate innovation in equation-based and data-driven applications.
Significant resources have been deployed to develop data-driven tools (Py-
Torch, TensorFlow, Scikit-learn) from tech companies that rely on machine
learning services to meet business needs while keeping the foundational tools
open. Open-source equation-based tools such as Pyomo, CasADi, Gekko,
and JuMP are also gaining momentum according to user community and
development pace metrics. Integration of data-driven and principles-based
tools is emerging. New compute hardware, productivity software, and train-
ing resources have the potential to radically accelerate progress. However,
long-term support mechanisms are still necessary to sustain the momentum
and maintenance of critical foundational packages.
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1. Introduction1

The pace of innovation in scientific computing is accelerated with free2

and open-source foundational contributions such as programming languages,3

modeling platforms, and solvers. The decision to create and support open-4

source packages is counter-intuitive from the aspect of direct compensation5
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for the time and effort put into creating and supporting the software. While6

there are non-monetary awards and recognition for creating useful software,7

there are many business, regulatory, and scientific drivers that influence the8

decision to release open-source software. Open-source is sometimes required9

by the sponsoring agency, such as a government contract that requires the10

source code. Business drivers for open-source include spreading the develop-11

ment burden across the industry instead of isolating it to a specialized team12

of developers within a single company. Scientific drivers for open-source in-13

clude verifying results and advancing science with the ability to more easily14

build on and extend existing work. The value of open-source software is am-15

plified by a strong community of users and developers that mutually support16

each other through online tutorials, support forums, bug reports, feature re-17

quests, and documentation. Community momentum is a critical metric to18

observe so that organizations can build upon open-source software that is19

actively developed and supported and find skilled workers already familiar20

with the software, limiting the need for extensive training.21

The organization of this paper is to first present a high-level view of22

current trends in scientific computing. In particular, there has been a shift23

from proprietary software to open-source programming languages (Matlab24

to Python). There has also been a performance sacrifice for increased us-25

ability, functionality, and higher-level abstractions (C++ to Python). Next,26

this paper compares momentum for equation-based modeling platforms and27

data-driven modeling platforms and discusses the pace of innovation and how28

this can be accelerated with open-source initiatives. The influence of large29

language models on the speed of innovation will also be discussed. Finally,30

the future of open-source software is considered focusing on two areas: (1)31

current developments and features that are recently released or planned to32

be released in the next few years and (2) long-term needs for open-source33

software development within Process Systems Engineering (PSE).34

2. Current Trends in Scientific Computing35

Programming jobs in software development, quality assurance, analysis,36

and testing will grow +22%, about 3 times faster than other occupations, over37

the next decade according to the US Bureau of Labor Statistics [1]. Python38

is the most popular programming language according to indices that track39

online searches [2]. Other scientific computing languages in the top 50 most40

popular programming languages include C/C++ (2/4), R (16), Matlab41
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Figure 1: Trends of Python, C++, and Matlab search interest from January 2004 to
June 2022

(24), FORTRAN (26), Julia (28), Simulink (47), and LabVIEW (48) as of42

June 2022 [3].43

Python has gained popularity relative to other scientific programming44

languages in recent years as shown in Fig. 1. Python has risen in popularity45

because of its accessibility, ease of learning, documentation, online commu-46

nity support, and library availability but is criticized for its performance47

relative to compiled languages like C/C++. Many popular Python packages48

for scientific computing interface to lower-lever programming languages to49

offload compute-intensive tasks. In addition, JIT (Just In Time) compilers50

such as Numba and PyPy or AOT (Ahead of Time) compilers such as Cython51

can be used to speed up Python code.52

In contrast, Julia is a much younger programming language that is start-53

ing to gain momentum in the scientific computing community. It offers many54

of the same features of Python in terms of usability with the added benefit55

of computational performance comparable to lower-level compiled languages.56

While Python is catered to more general usage, Julia is specifically designed57

for numerical and scientific computing, and many operations are both faster58

and easier to access than Python. Polymorphism implemented via multi-59
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ple dispatch in Julia enables more versatility in scientific computing as well.60

However, as it is a newer language, there is a limited set of libraries available61

in Julia.62

Open-source modeling packages gain momentum by having an active de-63

velopment team and by growing a user community. The momentum of open-64

source modeling packages can be compared by examining the number of65

users and developers actively engaged with the software. Some metrics for66

measuring software engagement include:67

• Users: Install Rate (Downloads), Q+A Forum Posts, Citations68

• Developers: Latest Release, Documentation, Support for Multiple Op-69

erating Systems, GitHub Insights (number of contributors, rate of de-70

velopment, number of issues, issue handling time, etc.)71

Other factors are also important such as whether the software is easy to72

install, extensible, scales to large-scale problems, solves popular benchmark73

problems, is tailored to unique solutions not available elsewhere, and has74

auto-completion in advanced tools such as GitHub Copilot. Packages are75

more likely to be used if they are actively maintained and tested; compati-76

bility and stability are necessary qualities to ensure long-term engagement,77

and are more common issues for open-source packages than for commercial78

software.79

2.1. Large Language Models in Scientific Computing80

Another important trend in scientific computing is that of generative AI81

in the form of large language models (LLMs) and the applications resulting82

from LLM developments. The most prevalent and available of these models83

is OpenAI’s ChatGPT [4]. Google Scholar reports that the keyword “Chat-84

GPT” has been used in the title or content of over 9000 articles as of 2023.85

ChatGPT has also become widely known and recognized in only a few short86

months, as shown in Figure 2.87

Many of these large language models are trained on large collections of88

data that are open and available online, and extensive open source docu-89

mentation has allowed these models to be used as coding and development90

aides. Chen et al. [5] evaluates the performance of different LLMs to write91

Python code and introduces the Codex model that powers Github Copilot.92

LLMs are massive and typically require billions of parameters, requiring high93
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Figure 2: Google Trend of ”ChatGPT” searches since May 2022.

power and memory capabilities. While most LLMs are not open source and94

only usable through an API, efforts like those from Meta AI have been made95

to make open source transformer-based models available for research and96

investigation at a less prohibitive memory requirement [6].97

Advancements in LLMs have helped in the use and application of open98

source modeling platforms. As the documentation is open and available99

for many of the previously described packages, large language models like100

ChatGPT are trained on the documentation and can be used to write new101

code. More specific LLMs like Codex for Github copilot can be used to102

support model development and aid in the use of lower level tools to develop103

models.104

Beyond code generation, there are a myriad of potential applications of105

LLM in the scientific computing community. LLMs have been applied to106

high-performance computing to evaluate and optimize modeling frameworks107

[7]. Multimodal analysis like Vision Language Models combine computer108

vision and natural language processing to enable a model to describe or109

caption an image [8]. Research and data extraction from the internet is110

more accessible and versatile with LLMs like ChatGPT [9]. Galactica, an111

open source LLM trained on scientific papers, achieves better scores and112
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higher reasoning on domain-specific questions than GPT-3 [10]. As LLMs113

are a quickly developing field, the number of applications are expected to114

grow; better pre-trained foundation models can lead to better performance115

with down-stream tasks, which will likely have a significant impact on the116

scientific community in the future.117

3. Open-Source Modeling Packages118

Modeling requires equations or data that characterize the system being119

studied. Should equations be available, the model can be developed and120

studied using Algebraic Modeling Languages (AMLs) like Pyomo, CasADi,121

Gekko, and JuMP. For systems where only data is available, data-driven122

packages, such as TensorFlow, PyTorch, or scikit-learn, can be used for de-123

velopment and training of many machine learning models for prediction pur-124

poses. This section will discuss and compare modeling packages and use125

metrics, applications of these modeling platforms, and many open source126

extensions that have been developed for these platforms.127

There is an important distinction between Open-Source Software (OSS),128

Free Software (FS), and Free and Open-Source Software (FOSS). OSS can129

have a proprietary license and FS can be closed-source. Free/Libre and Open-130

Source Software (FLOSS) emphasizes that free software refers to freedom and131

not to price. The focus of this review is on FLOSS modeling frameworks with132

permissive licenses (allowing for the use, copy, and modification of the source133

code) that are openly shared to encourage developers to voluntarily adapt134

and improve the software. FLOSS is in contrast to proprietary codes that135

have restrictive licenses or unavailable source code. Proprietary software136

has an important role to provide customer support, graphical user inter-137

faces, and customized solutions. Some industries are dominated by FLOSS138

such as Python in data science and TensorFlow / PyTorch in deep learn-139

ing. Other segments of scientific computing are dominated by proprietary140

software, such as solvers CPLEX and Gurobi for Mixed Integer Linear Pro-141

gramming (MILP) and Simulink for graphical and embedded control, that142

have less competitive but emerging open-source alternatives.143

While many open-source packages are initially developed in academia,144

there are several FLOSS modeling platforms that have been created and145

supported by industry. The term “mind share” is frequently cited as a rea-146

son to release commercial software as FLOSS and distribute development147

costs among industry participants. The software becomes more useful with148
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broad adoption, an online support community, searchable knowledge base,149

and extensions of the software capabilities. Some of the challenges of FLOSS150

are lack of standards for benchmark performance, shifting community mo-151

mentum, long-term support, and selection among many alternatives.152

3.1. Algebraic Modeling Languages153

The primary purpose of an Algebraic Modeling Language (AML) is to154

facilitate the expression and solution of equation-based optimization prob-155

lems. The AML serves as a front-end translator for mathematical expres-156

sions, converting these expressions into a form for solvers to attempt a so-157

lution. Solvers need information such as an objective function, constraints,158

and equation residuals. The user must also know the type of problem that is159

being described; linear programming (LP) solvers may not be able to handle160

mixed-integer programming (MIP) or nonlinear programming (NLP) prob-161

lems. Some AMLs, like Pyomo, allow the problem to be described in the162

same syntax but can connect to different back-end solvers for different prob-163

lem structures. Many solvers also require Jacobian and Hessian evaluations,164

so AMLs can also provide automatic differentiation capabilities.165

This section gives an overview of equation-based FLOSS modeling plat-166

forms, with particular emphasis on control and optimization AMLs. The167

monthly download rates for three popular FLOSS Python AML packages is168

shown in Figure 3. These numbers are inflated with downloads from auto-169

mated clone repositories but give a general picture of the growth in users170

over time. The list of packages described below is not comprehensive, but171

is an attempt to share some of the popular options with their distinguishing172

capabilities.173

Pyomo [11] is a Python-based AML. It includes interfaces to a variety174

of optimization solvers either through standardized file formats (LP or NL)175

or by interfacing directly with a solver’s Python API. Automatic differenti-176

ation is achieved using the AMPL Solver Library (ASL) with NL files. An177

advantage of this package is that it includes many extensions for handling178

high-level modeling constructs (e.g. differential equations and logical dis-179

junctions). Pyomo was first released in 2009 as a part of the Coopr software180

library but was released as its own package beginning in 2015. As of July181

2022 there were 1270 Pyomo tagged questions on Stack Overflow. There is182

also a Google Group forum where users can post questions.183

CasADi [12] is available in Matlab, Python, and C++. It was originally184

a framework for automatic differentiation but has evolved into a complete185
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Figure 3: AML downloads for one month (June) each year (source: Google BigQuery).

modeling language. Casadi was first released in 2017 and as of July 2022,186

there were 72 questions on Stack Overflow. Most of the support questions187

are posted to a Google Group forum that delivers messages with email.188

Gekko [13] is a Python package for machine learning and optimization of189

mixed-integer and differential algebraic equations. It is coupled with large-190

scale solvers for optimization, parameter regression, and predictive control.191

Gekko was first released in 2018 and as of July 2022, there were 605 questions192

on Stack Overflow. Questions are also posted to a Google Group forum.193

JuMP [14] is a Julia-based modeling language for optimization with au-194

tomatic differentiation for solution of linear, nonlinear, and mixed-integer195

problems with many solver interfaces. As of July 2022, there were 313 ques-196

tions on Stack Overflow and about 800 questions on the Julia Language197

support forum. A direct comparison to pip installs is not possible because198

many of the pip downloads are for cloning. A total of 93,424 unique IP ad-199

dresses downloaded JuMP between Sept 2021 and July 2022 for a monthly200

download rate of ∼8500. Besides anonymized or dynamic IP addresses, this201

is a much closer count to number of users than the pip install numbers that202

are inflated with clone repository downloads.203

In addition to those listed above, many other FLOSS and proprietary soft-204
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Figure 4: Flowchart of using an AML to model a system.

ware packages are available for optimization and control including ACADO205

[15], ACADOS [16], AIMMS [17], AMPL [18], CProS [19], CVX [20], CVX-206

OPT [21], DIDO [22], Dymos [23], GAMS [24], GPkit [25], GPOPS II [26],207

Gravity [27], IMPL [28], InfiniteOpt [29], MUSCOD-II [30], NLPy [31],208

OMPR [32], OpenMDAO [33], OpenOpt [34], OPTANO [35], OR-tools [36],209

PICOS [37], PROPT [38], PSOPT [39], PuLP [40], PyOpt [41], PySCIPOpt210

[42], Python-MIP [43], and YALMIP [44].211

AMLs require equations to model a problem or system; these equations212

can be derived from first principles for a physics based system, or defined213

in the problem construction. Common problems that can be described in214

an AML and solved include differential equations, parameter regression and215

curve fitting, Model Predictive Control (MPC), and portfolio optimization.216

These problems can be solved and studied following a general flowchart shown217

in Figure 4.218

Parameter regression is a common problem that can be formulated in an219

AML; presented here is an example of least squares linear regression. Given220

a set of linear data, the sum of squared errors between a linear model and the221

true data can be described symbolically in an AML and minimized to find222

optimal parameters. Although this particular regression method is simple223

and can be implemented with more efficient data-driven tools, the formula-224

tion of problems in an AML allows addition of constraints and creation of225

more complex models and systems in an equation-based framework. Below226

in Listings 1, 2, 3, and 4 are examples of the syntax used for Pyomo, CasADi,227

Gekko, and JuMP.228
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Listing 1: Pyomo Linear Regression
1 from pyomo . environ import ∗
2 m = ConcreteModel ( )
3 x = [ 1 , 5 , 10 , 15 , 20 ]
4 y = [ 8 , 20 , 35 , 50 , 65 ]
5 m. a = Var ( )
6 m. b = Var ( )
7 # Def ine t h e o b j e c t i v e f u n c t i o n
8 m. obj = Object ive ( expr=sum( (m. a ∗ x [ i ] + m. b − y [ i ] ) ∗∗ 2 for i in range ( 5 ) ) )
9 So lverFactory ( ’ ipopt ’ ) . s o l v e (m) # So l v e t h e o p t im i z a t i o n prob lem

10 print ( ”a : ” , va lue (m. a ) ) # Disp l ay t h e r e s u l t s
11 print ( ”b : ” , va lue (m. b ) )

229

Listing 2: CasADi Linear Regression
1 import casad i as ca
2 x data = [ 1 , 5 , 10 , 15 , 20 ]
3 y data = [ 8 , 20 , 35 , 50 , 65 ] # 3x + 5
4 a = ca .MX. sym(”a” )
5 b = ca .MX. sym(”b” )
6 params = ca . v e r t ca t (a , b)
7 y pred = [ a ∗ x data [ i ] + b for i in range ( 5 ) ]
8 SSE = sum( ( y pred [ i ] − y data [ i ] )∗∗2 for i in range ( 5 ) )
9 nlp prob = { ’ f ’ : SSE , ’ x ’ : params}

10 opts = { ’ ipopt . p r i n t l e v e l ’ : 0 , ’ p r i n t t ime ’ : 0 , ’ ipopt . sb ’ : ’ yes ’}
11 s o l v e r = ca . n l p s o l ( ’ s o l v e r ’ , ’ ipopt ’ , nlp prob , opts )
12 # So l v e t h e o p t im i z a t i o n prob lem
13 s o l = s o l v e r ( x0=[1 , 1 ] )
14 print ( s o l [ ’ x ’ ] [ 0 ] ) # va l u e o f a
15 print ( s o l [ ’ x ’ ] [ 1 ] ) # va l u e o f b

230

Listing 3: Gekko Linear Regression
1 from gekko import GEKKO
2 m = GEKKO()
3 x = [1 , 5 , 1 0 , 15 , 20 ]
4 y = [8 , 20 , 35 , 50 , 65 ]
5 a = m. Var ( )
6 b = m. Var ( )
7 ypred = m. Array (m. Var , 5 )
8 for i in range ( 5 ) :
9 ypred [ i ] = a∗x [ i ] + b

10 SSE = m.sum( ( ypred − y )∗∗2)
11 m. Obj (SSE)
12 m. opt ions .IMODE = 2
13 m. so l v e ( d i sp=False )
14 print ( a . va lue [ 0 ] )
15 print (b . value [ 0 ] )

231

Listing 4: JuMP Linear Regression
1 us ing JuMP, Ipopt
2 x = [ 1 , 5 , 10 , 15 , 20 ]
3 y = [ 8 , 20 , 35 , 50 , 65 ]
4 m = Model ( op t im i z e r w i t h a t t r i bu t e s ( Ipopt . Optimizer , ” p r i n t l e v e l ” => 0) )
5 @var iable (m, a )
6 @var iable (m, b)
7 @object ive (m, Min , sum( ( a ∗ x [ i ] + b − y [ i ] ) ˆ 2 for i in 1 : 5 ) )
8 opt imize ! (m)
9 a opt = value ( a )

10 b opt = value (b)
11 p r i n t l n ( ”a : ” , a opt )
12 p r i n t l n ( ”b : ” , b opt )

232

These code snippets were generated with the help of ChatGPT. After233

describing the model in Gekko, the code was translated with minimal user234

adjustments to the other AMLS. As ChatGPT was trained on all of the235
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FLOSS documentation, support forums, and other applicable text, ChatGPT236

was able to debug any minor problems after an additional prompt. Even so,237

the final implementation offered by the language model may not be optimal.238

With further advancements of LLMs, the process of learning AML syntax239

and then describing a system will be made simpler. Models would be able240

to be translated between packages with less difficulty, allowing for greater241

insight and model customization.242

A performance benchmark of FLOSS AMLs and a review of open-source243

solvers is beyond the scope of this review. Recent work has been done to244

benchmark and compare AMLs based on features and performance [45].245

There are many examples of benchmark problems to test AMLs, but most246

problems can be formulated differently leading to more or less efficient so-247

lutions. A recent blog post by GAMS developers sought to benchmark the248

GAMS, Pyomo, GurobiPy, and JuMP AMLs [46]. The post concluded that249

GAMS had better performance over the alternatives on a specific model prob-250

lem. The JuMP developers responded with their own post showing how a251

reformulation of the problem can lead to a faster solution, and concluded252

that such a comparison is difficult to produce without thorough commu-253

nity feedback [47]. The task of comparing AMLs is more difficult than a254

straightforward performance or scale comparison; as there is more flexibility255

in problem formulation, there is more room for error. Additionally, as AMLs256

offer different syntax and capabilities, the notion of best may be dependent257

on user preference. A notable emerging trend is tighter coupling between258

the solver and modeling language for callbacks, adaptive programming, and259

meta-algorithm development.260

3.2. Data-Driven Modeling261

The dramatic rise of data-driven modeling can be attributed to increased262

data availability, decreased compute cost, and powerful data-driven software263

tools. Two of the most popular packages for deep learning are TensorFlow264

[48] and PyTorch [49] that were developed at Alphabet (Google Brain) and265

Meta AI (Facebook), respectively. The machine learning package scikit-learn266

[50] was started in 2007 as a Google Summer of Code project. Figure 5 shows267

the number of monthly downloads of scikit-learn, TensorFlow, and PyTorch.268

The download rate is not an accurate count of users but does give qualitative269

trends on relative adoption rates and community momentum.270

Part of the core business model of both Meta and Alphabet is to sell adver-271

tisements and online services rather than proprietary optimization software.272
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Figure 5: Data-driven package downloads for one month (June) each year (source: Google
BigQuery).

Forecasting, natural language processing, facial recognition, advertisement273

selection, and web-page ranking are Artificial Intelligence (AI) enabled as-274

pects for increasing click-through rates. The decision to open-source and275

support AI tools is one of the factors that has increased speed of innovation276

and impact within major US tech companies such as Alphabet, Meta, Ama-277

zon, Tesla, Apple, and Netflix. There is an abundance of AI startup com-278

panies now penetrating traditional industries (manufacturing, automotive,279

aerospace, etc) with data engineering, data science, and machine learning280

services with Industry 4.0 innovation and disruption. Many of the software281

solutions are based on open-source tools such as Tesla Autopilot built on282

PyTorch.283

A key performance metric for data-driven models is the energy efficiency284

or the rate of computation per unit of energy consumed. Specialized compute285

hardware has been created to reduce the power consumption such as Appli-286

cation Specific Integrated Circuits (ASICS) for processing financial trans-287

actions on blockchain, embedded controls, smart phones, wearable devices,288

and other applications in the automotive, telecommunication, and medical289

industries. ASICS are designed for a specific task while a Central Processing290

12



Figure 6: Flowchart of machine learning pipeline.

Unit (CPU) is a more configurable platform for computing. Alphabet de-291

signed the Tensor Processing Unit (TPU) to reduce power consumption by292

up to 80 times relative to contemporary CPUs or GPUs [51]. They achieved293

this improvement by using 8-bit integers and a complex instruction set to294

calculate a neural network prediction. Instead of relying on the pace of inno-295

vation that is driven by other industries, Alphabet created new hardware to296

drive a key performance index for data-driven models that are used in search,297

street view, photos, and translation. The CPU, GPU, and TPU kernels are298

freely available in web browsers through a Google Colab run-time option for299

machine learning prediction functions.300

The availability of training datasets encourages exploration and improve-301

ment of open source machine learning models and enables performance com-302

parisons between models and packages. The MNIST [52] dataset is a set303

of 60,000 training images of handwritten digits for classification. Available304

medicinal and financial datasets for regression purposes help improve the305

prediction models to be used in their respective fields. Websites like Kaggle306

and DataONE host and share thousands of datasets for public use and model307

development. For some websites where the API allows, data can be scraped308

and used for model development. One example of this is the training of large309

language models that are trained on text data retrieved from the internet.310

The machine learning pipeline, visualized in Figure 6, shows a general311

flow of retrieving data, processing data, training models, and then model312

deployment. The data-driven packages described previously offer tools for313

model selection and training. Scikit-learn offers a wide selection of mod-314

els that are user friendly to train, but does not have the same depth and315

customization of Pytorch or Tensorflow. With the performance advantages316

explained before, Tensorflow and Pytorch are specialized for deep learning317

and model development.318
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Figure 7: Linear regression scale-up comparison performed on AMD Ryzen 7 2700X Eight-
Core Processor.

Figure 7 shows a performance comparison between several data-driven319

packages for linear regression. Different implementations of similar methods,320

like linear regression, are available in many of these packages. Although the321

figure shows performance comparisons on a CPU, Pytorch and Tensorflow322

allow GPU acceleration which would lead to better scale-up for larger prob-323

lems. Scikit-learn and Numpy offer easy and efficient implementations of324

some models but do not offer the same level of customization. Overall, the325

best package for a model implementation depends on the scale of the problem,326

the available computing power, and the level of customization required.327
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3.3. Extensions and Applications of FLOSS Modeling Platforms328

FLOSS platforms allow users to contribute to further developments of329

the code, leading to many tools and platforms that extend the capabilities of330

these packages. Extensions have allowed AMLs to interface to data driven331

modeling packages or provide application-specific functionality such as sup-332

port for model predictive control. User extensions of data driven packages333

have enabled easier and faster algorithm selection and training and stream-334

lined hyperparameter tuning and model deployment. In some cases, these335

tools have been incorporated into larger frameworks to solve a broader set336

of problems or to handle a specific application. Many FLOSS packages en-337

courage users to contribute to public repositories to ensure the continual338

improvement and maintenance of these packages.339

The combination of data-driven modeling and equation-based modeling340

can replace costly simulations and functions, improving the performance and341

usability of larger numerical optimization formulations. The OMLT [53]342

package allows neural network and gradient-boosted tree models to be repre-343

sented in a Pyomo optimization problem. Similar work has been done with344

Gekko that integrates Gaussian process regression, support vector machines,345

and neural networks into gradient-based optimization [54].346

Other extensions have expanded the capabilities of AMLs into Model347

Predictive Control (MPC). For example, do-mpc [55] and PolyMPC [56]348

are libraries for Model Predictive Control (MPC) built on CasADi. Other349

packages have used neural networks from Pytorch for machine learning MPC350

in CasADi [57].351

Data-driven modeling packages have been improved and extended with352

user made tools, enabling better model selection and training. Keras [58]353

is a user-friendly API for Tensorflow, and an example of how deep learning354

can be simplified and streamlined with extensions. Open source automated355

machine learning packages like auto-sklearn [59], auto-Keras [60], H2O Au-356

toML [61], and TPOPT [62] automate the pre-processing and training of357

models. Other tools like ONNX provide a standard for interfacing between358

data-driven modeling packages for better interoperability when training deep359

learning networks.360

Open source packages can be incorporated into larger frameworks to solve361

larger scale problems, particularly in the field of energy system optimization362

and process systems engineering. One example of such a framework is the363

IDAES Integrated Platform [63], visualized in Figure 8, which builds on364
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Figure 8: Overview of the IDAES platform

Pyomo to provide tools for the design and optimization of complex, inter-365

acting energy and process systems. Similar frameworks have been developed366

for the modeling and optimization of renewable energy systems based on367

Pyomo, GAMS, and C++; these include urbs, Balmorel [64], GENeSYS-368

MOD, GENESYS-2 [65], and oemof. FOQUS is another framework used369

for process systems engineering that connects to both IDAES and Pyomo.370

As these frameworks are open-source, evaluations and comparisons between371

similar frameworks can help improve modeling performance by identifying372

missing features [66]. There are many more examples of application-specific373

packages, further illustrating the value these generic FLOSS optimization374

platforms provide to the community.375

4. Impacts of Open-Source Tools376

FLOSS tools have greatly impacted the rate of innovation in the opti-377

mization and control community. Equation-based and data-driven modeling378

and optimization software are two concrete examples of tools that accel-379

erate innovation. Equation-based tools have been applied in chemical and380

process industries [67], staff scheduling [68], mathematical research [69], re-381

newable energy grid optimization [70], control of electric vehicle charging in382

smart communities [71], chemical reactor design [72], blockchain computing383
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Figure 9: Hierarchy of applications in the chemical and process industries. New modeling
and optimization developments are finding synergies between areas that were formerly
separate.

optimization for Industrial Internet of Things (IoT) [73], safety systems on384

Liquified Natural Gas (LNG) vessels [74], robotic hand automation [75], au-385

tonomous unmanned aerial vehicles [76, 77], low-activity waste loading for386

long-term storage with vitrification [78], and fish-like robots [79]. Many other387

applications are cited, giving strong evidence of user adoption with innovative388

application areas. As of October 2023, there were 1633 citations of Pyomo389

[11], 516 citations of APMonitor and Gekko [13], 2987 citations of CasADi390

[12], and 1681 citations of JuMP [80].391

The pace of innovation is likewise supported by FLOSS tools in data-392

driven modeling and optimization with notable advances in natural language393

processing [81], self-driving cars [82], image classification [83], medical diag-394

nosis [84], precision agriculture [85], autonomous unmanned aerial vehicles395

[86], and many other areas [87]. As of October 2023, there were 27,689 cita-396

tions of TensorFlow [88, 48], 33,617 citations of PyTorch [49, 89], and 80,652397

citations of Scikit-learn [50].398

Model predictive control (MPC) has benefited from recent advancements399

with data-driven modeling and machine learning. While classical approaches400

to MPC use linear methods, data-driven modeling allows for more complex401
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and general nonlinear behavior [90]. Reinforcement learning in particular402

has found great success for control of robotics and self driving cars, and403

may have a future in the process industry with MPC [91]. For process sys-404

tems with large volumes of historical data, machine learning models can405

be trained as digital twins for further analysis and control. Integration of406

AI-based digital twins into large processes can lead to higher quality data407

and better performing models [92]. Advanced models that capture total sys-408

tem behavior can develop synergies between different hierarchies in control409

schemes, shown in Figure 9. Additionally, smaller scale industrial tasks such410

as detecting anomalies or equipment faults have been greatly facilitated by411

machine learning advancements [93].412

5. Future of Open-Source Tools413

Most of the tools discussed in this paper were recently developed around414

the time of the last CPC/FOCAPO meeting in 2017. Since then many of415

these tools have seen significant adoption by the PSE community. This416

section looks to the future and tries to predict how these tools will evolve417

over the next 5-10 years.418

5.1. What’s Next419

A new trend in open-source tools is to specialize to an important task and420

create interfaces to other packages that complement those capabilities. There421

is TensorFlow support in CasADi, PyTorch linear and integer programming422

with Pyomo [94], integration of machine learning models in Pyomo [53], con-423

strained optimization with physics-based modeling priors in PyTorch [95],424

and Gekko interfaces to GPflow [96] and scikit-learn. Developments with425

package interoperability will continue to accelerate in the next 5 years.426

There are new development resources for code auto-completion such as427

GitHub Copilot [97] which could accelerate the adoption of certain FLOSS428

modeling tools. Additional AI-trained tools and auto-ML tools will move429

optimization engineers, data scientists, and machine learning specialists to430

new levels of abstraction with higher levels of productivity [98].431

Data engineering, organizing and preparing data for the purpose of ex-432

tracting useful information [99], will also be increasingly important.433
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5.2. What’s Needed434

A well-known issue for open-source foundational tools is long-term sup-435

port and maintenance. This was recently emphasized within the PSE commu-436

nity in a December 2021 COIN-OR news post seeking support for a full-time437

employee to work on the development, documentation, and distribution of438

COIN-OR projects such as Clp, Cbc, and Ipopt. Without this support, the439

COIN-OR initiative may be retired. Support is also needed for adaptation to440

new computing platforms (quantum, cloud, edge, embedded), new interfaces441

such as higher level abstractions to define optimization problems, and sup-442

port for issue tracking and resolution. Without financial incentives, better443

recognition of code and software contributions could be another method of444

motivating development and support of open-source tools. A long-term sup-445

port strategy for FLOSS tools will become increasingly important as these446

tools see broader adoption in the optimization community, especially for447

packages that require a high level of skill to develop and maintain.448

A full review of the ethics of sharing FLOSS tools is beyond the scope449

of this paper; however, a brief discussion is presented here. FLOSS can be450

potentially used by rogue actors for malicious intent. The emergence of ma-451

chine learning and artificial intelligence is comparable in societal impact to452

the emergence of nuclear power in the 1950s, yet nuclear power centered453

software is largely export controlled for purposes of national security. Con-454

tributors with malicious intentions may take advantage of the open source455

nature of these packages to bypass the security of users of FLOSS tools. Ad-456

vanced LLM tools that become popular and widely used have the potential457

to enable dishonest behavior in education, publication, and communication.458

A further in-depth consideration of the potential ethical impacts of FLOSS459

is needed for future work.460

The difference in development pace and resources is apparent with data-461

driven and equation-based software. The open-source model accelerates user462

feedback and spreads the cost of development to the broader community.463

For example, many companies reduced in-house technical expertise in favor464

of contracting out development services in the energy, power, and chemical465

industries. The companies rely on proprietary packages that sometimes have466

not had significant core technological advances from the first deployments in467

the 1980s-90s. How would the situation be different if key companies, similar468

to Meta and Alphabet, had released open-source tools for broad adoption?469

Equation-based modeling tools benefit from academic development and gov-470

ernment funding, but have not had a similar accelerated pace as data-driven471
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methods with strong initial open-source support. The pace of innovation is472

robust but lags data-driven tools that design specialized software (Tensor-473

Flow and PyTorch) and hardware (TPUs) to accelerate adoption.474

In addition to a robust funding model for equation-based tools, more em-475

phasis is needed on coding and software engineering skill-sets in undergrad-476

uate and graduate student engineering curriculum to meet growing demand.477

While LLMs can alleviate the skill barrier, domain specific advancements478

are needed if LLMs are to be applied in fields like PSE [100]. Current tools479

are fragmented and have limited interoperability. Additional resources are480

needed to blend data-driven and equation-based modeling and optimization481

methods. Recent progress has been made in physics-informed neural net-482

works [101] and more progress will continue to blend paradigms.483

5.3. Final Thoughts484

The future of FLOSS tools in scientific computing is promising. Software485

will continue to develop and improve as the scientific community grows; state486

of the art modeling methods are frequently released on platforms like Hug-487

ging Face for community use and continued research [102]. Important key488

performance indicators of successful open source tools are the same indica-489

tors of current trends; user count, stability, citations, and interfaces to other490

platforms. As there is a growing interest in large and compute heavy models491

(especially LLMs), there will be a larger focus on performance, paralleliza-492

tion, and scalability for data-driven modeling packages. Pytorch and Tensor-493

flow are widely used because of accessible distributive training strategies and494

GPU hardware acceleration. For AMLs, both usable syntax and performance495

will be important. One review has found that AMPL and GAMS allow for496

the easiest problem description and fastest model solve times [45]. As pre-497

viously mentioned, comparing AMLs is a more difficult task due to different498

problem formulations and capabilities. As the Julia language grows, popular499

scientific computing packages may be translated to or remade for the newer500

language.501

There are a few challenges that may shape the future of open source soft-502

ware. As software and hardware develops, FLOSS tools will need continual503

updates and maintenance; platforms like COIN-OR will need more support504

for future use. For some modeling ideas with high impact, like LLMs, com-505

petition between groups can lead to certain software and architectures to506

become trade secret. The GPT-4 architecture is not publicly available, un-507

like its predecessors [4]. Finally, FLOSS tools will need to be more usable508
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and preferable to commercial alternatives for continued success in industrial509

cases.510

The packages mentioned in this review are considered successful because511

they are popular, usable, and performant. Going forward, these packages will512

need to be continually maintained and improved for future success. Inter-513

faces between platforms, like ONNX for neural networks, will bolster usage514

and impact of open source platforms [103]. As packages become more in-515

terconnected, tools that are not updated will become obsolete. With more516

accessible tools and greater interest in modeling, the scientific community517

is expected to grow, leading to further innovation and improvement with518

FLOSS tools.519
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a wholly owned subsidiary of Honeywell International, Inc., for the U.S. De-523

partment of Energy’s National Nuclear Security Administration under con-524

tract DE-NA-0003525. This paper describes objective technical results and525

analysis. Any subjective views or opinions that might be expressed in the pa-526

per do not necessarily represent the views of the U.S. Department of Energy527

or the United States Government.528

References529

[1] US Bureau of Labor Statistics, Occupational outlook handbook:530

Software developers, quality assurance analysts, and testers (2022).531

URL https://www.bls.gov/ooh/computer-and-information-technology/532

software-developers.htm533

[2] PYPL, PYPL index (2022).534

URL https://pypl.github.io/PYPL.html535

[3] TIOBE, TIOBE index (2022).536

URL https://www.tiobe.com/tiobe-index/537

[4] OpenAI, Gpt-4 technical report (2023). arXiv:2303.08774.538

21

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://arxiv.org/abs/2303.08774


[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Ka-539

plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,540

R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,541

B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavar-542

ian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,543

F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol,544

A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saun-545

ders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,546

A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welin-547

der, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, W. Zaremba,548

Evaluating Large Language Models Trained on Code, arXiv:2107.03374549

[cs] (Jul. 2021). doi:10.48550/arXiv.2107.03374.550

URL http://arxiv.org/abs/2107.03374551

[6] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,552

M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,553

D. Simig, P. S. Koura, A. Sridhar, T. Wang, L. Zettlemoyer, OPT:554

Open Pre-trained Transformer Language Models, arXiv:2205.01068 [cs]555

(Jun. 2022). doi:10.48550/arXiv.2205.01068.556

URL http://arxiv.org/abs/2205.01068557

[7] L. Chen, P.-H. Lin, T. Vanderbruggen, C. Liao, M. Emani, B. de Supin-558

ski, LM4HPC: Towards Effective Language Model Application in High-559

Performance Computing, in: S. McIntosh-Smith, M. Klemm, B. R.560

de Supinski, T. Deakin, J. Klinkenberg (Eds.), OpenMP: Advanced561

Task-Based, Device and Compiler Programming, Lecture Notes in562

Computer Science, Springer Nature Switzerland, Cham, 2023, pp. 18–563

33. doi:10.1007/978-3-031-40744-4_2.564

[8] W. Hu, Y. Xu, Y. Li, W. Li, Z. Chen, Z. Tu, BLIVA: A Simple565

Multimodal LLM for Better Handling of Text-Rich Visual Questions,566

arXiv:2308.09936 [cs] (Aug. 2023). doi:10.48550/arXiv.2308.09936.567

URL http://arxiv.org/abs/2308.09936568

[9] R. Krosnick, S. Oney, Promises and Pitfalls of Using LLMs for Scraping569

Web UIs (2023).570

[10] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Sar-571

avia, A. Poulton, V. Kerkez, R. Stojnic, Galactica: A Large Lan-572

guage Model for Science, arXiv:2211.09085 [cs, stat] (Nov. 2022).573

22

http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.48550/arXiv.2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.1007/978-3-031-40744-4_2
http://arxiv.org/abs/2308.09936
http://arxiv.org/abs/2308.09936
http://arxiv.org/abs/2308.09936
https://doi.org/10.48550/arXiv.2308.09936
http://arxiv.org/abs/2308.09936
http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2211.09085


doi:10.48550/arXiv.2211.09085.574

URL http://arxiv.org/abs/2211.09085575

[11] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nichol-576

son, J. D. Siirola, J.-P. Watson, D. L. Woodruff, Pyomo–optimization577

modeling in python, 3rd Edition, Vol. 67, Springer Science & Business578

Media, 2021.579

[12] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, Casadi:580

a software framework for nonlinear optimization and optimal control,581

Mathematical Programming Computation 11 (1) (2019) 1–36.582

[13] L. D. Beal, D. C. Hill, R. A. Martin, J. D. Hedengren, Gekko optimiza-583

tion suite, Processes 6 (8) (2018) 106.584

[14] I. Dunning, J. Huchette, M. Lubin, Jump: A modeling language for585

mathematical optimization, SIAM Review 59 (2) (2017) 295–320.586

[15] B. Houska, H. J. Ferreau, M. Diehl, Acado toolkit—an open-source587

framework for automatic control and dynamic optimization, Optimal588

Control Applications and Methods 32 (3) (2011) 298–312.589

[16] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,590

A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, M. Diehl, acados—a591

modular open-source framework for fast embedded optimal control,592

Mathematical Programming Computation 14 (1) (2022) 147–183.593

[17] J. Bisschop, AIMMS - Optimization Modeling, Lulu.com, 2006.594

[18] R. Fourer, D. Gay, B. Kernighan, Ampl, Danvers, MA: Boyd & Fraser595

117 (1993).596

[19] S. Misra, L. R. Buttazoni, V. Avadiappan, H. J. Lee, M. Yang, C. T.597

Maravelias, CProS: A web-based application for chemical production598

scheduling, Computers & Chemical Engineering 164 (2022) 107895.599

doi:https://doi.org/10.1016/j.compchemeng.2022.107895.600

URL https://www.sciencedirect.com/science/article/pii/601

S0098135422002332602

[20] M. Grant, S. Boyd, Graph implementations for nonsmooth convex pro-603

grams, in: V. Blondel, S. Boyd, H. Kimura (Eds.), Recent Advances604

23

https://doi.org/10.48550/arXiv.2211.09085
http://arxiv.org/abs/2211.09085
https://www.sciencedirect.com/science/article/pii/S0098135422002332
https://www.sciencedirect.com/science/article/pii/S0098135422002332
https://www.sciencedirect.com/science/article/pii/S0098135422002332
https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.107895
https://www.sciencedirect.com/science/article/pii/S0098135422002332
https://www.sciencedirect.com/science/article/pii/S0098135422002332
https://www.sciencedirect.com/science/article/pii/S0098135422002332


in Learning and Control, Lecture Notes in Control and Information605

Sciences, Springer-Verlag Limited, 2008, pp. 95–110.606

[21] M. Andersen, J. Dahl, Z. Liu, L. Vandenberghe, Interior-point methods607

for large-scale cone programming, Optimization for machine learning608

(2011) 55–83.609

[22] I. M. Ross, User’s manual for DIDO: A matlab application package610

for solving optimal control problems, Tomlab Optimization, Sweden611

(2004) 65.612

[23] R. Falck, J. S. Gray, K. Ponnapalli, T. Wright, dymos: A python613

package for optimal control of multidisciplinary systems, Journal of614

Open Source Software 6 (59) (2021) 2809.615

[24] J. Bisschop, A. Meeraus, On the development of a general algebraic616

modeling system in a strategic planning environment, in: Applications,617

Springer, 1982, pp. 1–29.618

[25] E. Burnell, N. B. Damen, W. Hoburg, Gpkit: A human-centered ap-619

proach to convex optimization in engineering design, in: Proceedings of620

the 2020 chi conference on human factors in computing systems, 2020,621

pp. 1–13.622

[26] M. A. Patterson, A. V. Rao, GPOPS-II: A MATLAB software for solv-623

ing multiple-phase optimal control problems using hp-adaptive Gaus-624

sian quadrature collocation methods and sparse nonlinear program-625

ming, ACM Transactions on Mathematical Software (TOMS) 41 (1)626

(2014) 1.627

[27] H. Hijazi, G. Wang, C. Coffrin, Gravity: A mathematical modeling628

language for optimization and machine learning (2018).629

[28] J. D. Kelly, B. C. Menezes, Industrial modeling and programming lan-630

guage (impl) for off-and on-line optimization and estimation applica-631

tions, in: Optimization in Large Scale Problems, Springer, 2019, pp.632

75–96.633

[29] J. L. Pulsipher, W. Zhang, T. J. Hongisto, V. M. Zavala, A unifying634

modeling abstraction for infinite-dimensional optimization, Computers635

& Chemical Engineering 156 (2022) 107567.636

24



[30] D. B. Leineweber, A. Schäfer, H. G. Bock, J. P. Schlöder, An efficient637

multiple shooting based reduced sqp strategy for large-scale dynamic638

process optimization: Part ii: Software aspects and applications, Com-639

puters & chemical engineering 27 (2) (2003) 167–174.640

[31] D. Orban, Nlpy—a large-scale optimization toolkit in python, Cahier641

du GERAD G-2014-xx, GERAD, Montréal, QC, Canada. In prepara-642
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances711

in Neural Information Processing Systems 32, Curran Associates, Inc.,712

2019, pp. 8024–8035.713

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,714

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-715

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duch-716

esnay, Scikit-learn: Machine learning in Python, Journal of Machine717

Learning Research 12 (2011) 2825–2830.718

[51] L. Eeckhout, Is Moore’s Law slowing down? what’s next?, IEEE Micro719

37 (04) (2017) 4–5.720

[52] L. Deng, The MNIST Database of Handwritten Digit Images for Ma-721

chine Learning Research [Best of the Web], IEEE Signal Processing722

Magazine 29 (6) (2012) 141–142, conference Name: IEEE Signal Pro-723

cessing Magazine. doi:10.1109/MSP.2012.2211477.724

[53] F. Ceccon, J. Jalving, J. Haddad, A. Thebelt, C. Tsay, C. D. Laird,725

R. Misener, OMLT: Optimization & machine learning toolkit, arXiv726

preprint arXiv:2202.02414 (2022).727

[54] L. L. Gunnell, K. Manwaring, X. Lu, J. Reynolds, J. Vienna, J. Heden-728

gren, Machine Learning with Gradient-Based Optimization of Nu-729

clear Waste Vitrification with Uncertainties and Constraints, Processes730

10 (11) (2022) 2365, number: 11 Publisher: Multidisciplinary Digital731

Publishing Institute. doi:10.3390/pr10112365.732

URL https://www.mdpi.com/2227-9717/10/11/2365733

27

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/MSP.2012.2211477
https://www.mdpi.com/2227-9717/10/11/2365
https://www.mdpi.com/2227-9717/10/11/2365
https://www.mdpi.com/2227-9717/10/11/2365
https://doi.org/10.3390/pr10112365
https://www.mdpi.com/2227-9717/10/11/2365
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