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Abstract

Standard benchmarks are important repositories to establish comparisons be-

tween competing model and control methods, especially when a new method is

proposed. This paper presents details of an Arduino micro-controller tempera-

ture control lab as a benchmark for modeling and control methods. As opposed

to simulation studies, a physical benchmark considers real process characteris-

tics such as the requirement to meet a cycle time, discrete sampling intervals,

communication overhead with the process, and model mismatch. An example

case study of the benchmark is quantifying an optimization approach for a PID

controller with 5.4% improved performance. A multivariate example shows the

quantified performance improvement by using model predictive control with a

physics-based model, an autoregressive time series model, and a Hammerstein

model with an artificial neural network to capture the static nonlinearity. These

results demonstrate the potential of a hardware benchmark for transient mod-

eling and regulatory or advanced control methods.
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1. Introduction1

Benchmark problems are standard repositories in many scientific disciplines2

such as systems biology [1, 2], reservoir modeling [3, 4, 5, 6], drilling [7, 8],3

optimization [9, 10], dynamic optimization [11, 12], singular optimal control4

[13, 14], combined scheduling and control [15, 16, 17, 18], and others [19, 20,5

21]. The benchmark problems serve as a consistent measure of innovations6

that are proposed to increase profitability or improve some aspect of control or7

optimization performance.8

There are many standard benchmark models for testing the performance9

of estimation and control methods in chemical process control. Some of these10

include a continuously stirred tank reactor (CSTR) with a single exothermic re-11

action [22, 23, 24]. One of the most commonly cited models in chemical process12

control is the Tennessee Eastman Process [25, 26]. The Tennessee Eastman Pro-13

cess encapsulates valve characteristics, measurement noise, process nonlinearity,14

and complex interactions between processing units for chemical manufacture.15

Besides simulation, there are standard hardware benchmarks for evaluat-16

ing control performance such as UAV control [27], process control education17

modules [28, 29], and quadruple tank level control [30, 31, 32]. There also18

many studies where the authors build a unique test system or implement con-19

trol on an industrial process [33, 34] and demonstrate various control methods.20

However, hardware benchmarks may be difficult to reproduce or the industrial21

process may be unavailable for independent researchers to also obtain data or22

test methods in closed-loop.23

The purpose of this paper is to demonstrate a standard hardware benchmark24

for control methods with a micro-controller temperature control device. This25

Temperature Control Lab (TCLab) is used as an education module for courses26

in process dynamics and control [35, 36]. As many have noted in assessments of27

process control education, there is a need to give students realistic and hands-28

on experiences with process control [37, 38, 39]. Industry desires foundational29

and practical knowledge of control engineering concepts that are reinforced with30
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physical modules. Because the TCLab, as an educational module, has wide dis-31

tribution to universities and industrial practitioners (3000 units), it has potential32

as a standard hardware benchmark for control engineering studies. Section 233

gives details of the device to enable replication of the TCLab.34

2. Temperature Control Lab Device35

The TCLab is printed circuit board (PCB) shield that connects to an Ar-36

duino micro-controller. The TCLab shield has two transistors as heaters and37

two thermistor temperature sensors as shown in Figure 1. A step response of38

the heater (0-100%) has a temperature response with an approximate dominant39

time constant (τ) of 2.9 min and a gain of 0.9
oC

%heater . The process exhibits40

second order dynamics and the two adjacent heaters create a compact multi-41

variate control system. The Arduino micro-controller is an Arduino Uno or42

Arduino Leonardo that includes a 10-bit Analog to Digital Converter (ADC) to43

measure voltage of the temperature sensors in 1024 (210) discrete analog levels44

and Pulse Width Modulation (PWM) with 256 (28) levels to change the output45

to the heaters and LED.46

Figure 1: Temperature sensors and heater transistors with connections to an Arduino

Leonardo.
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The transistor heaters are TIP31C NPN Bipolar Junction Transistors (BJTs)47

in a TO-220 package. These transistors are commonly used in audio, power, and48

switching applications but not commonly as heaters. During the development49

of the TCLab, the initial design was to include a MOSFET transistor (low50

power loss switch) with a power resistor as the heating element. Instead, the51

BJT TIP31C is able to act as both the switch and the heater, thereby simpli-52

fying the design and reducing the cost of the hardware. The two temperature53

sensors on the TCLab are standard TMP36GZ thermistors with an output volt-54

age (mV ) that is linearly proportional to temperature (T oC = 0.1mV − 50)55

and no requirement for calibration. Typical sensor accuracy is ±1oC at room56

temperature (25oC) and ±2oC over the −40oC to 150oC operating range.57

As a safety and equipment protection precaution, the Arduino micro-controllers58

come pre-programmed to shut off the heaters if the temperature rises above59

100oC. The heaters are powered by a 5V 2A power supply for a maximum60

power output of 10 W. A 20 AWG (American Wire Gauge) power cable reduces61

the power dissipation compared to standard 24 AWG power cables with a barrel62

jack connector. A USB cable connects the Arduino to a computer for serial data63

communication. One TIP31C heater and one TMP36GZ sensor are connected64

to each other and with a thermal heat sink attached to the TIP31C transistor.65

The two heater units are placed in proximity to each other to transfer heat by66

convection and thermal radiation.67

Software interfaces to TCLab in Python, MATLAB, and Simulink are de-68

scribed in Appendix A. The software adjusts the two heater levels between 069

and 100% and the LED brightness between 0 and 100% using PWM with 28
70

discrete levels. The PWM rapidly fluctuates between on and off to give nearly71

continuous values 0, 0.392, 0.784, . . . , 99.61, 100 for actuation of the heaters and72

LED.73
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(a) TCLab Printed Circuit Board Layout (b) TCLab Device

Figure 2: Temperature Control Lab Design

3. Temperature Response Models74

This section summarizes four simulation models that describe the dynamic75

response of the heaters to temperature changes. The four are a lumped param-76

eter energy balance (Section 3.1), a first-order plus dead-time (FOPDT) model77

(Section 3.2), a higher-order autoregressive exogenous input (ARX) model (Sec-78

tion 3.3), and an artificial neural network (ANN) steady state and linear dy-79

namic Hammerstein model (Section 3.4). Section 3.5 compares all of the models80

on open-loop step test data both for Single Input Single Output (SISO) and Mul-81

tiple Input Multiple Output (MIMO) modes. Multivariate, model-based control82

relies on an accurate simulation of the process. The models described in this83

section are not an exhaustive list of physics-based and empirical representations.84

Each TCLab device is slightly different so the model parameters are uniquely85

identified. One of the principal differences is the ambient temperature where86

the test occurs. Other potential disturbances include the power supply output,87

air currents (e.g. nearby computer fan), and others. Figure 3 shows variability88

due to ambient temperature differences for six tests that use the same heater89

profile. With ±2.5oC ambient temperature difference, there is a similiar spread90

in the heater temperature response although the trends are not parallel and91

completely predictable, especially for heater 2 temperature.92
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Figure 3: Variations in ambient temperature influence the temperature profiles

Along with measurement noise, the stochastic nature of the data is a feature93

of the lab that portrays performance on a physical system. Reporting, plotting,94

or controlling the starting (ambient) temperature is an important requirement95

of the benchmark as shown in Figure 4.96

According to the slope of the regression, an ambient temperature increase of97

1oC equates to a 0.928 ±0.033oC rise in average temperature of the step tests.98

One possible explanation for the slope less than unity is the radiative heat99

transfer that has a quadratic dependence on absolute temperature and would100

lose heat at a higher rate at elevated conditions. The main conclusion from this101

result is that ambient temperature has a reproducible effect on the outcome of102

benchmark tests and should be reported and controlled for repeatable results.103

3.1. Physics-based Model104

A lumped parameter model with convection, conduction, and thermal radi-105

ation describes the second-order temperature response to heater changes. The106

lumped parameter model is a simplification of a more rigorous finite element107
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Figure 4: Correlation of ambient temperature to average temperature during 60 step tests (10

min each)

analysis (FEA) that tracks the temperature distribution throughout the heat108

sink and loss to the environment as shown in Figure 5.109

Details of the FEA simulation are not provided here but do provide a confir-110

mation that the temperature distribution is sufficiently uniform (< 3oC) for a111

lumped parameter assumption. The lumped parameter model assumes that the112

heaters (TH1 and TH2) and temperature sensors (TC1 and TC2) have a uniform113

temperature. The temperature sensors (TC1 and TC2) have a small thermal114

mass and surface area and temperature changes are driven by heat conduction115

from the heaters (TH1 and TH2) where they are attached with thermal epoxy.116

Parameters of the lumped parameter model are given in Table 1.117

The dynamic input power to each transistor and the temperature sensed118

by each thermistor is developed with energy balance equations (Equations 1-4)119

that account for convection, conduction, and thermal radiation. The amount120

of convective heat transfer from heater 1 to heater 2 is given by QC12 =121
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Figure 5: Finite Element Analysis of the Dynamic Temperature Response.

Table 1: Lumped Parameters from Physics-based Model

Quantity Value

Initial temperature (T0) 296.15 K (23oC)

Ambient temperature (T∞) 296.15 K (23oC)

Heater output (Q1) 0 to 1 W

Heater factor (α1) 0.0131-0.0132 W/(% heater)

Heater output (Q2) 0 to 0.75 W

Heater factor (α2) 0.0063-0.0066 W/(% heater)

Heat capacity (Cp) 500 J/kg-K

Surface Area Not Between Heaters (A) 1.0x10−3 m2 (10 cm2)

Surface Area Between Heaters (As) 2x10−4 m2 (2 cm2)

Mass (m) 0.004 kg (4 gm)

Heat Transfer Coefficient (U) 4.4-4.6 W/m2 −K

Heat Transfer Coefficient Between Heaters (Us) 23.6-24.4 W/m2 −K

Emissivity (ε) 0.9

Stefan Boltzmann Constant (σ) 5.67x10−8 W/m2 −K4

Conduction Time Constant (τc) 21.1− 23.3 sec

UsAs (TH2 − TH1). The radiative heat transfer from heater 1 to heater 2 (or122
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vice versa) is given by QR12 = ε σ A
(
T 4
H2 − T 4

H1

)
.123

mcp
dTH1

dt
= U A (T∞ − TH1) + ε σ A

(
T 4
∞ − T 4

H1

)
+QC12 +QR12 + α1Q1 (1)

mcp
dTH2

dt
= U A (T∞ − TH2) + ε σ A

(
T 4
∞ − T 4

H2

)
−QC12 −QR12 + α2Q2 (2)

The dynamic temperature response of the two temperature sensors are pri-124

marily by conductive heat transfer from the heaters. The temperature sensors125

are small in mass and surface area relative to the heaters so the heat transfer by126

other mechanisms is ignored. The time constant τc is a lumped parameter from127

a discretized version of Fick’s Law of heat transfer with τc = ms cps ∆x/kcAcond,128

where ms is the mass of the sensor, cps is the heat capacity of the sensor, kc is129

the thermal conductivity of the thermal epoxy, and ∆x is the width of the ther-130

mal epoxy. These parameters are combined together into one parameter τc and131

estimated from the data. The dynamic sensor temperature response expressions132

are Equations 3 and 4.133

τc
dTC1

dt
= TH1 − TC1 (3)

τc
dTC2

dt
= TH2 − TC2 (4)

The test of the physics-based model is performed in two phases that includes134

a model fitting phase followed by validation. The model fitting adjusts the pa-135

rameters U , Us, α1, α2, and τc to minimize the sum of squared error between136

the model prediction and data as shown in Figure 6a. The model validation is a137

simulation of the temperature profile given a different heater profile. The mea-138

sured temperatures are not used in performing the simulation but are compared139

afterwards to determine how well the model fitting performs on independent140

data as shown in Figure 6b.141
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Figure 6: Dual Heater Step Response of the TCLab with Physics-based and FOPDT Model

3.2. First-Order Plus Dead-time Model142

In addition to the physics-based model, a first-order plus dead-time (FOPDT)143

model is fit to step response data. An FOPDT model includes the gain (Kp=0.92144

oC/%), time constant (τp=175.2 sec), and delay time (θp=15.6 sec). The FOPDT145

model is a single differential equation as shown in Equation 5.146

τp
dTC1

dt
= −TC1 +KpQ1 (t− θp) (5)

The discrete solution to the FOPDT equation is Equation 6 when there is147

a zero-order hold for the heaters between sampling intervals (∆t) between time148

interval j and j − 1.149

TC1,j = e
−∆ t
τp (TC1,j−1 − TC1,0) +

(
1− e

−∆ t
τp

)
Kp

(
Q1,j−θp−1 −Q1,0

)
+ TC1,0

(6)

The FOPDT model is used in this example for obtaining initial tuning pa-150

rameters to a Proportional-Integral-Derivative (PID) controller for an optimization-151

based tuning approach as detailed in Section 4. Heater 1 (Q1) is adjusted with152

variable step sizes and heater 2 (Q2) remains off to generate step response data153

for the FOPDT. The results of the temperature data and model fit is shown in154

Figure 7a and Figure 7b for validation with a different heater profile.155
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(b) Model Validation

Figure 7: Single Heater Step Response of the TCLab with Physics-based and FOPDT Model

The physics-based model has a lower average absolute error while the FOPDT156

model has a higher error because a first order model is fit to a higher order re-157

sponse. The physics-based model fits the temperature response better when the158

heater is adjusted because of the second-order model and nonlinear radiative159

heat transfer term.160

3.3. Linear Time Series Models161

Auto-Regressive eXogenous input (ARX) time series models are a linear162

representation of a dynamic system in discrete time. The ARX, Output Error163

(OE), Finite Impulse Response (FIR), State Space (SS), and other forms are164

common in industrial multivariate identification and control [40]. Equation 7165

is an ARX time series model with a single heater input and single temperature166

output with k index for the time step, i index for prediction horizon step, and167

adjustable parameters α, β, and γ.168

TC1,k+1 =

nα∑
i=1

αiTC1,k−i+1 +

nβ∑
i=1

βiQ1,k−i+1 + γ (7)

With nα = 3 and nβ = 2 the time series model has 5 adjustable parameters169

and is shown in Equation 8. The ARX form uses prior temperature measure-170

ments to predict the next temperature in the series, TC1,k+1, while the OE171
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form uses prior temperature predictions to predict the next temperature in the172

sequence. The γ1 value is adjusted to create an unbiased model prediction.173

TC1,k+1 = α1 TC1,k + α2 TC1,k−1 + α3 TC1,k−2 + β1Q1,k + β2Q1,k−1 + γ1 (8)

The OE identification form is used to reduce model bias. Equations 9a and174

9b have multiple inputs and multiple outputs for the case when nα = 2 and175

nβ = 1.176

TC1,k+1 = α1,1 TC1,k + α2,1 TC1,k−1 + β1,1Q1,k + β1,2Q2,k + γ1 (9a)

177

TC2,k+1 = α1,2 TC2,k + α2,2 TC2,k−1 + β2,1Q1,k + β2,2Q2,k + γ2 (9b)

An advantage of a linear time invariant (LTI) model such as SS, ARX, FIR,178

or OE is that little or no physics-based information is required to obtain a179

model prediction. When constraints are available, they are used to improve the180

identification [41]. The model fit to the step test data is shown in Figure 8a and181

the validation in Figure 8b.182
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(b) Model Validation

Figure 8: Single Heater Step Response of the TCLab with Linear Time Series

There is insufficient data information to determine the β values associated183

with Q2 because the value stays at zero for the duration of the test. A second184
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test is conducted where the second heater is also adjusted to get a multivariate185

model from the step response data (see Figure 9).186
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(b) Model Validation

Figure 9: Dual Heater Step Response of the TCLab with Linear Time Series

3.4. Hammerstein Model with Artificial Neural Network187

A final modeling approach is a Hammerstein Model with an Artificial Neural188

Network (ANN) to predict the steady-state relationship between the heaters189

and temperatures and a linear dynamic block that translates the steady-state190

prediction into a dynamic prediction. The ANN is not trained directly on the191

dynamic data because a Recurrent Neural Network or Convolutional Neural192

Network is better suited for this type of predictive model and this is the topic193

of future work. A diagram of the model is shown in Figure 10.194

The parameter weights, represented by arrows connecting each of the nodes,195

are adjusted to minimize a sum of squared error with 70 steady-state data points.196

The steady-state data points are obtained by setting random heater values be-197

tween 0 and 80% for 5 min, recording the temperatures, and then adjusting the198

heater values to random levels for another data point. Although the system199

does not fully reach steady-state ( 2 τ or 95% of change), it is judged to be200

sufficiently close to fit the steady-state correlation. The linear dynamic part is201

approximated as a second-order dynamic relationship between the steady-state202

temperature outputs of the ANN and the dynamic response with τp1=140 sec203
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and τp2=20 sec. The second order system approximates the time constant for204

the heater and temperature sensor with heat conduction between the two.205
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Figure 11: Hammerstein Model Fitting and Validation with 2 Heaters

The fitting data is shown in Figure 11a and validation is shown in Figure 11b.206

Because the steady-state data is a different data set than the dynamic fitting207

data set, there is some offset between the predictions and data. There are many208

ANN forms and a future case study could investigate the use of convolutional209

or recurrent neural networks such as a network with LSTM (Long Short-Term210

Memory) nodes to combine the dynamic and steady-state predictions into one211

model.212

3.5. Summary of Model Predictions with Validation213

For model-based controllers, the choice of model depends on many factors214

such as computation speed, ability to extrapolate outside the training region,215

degree of nonlinearity, and others. Table 2 summarizes the model fit to data216

with the model regression and validation tests as an average sum of absolute217

error.218

4. Benchmarking Closed-Loop PID Re-Tuning219

The PID controller is a widely used basic regulatory control algorithm. PID220

control is important in chemical engineering processes as it plays a critical role221
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Table 2: Summary of Regression and Validation for Single Heater (SISO) and Dual Heater

(MIMO) Tests

Model Description Training Validation

SISO Physics-based Lumped Parame-

ter

0.20 oC 3.32 oC

SISO First-order Plus Dead-time 0.41 oC 5.11 oC

SISO Second Order ARX 0.18 oC 5.16 oC

SISO Hammerstein with ANN and

Linear Dynamics

3.83 oC 1.66 oC

MIMO Physics-based Lumped Parame-

ter

0.23 oC 0.70 oC

MIMO Second Order ARX 0.26 oC 2.66 oC

MIMO Hammerstein with ANN and

Linear Dynamics

1.57 oC 1.55 oC

as a base regulatory layer foundation for advanced process control and opti-222

mization systems. PID performance varies greatly on the parameters obtained223

from tuning rules or heuristics [42, 43]. Control performance metrics such as224

minimum variance control are common assessments of performance [44, 45].225

Methods such as Zeigler-Nichols closed-loop tuning requires sustained oscilla-226

tion data to obtain an ultimate gain (Ku) and ultimate period (Pu) [46]. To227

avoid driving a process to the limitation of the stability region to obtain the228

sustained oscillation data, a relay method is introduced [47]. Tuning rules are229

a valuable starting point for further manual tuning but may not be optimized.230

Optimization-based PID tuning is another option with prior work in extremum231

seeking [48] algorithms, particle swarm [49, 50], and meta-heuristics such as232

genetic algorithms [51].233

The objective of this closed-loop PID re-tuning is to demonstrate a TCLab234

benchmark that uses historical data to optimally re-tune a PID controller. An235

exhaustive search method visits all feasible combinations of the PI or PID pa-236
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rameters to find an optimal value of the objective function without converging to237

a local minimum for both output-error and input-move deviations. The method238

uses simulation of the physical TCLab PID controller by: (a) re-playing back239

the past or historical setpoint and load disturbances [52]; (b) allowing multi-240

ple, simultaneous and probability-weighted process models to be included in241

the simulations (i.e., multiple scenarios or situations each with specified proba-242

bilities) for robustness; (c) including multiple and simultaneous PID controller243

configuration formulations or even ad hoc controller designs; (d) specifying any244

type of performance objective function criteria i.e., simultaneously minimize the245

output-error and input-move variances, overshoot, etc. (e) adding stability rules246

in the search to cut-off unstable sections of the closed-loop operating space and247

(f) utilizing an indirect and constrained controller design technique [53].248

The exhaustive search method is tested with the TCLab as a benchmark for249

closed-loop control performance. The TCLab produces the closed-loop operat-250

ing data with IMC PID parameters and a selected setpoint change sequence. A251

deterministic parametric process model is then identified using an ARX struc-252

tured model using the GEKKO dynamic optimization suite [54], estimating253

coefficients using a least-squares prediction-error objective function. Then, the254

exhaustive search method evaluates the range or domain of the different P , I,255

and/or D parameters. The best search objective function found provides the P ,256

I, and/or D. The PID controller is then run again with the temperature control257

lab using the re-tuned PID parameters and the data recorded. There are many258

derivations of PID formula rooted in the original continuous equation [42]. For259

implementing PID controllers in modern digital control platforms such as a DCS260

(Distributed Control Systems) or PLC (Programmable Logic Controllers), two261

popular discrete forms are widely used in industry. One is the positional form262

(Equation 10a) and the other is the velocity form (Equation 10b), which are263

exchangeable.264

OPt = OPbias +Kc

(
et +

∆t

τI

t∑
1

et + τD
PVt−1 − PVt

∆t

)
(10a)
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265

OPt = OPt−1 +Kc

(
(et − et−1) +

∆t

τI
et +

τD
∆t

(PVt − 2PVt−1 + PVt−2)

)
(10b)

where the output error et = SPt−PVt. Whereas the positional form calculates266

the controller output position (OP ), the velocity form calculates the change in267

controller output (∆OP = OPt−OPt−1). Although the positional form is more268

straightforward to understand as the P , I, and D terms are directly translated269

from the original continuous form, the velocity form has several advantages from270

the convenience perspective such as no additional logic is required for anti-reset271

windup [55]. The positional form PI controller is used in this study while a prior272

study [53] used a PID controller in velocity form. In both cases, an ARX model273

is identified from closed-loop data. ARX and Box-Jenkins models have proven274

consistency in closed-loop identification [56, 57]. The potential PID tunings are275

re-played with the same past setpoint and load disturbance as in the process276

data (yt) with zt = yt − xt where, xt represents the ARX model output for277

time-step t. The load disturbance (zt) is super-imposed on the ARX simulated278

process output during the search for optimal tuning parameters.279

Two different types of objective functions are considered for PID tuning. The280

objective functions are a variation of the PID control performance index known281

as average IAE (Integral Absolute Error). The objective function consists of the282

output-error (OE) term, and the input movement (IM) term. The optimization283

solution of output error combined with input movement (or, rate of change)284

has been analytically derived and investigated in [58] and is the simplest form285

of move suppression. These multi-objective functions can be express in two286

different ways. One is Archimedean and the other is the lexicographic form (or287

goal programming) as shown in Equations 11 and 12, respectively.288

min
Kc,τI ,τD

J =

∑t
i=1 (wOE ‖SPi − xi‖n + wIM ‖OPi −OPi−1‖n)

t
(11)

where n is the norm w is the weighting factor for each term in the objective289
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function denoted as OE for output error and IM for input movement.290

min
Kc,τI ,τD

J =

∑t
i=1 (‖SPi − xi‖n) Subject to ‖OPi −OPi−1‖n ≤ UBIM

t
(12)

where UB is the upper bound of the input movement (IM) which may be291

initially set by the centroid PID performance. Either the Archimedean or lexi-292

cographic form of the objective function can be used for PID controller tuning.293

In terms of convenience, the lexicographic form is easier to use because it re-294

quires one user input parameter, UBIM , as opposed to the Archimedean form295

that requires two weighting factors on both OE and IM terms. One simplifi-296

cation of the Archimedean form is to reduce the weighting factors to one by297

dividing the objective by wOE .298

4.1. TCLab Benchmark Validation299

The first step of the validation is to collect the closed-loop operation data300

and identify the ARX model parameters for identifying the ARX model. The301

setpoint is changed from ambient temperature at the initial steady-state con-302

dition to 50 oC, 40 oC, and then to 60 oC. The ranges of Kc and τI are303

evaluated through the ARX model that includes the same setpoint sequences304

and load disturbance. The performance objective functions for each Kcand τI305

incremental combination are also calculated and stored. The `1-norm objective306

function in the Archimedean form is chosen for the test with weighting factors307

wOE = 1 and wIM = 0.5. The Kc and τI combination that gives a minimum308

value of objective function is then chosen as optimal PID tuning. The initial Kc309

and τI are from the FOPDT model in Section 3.2 and IMC aggressive tuning310

with Kc = 5.74 %
oC and τI = 175.2 sec. Optimized values are Kc = 10.0 %

oC and311

τI = 55.0 sec as shown as the minimum value of the objective function contour312

map (see Figure 12).313

The objective function surface is not smooth because of the load disturbances314

that are replayed with every PID parameter combination. Figure 13 shows315

the measured temperature and ARX model response for both the original and316
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optimized response. The validation of the optimal tuning parameter is displayed317

as well.318
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Figure 13: ARX Simulated and TCLab Validated Performance Improvement of 5.4%.

The average IAE objective function is 6.09 with IMC tuning and 5.76 with319

optimized parameters, an improvement of 5.4%. The PID improvement is simu-320

lated with the ARX model and validated with closed-loop data from the Arduino321

TCLab.322

5. Multivariate Control Benchmark323

Model predictive control (MPC) with the physics-based model, time series324

linear model (ARX), and Hammerstein ANN model quantify multivariate con-325

trol performance. Additional models in MPC or multivariate control strategies326

are tested with the TCLab. This section shows benchmark performance with327

three popular methods for multivariate control that range from linear to non-328

linear and empirical to physics-based.329
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An `1-norm objective function gives a target region for the temperature330

range, rather than one specific target value. Equation 13 shows the `1-norm331

control formulation used in this work for model predictive control (MPC).332

min
x,CV,MV

J = wThiehi + wTloelo + ∆QT c∆Q

s.t. 0 = f
(
d T
d t , T,Q

)
ehi ≥ T − Thi
elo ≥ Tlo − T

(13)

where J is the objective function, T is the temperature, Q is the heater, wlo333

and whi are penalty matrices for solutions outside the target temperature region.334

Slack variables elo and ehi are the error of the dead-band low and high limits,335

respectively. Parameter c∆Q is a move suppression factor. The function f is an336

open-equation set of model equations that include T , Q, and time derivatives337

of T . The demand targets Tlo and Thi define lower and upper target limits for338

temperature as shown in Figure 14.339
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Figure 14: MPC with ARX Model at Cycle 81
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At cycle 81, temperature 1 has just reached the target temperature setpoint340

of 50 oC after heater 1 is ramped down from 100% to 0% at 10-15 sec prior to341

reaching the setpoint. The model predictive controller anticipates the continued342

rise in temperature and turns the heater off for a period of 5 seconds before343

returning to a baseline heater value to maintain the 50 oC setpoint. The model344

also anticipates the increase in temperature 2 due to the setpoint change to 35345

oC at cycle 80. The reference trajectory with time constant τ=10 sec gives a346

guide for the fastest that the temperature should approach the new setpoint.347

The setpoint has a±0.2 oC range with a±1.0 oC larger opening at the beginning348

for less MV movement for near-term adjustments. The underlying ARX time-349

series model coordinates the MV movements to meet both setpoints considering350

multivariate effects.351

6. Benchmarking Model Predictive Control352

The multivariate models developed in Sections 3.1, 3.3, and 3.4 are compared353

in MPC. The MPC uses an `1-norm objective with a temperature dead-band of354

±0.2 oC for Thi − Tsp, Tlo − Tsp and a first-order reference trajectory of 10 sec355

for setpoint changes. The move suppression factor c∆Q is set to 0.1, the weights356

whi and wlo are set to 20.0, and the control and prediction horizon are 60 sec-357

onds. The linear ARX model has a cycle time of 1 second while the nonlinear358

physics-based and Hammerstein applications are re-computed every 2 seconds.359

The longer cycle time is required to enable all steps of data retrieval, model360

update, re-calculation of optimal move plan, retrieval of first step, and insertion361

into the process. Table 3 is a numeric comparison of the methods with quan-362

tified IAE rate (
oC/sec) and Integral Average Move rate (%/sec) for the heater363

adjustments. Another common performance metric is a minimum variance as364

applied to multivariate control systems [59, 60]. Rate-based values are shown365

in this case because of the differing cycle times between the applications.366

The benchmark results show that all models perform equally well in terms367

of the control performance (11.4-11.6 oC/sec) as shown in Figures 15 to 17.368
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Table 3: Summary of Model Predictive Control Methods

Model Description IAE Avg Rate (CVs) IAE Avg Rate (∆MV s)

Physics-based Lumped

Parameter

11.5
oC/sec 2.0 %/sec

Second Order ARX 11.6
oC/sec 3.3 %/sec

Hammerstein with ANN

and Linear Dynamics

11.4
oC/sec 2.5 %/sec

In all cases, T1 is not able to reach the setpoint of 30oC between 160-320 sec369

because of insufficient cooling rate when Q1 is off. The ARX model has the370

highest MV movement (3.3 %/sec) and the physics-based model has the lowest371

MV movement even with rapid fluctuations on Q2 during the first setpoint372

change at t = 105 sec. The values for MPC are more than the PID control373

performance metric because there are two CVs and two MVs that accumulate374

error approximately twice as fast and with more frequent setpoint changes.375

The physics-based model has the potential to extrapolate to new operating376

conditions without retuning. A physics-based MPC has the disadvantage of377

relative difficulty in developing the model equations for complex systems. There378

is also a potential for solver convergence problems if the physics-based model379

is high nonlinear or does not have a suitable initial guess. This is not the case380

for the TCLab where an approximate lumped-parameter model is an accurate381

representation of the physical system. One drawback for the physics-based MPC382

is that it cannot run at 1 sec cycles but does solve within a 2 second interval for383

a 60 sec prediction horizon. The ARX control performance is shown in Figure384

16.385

The ARX MPC has the fastest cycle time (1 sec versus 2 sec) so that it can386

respond more quickly to disturbances or setpoint changes. Because it is a linear387

model, the cycle time can be faster (up to 5 Hz) due to reduced computing time.388

The disadvantage of the ARX MPC is that it is a linear representation of the389

slightly nonlinear TCLab. This requires re-adjustment of the move plan and390
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Figure 15: MPC with Physics-based Model
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Figure 16: MPC with ARX Time Series Model
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increased cycling due to model mismatch. The ARX MPC has slight overshoot391

due to the underestimation of process gain that leads to overly aggressive MV392

movement as shown in Figure 17.393
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Figure 17: MPC with Hammerstein ANN Model

The Hammerstein MPC has the potential to excel in situations where the394

process is highly nonlinear and there is not a suitable physics-based represen-395

tation of the process. Like the physics-based MPC, it requires a slower 2 sec396

cycle time to meet the real-time constraint. Unlike the physics-based MPC,397

it is not expected to perform well when used outside of the training domain.398

To facilitate the comparison, a repository of source code and Arduino firmware399

https://github.com/APMonitor/arduino is available with all the examples400

from this paper.401
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7. Conclusion and Future Work402

The benchmark studies included in this paper are a sampling of common403

modeling and control methods that are quantified with the TCLab shield and404

an Arduino microcontroller. The temperature response is modeled with four405

approaches: physics-based, FOPDT, ARX, and Hammerstein ANN with linear406

dynamics. Separate data sets are used for training and validation. The objective407

of the modeling is to create automatic controllers with PID and MPC. A PID408

optimal tuning case study uses an exhaustive search as a straightforward method409

for closed-loop retuning to improve performance by 5.4%. The optimal PID410

parameters are selected by replaying past setpoint and load disturbances where411

the residuals of estimation are considered as the unmeasured load disturbances.412

A second study is the application of the three multivariate models in MPC with413

varying degrees of nonlinearity and physics-based foundation.414

This study presents a sample of potential modeling and control applications415

that are quantified with the TCLab hardware benchmark. There are additional416

potential applications for evaluating methods in estimation, data reconciliation,417

machine learning, classification, fault detection, anomaly detection, disturbance418

identification and rejection, integration of control and scheduling, mixed inte-419

ger systems, stability analysis, explicit MPC, and others. Because each TCLab420

device is slightly different, benchmark evaluations are performed on the same421

device and with similar ambient conditions. The TCLab is an accessible hard-422

ware platform for benchmarking models and closed-loop performance with real423

data.424
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Appendix A. Software Interface to TCLab432

Two parts to the software interface are the firmware that runs on the Ar-433

duino Leonardo and the serial interface to interpret and command the TCLab.434

An important part of making the benchmark accessible is to create an inter-435

face to software (MATLAB, Simulink, and Python) where control algorithms436

are developed but also provide information for interfaces to other software plat-437

forms. There is an Arduino Support Package for MATLAB and Simulink from438

MathWorks that automatically loads firmware onto the Arduino when it is con-439

nected for the first time. The Arduino firmware for Python is an ino file that is440

augmented with additional sections to compile as cpp code with a gcc compiler441

through the Arduino IDE. The TCLab is pre-loaded with the Python interface442

firmware.443

444

Listing 1: MATLAB Commands to Adjust Heaters and Display Temperatures
445

c l e a r a l l446

% inc lude t c l ab .m447

tclab ;448

di sp ( 'Turn on Heaters and LED ' )449

h1 (30) ; h2 (60) ; led (1 ) ;450

pause (10)451

di sp ( ' Display Temperatures ' )452

di sp ( T1C ( ) )453

di sp ( T2C ( ) )454

h1 (0 ) ; h2 (0 ) ; led (0 ) ;455
456

457
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Figure A.18: Simulink Interface with Manual Sliders for Heater Levels.

Listing 2: Python Commands to Adjust Heaters and Display Temperatures
458

import tclab # pip i n s t a l l t c l a b459

import time460

# Connect to Arduino461

a = tclab . TCLab ( )462

pr in t ( 'Turn on Heaters and LED ' )463

a . Q1 ( 3 0 . 0 ) ; a . Q2 ( 6 0 . 0 ) ; a . LED (100)464

time . sleep ( 1 0 . 0 )465

pr in t ( ' Display Temperatures ' )466

pr in t ( a . T1 )467

pr in t ( a . T2 )468

a . close ( )469
470
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