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Abstract

When drilling an oil or gas well, well pressures may be controlled using a tech-

nology called managed pressure drilling. This technology often relies on model

predictive control schemes; however, practical limitations have generally led to

the use of simplified controller models that do not optimally handle certain

perturbations in the physical system. The present work reports on the first

implementation of a highly accurate system model that has been adapted for

real-time use in a controller. This real-time high-fidelity model approximates

the results of offline high-fidelity models without requiring operation by model

experts. The effectiveness of the model is demonstrated through simulation

studies of controller behavior under various drilling conditions, including an

evaluation of the impact of sparse downhole feedback measurements.

Keywords: managed pressure drilling, drilling automation, pressure control,

physics-based drilling flow model, nonlinear model predictive control

1. Introduction1

Control of well pressures during oil and gas drilling operations is a safety-2

critical process. If the pressure of drilling fluid in the well is allowed to get too3
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low, fluids residing in the surrounding rock formation can enter the wellbore dur-4

ing the drilling process, creating a potentially hazardous condition. Likewise, if5

the drilling fluid pressure is too high, the formation wall may fracture, causing6

costly fluid loss to the surrounding rock and perhaps creating a secondary incur-7

sion of formation fluid into the wellbore. Some wells in offshore environments or8

depleted reservoirs are particularly difficult to drill from this perspective, as the9

margin between formation fluid pressure (pore pressure) and fracture pressure10

can be quite narrow. Sometimes, pressure fluctuations caused simply by rapid11

movement of drilling components in and out of the well is sufficient to exceed12

safety limits.13

One technology that offers highly responsive control over wellbore pressures14

during the drilling process is managed pressure drilling (MPD). This technol-15

ogy uses dynamically adjusted surface equipment, including a choke valve and16

multiple fluid pumps, to keep pressures within desired limits. Though a vari-17

ety of controllers have been used to control MPD equipment [1, 2, 3, 4], model18

predictive control (MPC) is particularly well suited to this application.19

MPC has found favor in a variety of industries for several reasons, including20

its capability of handling multiple inputs and outputs, and its ability to handle21

input and state constraints [5, 6, 7]. In MPD applications, researchers have22

exploited these capabilities and have developed MPC systems that control pres-23

sure, flow, and rate of penetration (ROP) simultaneously [8, 9], control pressure24

at two different locations in the well [10], and handle substantial heave motion25

on drill rigs subject to ocean surface disturbances [11, 12].26

Understandably, a fundamental key to controller effectiveness is the accuracy27

of the model upon which the MPC is based; mismatches between the model and28

the physical system can lead to suboptimal control. Nevertheless, a simplified29

model is often accepted for use in the MPC in order to address practical limita-30

tions relating to such things as incomplete understanding of the physical process,31

limited computational power, or inadequate availability of expertise for control32

system maintenance, often trading optimal process control for usability [13]. In-33

deed, in many MPC applications, models include simplifications of some type,34

2



such as reduction in model order or linearization of significant nonlinear pro-35

cesses (see [9, 10, 14, 15, 16, 17, 18, 19]). The simplest of these models may be36

termed gray box models, which incorporate linear transfer function models and37

nonlinearity blocks to describe relationships between manipulated variables and38

system behavior. These models have been derived empirically and may take the39

form of a nonlinear Hammerstein-Wiener model, for example [20, 21, 22, 23].40

To improve this type of model, Patan [24] proposes using artificial neural net-41

works to empirically build system models off-line. Other models (“low-fidelity42

flow models” or LFMs) are based on the underlying physics of the process, and43

capture the primary dynamics of the process [25], but exclude more complex44

but nonetheless relevant physical effects in the name of simplification.45

Because such models necessarily omit certain physical effects, the compro-46

mised accuracy of these reduced order models is inevitable; studies suggest47

improved results could be achieved with more accurate models [8, 12]. Model48

errors due to structural model mismatch become more prominent during tran-49

sient periods caused by operational changes. For example, Pedersen, et.al. [26],50

note the criticality of improved models when controlling pressures in the well51

during large process changes. During such changes a physical process will of-52

ten pass through multiple nonlinear modes that are not well tracked by simpler53

models, e.g., passing through different flow regimes.54

Another approach to addressing practical computing issues includes segre-55

gating optimization activities into off-line and on-line portions where optimal56

control solutions for various states are pre-computed and made available to sim-57

plified on-line routines [27, 28]. Such approaches deal effectively with limited58

computing facility but still inevitably detach the run-time model from some59

important aspects of the underlying physics of the process. In the oil and60

gas drilling industry, process variations due to geologic idiosyncrasies, previous61

production of a reservoir, etc. abound, suggesting substantial benefits can be62

secured with control systems integrated with reliable physics-based models [29].63

Highly accurate physics-based models of the well drilling dynamic processes64

do exist. Such models are typically very detailed in order to capture complex65
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flow interactions. Unfortunately, these comprehensive models, known as “high-66

fidelity flow models” (HFMs), require a large number of input variables and67

are difficult to maintain in a real-time environment. Control systems based68

on such models would need to be managed by subject experts. Thus, many69

MPD automation research studies have stayed away from these more complex70

and resource-hungry models, as suggested above. In an effort to reduce the71

computational burden of using this type of model, Eaton et al. [30] developed72

a method to switch between a simple linear empirical model, an LFM, and an73

HFM. While this approach helps to compensate for the limitations of each type74

of model, it is still dependent on an HFM, which can be problematic to use in75

a real-time control system.76

The present study takes a different approach, where a newly-developed real-77

time high fidelity flow model (RT-HFM) is employed for the first time, and is78

applied to bottomhole pressure (BHP) control. This model employs novel sim-79

plifications tailored to the specific drilling application while maintaining critical80

parts of an HFM. This allows the model to overcome resource difficulties expe-81

rienced with other high fidelity models in real-time control applications, while82

still providing for better control during the varied conditions encountered while83

drilling. Figure 1 graphically depicts where the RT-HFM is positioned with re-84

spect to other models described above. As shown, the RT-HFM approaches the85

high fidelity end of the spectrum in terms of detail and complexity of equations.86

RT-High FidelityLow FidelityEmpirical 

• PDE based

• Detailed control 

volume

• Detailed rheology

High Fidelity

• ODE based

• Simplified control 

volume

• Bulk modulus

• Linear Transfer Function 

model

+ 

• Nonlinearity blocks

• e.g. Hammerstein-Wiener 

• PDE based

• Detailed  control 

volume

• Simple rheology

Gray Box Model Physics Based Models 

Figure 1: Spectrum of model fidelity in MPD automation
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In the sections following, this RT-HFM model is described in detail, in con-87

text with LFM and HFM models. Its implementation into a MPC with a MHE88

(moving horizon estimator) is then detailed. Finally, results of testing this new89

control system are presented. This testing simulates an array of conditions en-90

countered while drilling oil and gas wells, including “normal” drilling ahead,91

making a pipe connection to change the length of the drill string, and displac-92

ing drilling fluid of one density with that of another density. The effectiveness93

of control based on the RT-HFM is further demonstrated by considering both94

the case where down-hole sensor data is available to provide BHP feedback to95

the model, and the case where sensor feedback is interrupted or severely lim-96

ited. This latter case is meaningful in the oil and gas environment due to the97

extreme conditions encountered and the wide diversity of drilling operations,98

both of which impact the quality or availability of sensor data.99

2. Real-Time High Fidelity Flow Model100

This section provides an overview of the RT-HFM and how it compares101

to other models used for control system development. First, a schematic and102

description of MPD gives context for the dynamic relationships that are modeled103

to create a predictive controller. Next, a description is given of three models of104

differing complexity, including the RT-HFM. The RT-HFM model is presented105

to contrast the obstacles facing both low and high fidelity models.106

2.1. Basic Flow Circuit and Related Parameters107

To construct an oil or gas well, a drill bit is attached to a long assembly of108

tubular components (drill string) that provide thrust and rotation to the bit. As109

it penetrates the rock formation, the drill bit creates a hole that is larger than110

the diameter of the drill string, thereby providing an annular space between111

the formation and the drill string. Drilling fluid occupies this annulus and also112

the inside of the drill string, and serves to maintain a pressure against the113

formation that controls the flow of fluids out of the formation. When actively114
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drilling, mud pumps located at the surface circulate the drilling fluid through115

the drill string to the bottom of the well, where the fluid entrains cuttings and116

carries them back to the surface through the annulus. In modeling this system,117

the cross sectional areas of the annulus and the drill string bore, the flow rate of118

the drilling fluid, and certain physical properties of the drilling fluid, entrained119

cuttings, and entrained formation fluids are important parameters.120

An MPD system additionally contains a choke valve and an auxiliary charge121

pump, both located at the top of the well on the annulus side of the flow cir-122

cuit. By manipulating the flow rate of the mud pumps and the opening of the123

choke valve, the backpressure in the fluid may be regulated, which provides for124

fine control of the BHP while drilling fluid is flowing. When mud pumps are125

not generating sufficient backpressure, e.g., when the fluid is not flowing, the126

auxiliary charge pump may be employed to increase annulus pressure. Figure 2127

shows a simplified schematic of a typical MPD system. In the present study,128

pressure is managed by manipulating back pressure alone. Though other tech-129

niques such as manipulation of annular fluid level, mud density, etc can be part130

of an MPD system, they are not studied in this paper. The MPC manipulates131

two variables, the mud pump flow and the choke pressure. We assume cascading132

control of back pressure pump flow and the choke valve opening based on the133

choke pressure.134
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Figure 2: MPD Schematic

2.2. Low Fidelity Flow Model Equations135

The low-fidelity flow model (LFM) developed by Kaasa et al. [25] simplifies

the drilling operation into two control volumes and introduces the two physical

parameters bulk modulus (β) and effective mud density (M). References [9,

14, 15, 16, 17, 18] are the MPC applications employing the LFM. The LFM

equations and variable descriptions are shown in Equations 1 to 4 and Table 1.

ṗp =
βd
Vd

(qp − qbit) (1)

ṗc =
βa
Va

(qbit + qback − qc + qres) (2)

q̇bit =
1

M
(pp − fdq2

bit + ρdgchbit − pbit) (3)

pbit = pc + ρafahbitq
2
bit + ρagchbit (4)
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Table 1: Summary of parameters used in LFM

Parameter Description Unit

pp, pc, pbit Pressure at mud pump, choke valve, and bottomhole bar

qp, qc, qbit Volumetric flow rate at mud pump, choke valve,

and bottomhole m3/min

qres Volumetric flow rate of reservoir gas influx m3/min

βa, βd Bulk modulus of the fluid in annulus and drill string bar

M Effective density per unit length kgm−410e−5

fa, fd Friction coefficients of annulus and drill string s2m−6

Va, Vd Volumes of annulus and drill string m3

hbit Well depth m

2.3. High Fidelity Flow Model Equations136

The high fidelity flow model (HFM) was developed before the LFM, and137

has been used extensively for improving understanding of drilling operation138

hydraulics, to both assist the well design process and to provide real-time ad-139

visory assistance for many field applications [31]. However, the HFM equations140

are much more comprehensive than other models and therefore the model must141

be configured, monitored and tuned by an expert. Even then, model simula-142

tions that are free from numerical instability cannot be fully assured [32]. Due143

to these factors, such models are not being employed for real-time drilling au-144

tomation applications, including MPC, which requires fast calculation speed145

and computational robustness. The governing equations of HFM are presented146

in [29] and are shown in Equations 5 to 12 and Table 2.147

∂

∂t
(Aαmρm) = − ∂

∂s
(Aαmvmρm) +Aṁg,m (5)

∂

∂t
(Aαgρg) = − ∂

∂s
(Aαgvgρg)−Aṁg + qfg (6)

∂

∂t
(Aαmxdg,mρm) = − ∂

∂s
(Aαmvmxdg,mρm)−Aṁg,m (7)

∂

∂t
(Aαfoρfo) = − ∂

∂s
(Aαfovfoρfo) +Aṁg,fo + qdg + qfo (8)
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∂

∂t
(Aαfoxdg,foρfo) = − ∂

∂s
(Aαfovfoxdg,foρfo) +Aṁg,fo + qdg (9)

∂

∂t
(Aαfwρfw) = − ∂

∂s
(Aαfwvfwρfw) + qfw (10)

∂

∂t
(Aαcρc) = − ∂

∂s
(Aαcvcρc) + qc (11)

∂

∂t
[A(αmρmv

2
m + αgρgv

2
g + αfoρfov

2
fo + αfwρfwv

2
fw + αcρcv

c
c ]

+
∂

∂s
[A(αmρmv

2
m + αgρgv

2
g + αfoρfov

2
fo + αfwρfwv

2
fw + αcρcv

c
c ]

=− ∂(Ap)

∂s
−A(

∂p

∂s
)fric

+A[αmρm+ αgρg + αfoρfo+ αfwρfw + αcρc]gcosθ

(12)

Table 2: Summary of parameters used in HFM

Parameter Description Unit

A Flow line cross sectional area m2

αa Volume fraction of a

va Volume of a m3

qa Volumetric flow rate of a m3/s

ρa Density of a kgm−3

xa,b Mass fraction of a in b

fric Frictional pressure loss bar

m, g, fo, fw, c Drilling mud, gas, formation oil, formation water,

and formation cuttings

ṁg,n, ṁg,fo Rates of gas dissolution in drilling mud and formation oil kg/s

2.4. Modifications of HFM for Real-time Use148

Recently, work on a RT-HFM was announced, as part of an effort to decrease149

the computational cost of the HFM while still maintaining high model accuracy150

[32]. Since that time, a working model has been developed, and initial applica-151

tion testing has been completed as will be described below. The calculations in152

both the RT-HFM and HFM are based on a discretization of the well volume,153

and employ a numerical solver for the mass and momentum conservation equa-154

tions (Equations 5 to 12) that govern the physics of the well. Mass transport155
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is calculated using the finite difference method on a one-dimensional grid, with156

analytical solutions used to account for radial dependencies.157

Like the HFM, the RT-HFM is a dynamic model that accurately simulates158

significant fluid characteristics. For example, mass transport calculations in the159

RT-HFM respect conservation of mass per component of the fluid, and respect160

conservation of total momentum locally. Thus, the model accurately represents161

dynamic effects such as compression of the fluid propagating along the well. To162

reduce numerical iterations and the chance of model instability, the accuracy of163

the model during the transient phases is relaxed.164

Calculation complexity is also reduced in the RT-HFM by keeping the tem-165

perature profile fixed, as has already been described in the previous paper [32].166

Fluid property sub-models are also simplified to enable rapid and stable com-167

putation. For example, in the sub-model that describes rheological behavior,168

the HFM fits rheological property data to a non-linear Herschel Bulkley model,169

while the RT-HFM utilizes the linear Bingham Plastic model, expressed as τ =170

τ0 + µ∞γ, where τ is the shear stress and γ is the shear rate. In this Bingham171

model, the rheological properties of the fluid are determined by the yield stress172

τ0 and the plastic viscosity µ∞. The model calculates plastic viscosity and yield173

stress using a best fit to all available rheological data which means that cal-174

culations normally match much better at low RPM values than the standard175

procedure that uses only 300 and 600 RPM readings to find plastic viscosity176

and yield stress. Compared to Herschel-Bulkley, the Bingham equation has an177

accurate explicit solution for laminar flow, and the calculation is faster and more178

robust for estimating the frictional pressure loss. Still, calculations in the RT-179

HFM are relatively sophisticated, and include, among other features, pressure-180

and temperature-dependent fluid properties, with density either from published181

correlations or from input tables of laboratory data. Rheological behavior data182

can be given in tabular form for different combinations of pressure and temper-183

ature, in which case interpolation is used to get rheological behavior parameters184

at the actual temperature in each grid box.185

The RT-HFM is therefore much faster and robust than the HFM, and at the186
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same time more accurate than existing lower order models. Geometrical changes187

in the drill string and wellbore, e.g., a tapered drill string, are accommodated188

by the model. However, some other specific conditions are not accounted in189

the RT-HFM, e.g., a mud flow diversion through an underreamer, and pressure190

loss through a mud motor. Although the frictional pressure loss by the drill191

string rotation is included in the RT-HFM, the drill string vibration effects on192

the BHP and heave motion of the offshore rig are not considered in this study.193

However, such effects can be simulated in the model by inputting bit depth194

changes, thereby allowing calculation of pressure surge and swab effects. The195

difference in steady-state BHP output from the two models, as determined by196

simulations using various combinations of input variables, is shown in Figure 3.197

As shown, at the upper limits of flow and choke pressure considered in the198

present study, the difference in pressure prediction amounts to less than 2.5199

bar. At the point of primary interest in these simulations, which is in an 8-1/2200

inch section (see Table 8), this difference appears to be reasonable for effective201

model-based control.202

Figure 3: Difference between steady state BHP output from HFM and RT-HFM to identify

model mismatch at varying conditions
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3. System Configurations203

Control system architecture for MPD automation varies according to the204

availability of BHP data. Two potential architectures are portrayed in Fig-205

ures 4 and 5, including a semi-closed loop configuration and a full-closed loop206

configuration. These figures display block diagrams of the signal chains for207

each architecture, where blocks labeled MPC represent a controller, MHE la-208

beled blocks represent an estimator, and system models (HFM, RT-HFM) are209

shown in each appropriate block. Dashed lines represent the input signals of the210

controller that are computed from hydraulic models as opposed to solid lines211

represent the measured value from the rig. If BHP measurements are available,212

a solid line between the rig and the controller and/or estimator represents the213

path of measured data. Note that in these figures, the rig represents the equip-214

ment involved in the drilling process, most specifically including mud pumps,215

a choke valve, a charge pump feeding into the wells annulus, and automatic216

controls for each of these pieces of equipment.217

Figure 4 represents a semi-closed loop configuration, which is a common218

configuration in MPD automation research when downhole data is sparse or219

unavailable. To provide this missing feedback data, a MHE is introduced in220

this configuration as a “soft” sensor to estimate the BHP from surface mea-221

surements. While MHE is the estimation method presented in this paper, other222

useful estimation methods are available. The MHE minimizes model mismatch223

by dynamic optimization of certain unmeasured drilling parameters, such as224

mud density and friction factor. Furthermore, the model may be occasionally225

updated or tuned by periodic downhole measurements to increase accuracy.226
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Rig
(HFM)

MPC
(RT-HFM)

MHE
(RT-HFM)g

Surface 

measurements

Minimize(spp – spp_rt-hfm) 2

by adjusting 

Density, Friction factor

in RT-HFM

Minimize(setpoint – pbit_rt-hfm) 2

by adjusting  

pchoke, Mudflow

in RT-HFM

Surface 

measurements,

pbit_rt-hfm (CV), 

Density_rt-hfm,

Friction_rt-hfm

pchoke (MV),

Mudflow (MV)

Setpoint

Figure 4: Semi-Closed loop control configuration - Bottomhole pressure is estimated by Moving

horizon estimator

If real-time BHP measurements are available, a full-closed loop configuration227

may be employed. This type of system is presented in Figure 5. Note that, even228

though bottom hole measurements are available in real time, an estimator is still229

present in this configuration, since it is needed to estimate unmeasured drilling230

parameters such as mud density or friction factor. Because actual BHP measure-231

ments are used in the MHE calculation, the resulting estimated quantities are232

more reliable than those of the semi-closed loop case in Figure 4. The RT-HFM233

is continuously updated with the estimated parameters to increase the accuracy234

and reliability of the controller. We note here that, while various telemetry235

systems can supply real time BHP measurements, varying quality and quantity236

of real-time data are available from these different schemes. Some downhole237

data is subject to transmission delays on the order of at least a few seconds238

and delivery of the data may be subject to deprioritization depending on what239

other data is occupying the limited transmission channel. Other data ceases to240

flow when mud pumps are shut off or when pipe connections are made. These241

factors introduce uncertainty into the control process and place more reliance on242

model-based estimates. High-speed telemetry provided by wired drill pipe over-243

comes many of these limitations and provides more timely and abundant data244

for full-closed loop control [33]. Although some relatively short latency of data245

transmission can be introduced to the high-speed telemetry system, which is246

dependent on system configuration, we assume in the case study that the whole247
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high-speed data transmission system operates in an idealized manner and we248

ignore this latency.249

Rig
(HFM)

MPC
(RT-HFM)

Minimize(setpoint – pbit_rt-hfm)2

by adjusting 

pchoke, mudflow

in RT-HFM

Density,

Friction

pchoke (MV),

Mudflow (MV)

MHE
(RT-HFM)g

Setpoint

pbit (CV),

Surface measurements 

Minimize(pbit – pbit_rt-hfm)2

by adjusting

Density, Friction factor

in RT-HFM

pbit (CV),

Surface measurements 

Figure 5: Full-Closed loop control configuration - Bottomhole pressure is directly measured

and transmitted by bottomhole sensor and high speed telemetry. Friction factors are estimated

for MPC model calibration

4. Model Based Control and Estimation250

MPC calculations predict the future behavior of the process by evaluating251

the process model (in this case the RT-HFM) at the current time step. The MPC252

determines the sum of squared error between the setpoint trajectory and model253

prediction values throughout the prediction horizon and performs the control254

calculation by solving the quadratic programming (QP) objective function to255

find the optimal sequences of process inputs (MVs). The first value of the MV256

sequence is applied to the process and repeats the entire cycle for every time257

step.258

The MHE algorithm shares this main concept with MPC. It calculates the259

unknown parameters in the model by solving the QP objective function that260

mainly includes the model errors. The objective function of MHE refers to261

the past data of measurements and model results while the MPC refers to the262

future model prediction and setpoint. Convergence proofs for this method of263

optimizing control are well-established and are not repeated here [34, 35].264
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The objective functions associated with MHE and MPC are shown in Equa-265

tions (13) and (19), and the parameter descriptions are shown in Table 3 and 4,266

respectively. The model equations used in MPC and MHE simulations (appear-267

ing in Equations (13) and (19) as f , g, and h) are the governing equations of268

RT-HFM which are discussed in section 2.3 and 2.4.269

min
∆P

Φ =(Yp − Ym)TW (Yp − Ym) + ∆P TV ∆P

s.t. 0 = f(ẋ, x, y, p, d, u)

0 = g(x, y, p, d, u)

0 ≤ h(x, y, p, d, u)

(13)

where Yp and Ym are the column vectors for measurement values and the model270

output values from the time step (k − 1) to (k −N). ∆P is the column vector271

for movement of the parameter adjustment for the past estimation horizon (N),272

from the time step (k − 1) to (k − N). h and i denote the number of SVs273

(State Variables) and EPs (Estimated Parameters), respectively. The MHE274

configuration for this study has two SVs and two EPs shown in Table 5 .275

Yp = col{y1p
(k − 1), y1p

(k − 2), · · · , y1p
(k −N),

y2p
(k − 1), y2p

(k − 2), · · · , y2p
(k −N),

· · · ,

yhp
(k − 1), yhp

(k − 2), · · · , yhp
(k −N)}

(14)

Ym = col{y1m(k − 1), y1m(k − 2), · · · , y1m(k −N),

y2m
(k − 1), y2m

(k − 2), · · · , y2m
(k −N),

· · · ,

yhm
(k − 1), yhm

(k − 2), · · · , yhm
(k −N)}

(15)
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∆P = col{∆p1(k − 1),∆p1(k − 2), · · · ,∆p1(k −N),

∆p2(k − 1),∆p2(k − 2), · · · ,∆p2(k −N),

· · · ,

∆pi(k − 1),∆pi(k − 2), · · · ,∆pi(k −N), }

(16)

where, ∆p(k − N) = p(k − N) − p(k − N + 1) denotes the movement size

of EP in each time step throughout the estimation horizon (N). W and V

are the diagonal weighting matrices for multiple state variables and estimated

parameters, as follows:

W = diag{wy1
(k − 1), wy1

(k − 2), · · · , wy1
(k −N),

wy2(k − 1), wy2(k − 2), · · · , wy2(k −N),

· · · ,

wyh
(k − 1), wyh

(k − 2), · · · , wyh
(k −N)}

(17)

V = diag{vp1
(k − 1), vp1

(k − 2), · · · , vp1
(k −N),

vp2
(k − 1), vp2

(k − 2), · · · , vp2
(k −N),

· · · ,

vpi
(k − 1), vpi

(k − 2), · · · , vpi
(k −N)}

(18)
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Table 3: Summary of parameters used in QP objective function for MHE

Parameter Description

Φ Objective function

h, i Number of state variables(h) and estimated parameters(i)

N Horizon length for MHE

k Current time step

Yp,Ym Measured CV (yp) and model result of CV (ym)

∆P Moves of estimated parameters

W ,V Weighting Matrices for state variables and parameters

u, x, p, d Model inputs(u), states(x), parameters(p),

and disturbance(d)

f, g, h Model equation (f), output function (g),

and inequality constraints (h)

min
∆U

Φ =(Ŷ − Yref )TQ(Ŷ − Yref ) + ∆UTR∆U

s.t. 0 = f(ẋ, x, y, p, d, u)

0 = g(x, y, p, d, u)

0 ≤ h(x, y, p, d, u)

(19)

where Ŷ and Yref are the column vectors for model prediction values and the276

reference trajectory from the time step (k + 1) to (k + P ). ∆U is the column277

vector for the control moves for the future control horizon (M), from the time278

step (k+1) to (k+M). m and l denote the number of CVs and MVs, respectively.279

The MPC configuration for this study has one CV and two MVs summarized280

in Table 5.281
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Ŷ = col{ŷ1(k + 1), ŷ1(k + 2), · · · , ŷ1(k + P ),

ŷ2(k + 1), ŷ2(k + 2), · · · , ŷ2(k + P ),

· · · ,

ŷm(k + 1), ŷm(k + 2), · · · , ŷm(k + P )}

(20)

Yref = col{y1ref
(k + 1), y1ref

(k + 2), · · · , y1ref
(k + P ),

y2ref
(k + 1), y2ref

(k + 2), · · · , y2ref
(k + P ),

· · · ,

ymref
(k + 1), ymref

(k + 2), · · · , ymref
(k + P )}

(21)

∆U = col{∆u1(k + 1),∆u1(k + 2), · · · ,∆u1(k +M),

∆u2(k + 1),∆u2(k + 2), · · · ,∆u2(k +M),

· · · ,

∆ul(k + 1),∆ul(k + 2), · · · ,∆ul(k +M), }

(22)

where, ∆u(k + M) = u(k + M) − u(k + M − 1) denotes the movement size of

MV in each time step throughout the control horizon (M). Q and R are the

diagonal weighting matrices for multiple CVs and MVs, as follows:

Q = diag{qy1
(k + 1), qy1

(k + 2), · · · , qy1
(k + P ),

qy2(k + 1), qy2(k + 2), · · · , qy2(k + P ),

· · · ,

qym(k + 1), qym(k + 2), · · · , qym(k + P )}

(23)

R = diag{ru1
(k + 1), ru1

(k + 2), · · · , ru1
(k +M),

ru2
(k + 1), ru2

(k + 2), · · · , ru2
(k +M),

· · · ,

ryl
(k + 1), ryl

(k + 2), · · · , rul
(k +M)}

(24)
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Table 4: Summary of parameters used in QP objective function for MPC

Parameter Description

Φ Objective function

m, l Number of CVs(m) and MVs(l)

P,M Prediction horizon(P ), Control horizon(M)

k Current time step

Ŷ Predicted CV value of dynamic model

Ŷref Desired set point trajectory in the prediction horizon

∆U Control moves of MV in the control horizon

Q,R Weighting Matrices for CVs and MVs

u, x, p, d Model inputs(u), states(x), parameters(p),

and disturbance(d)

f, g, h Model equation (f), output function (g),

and inequality constraints (h)

Table 5: Variable configuration of MPC and MHE

Case MPC MHE

CV MV DV SV EP

y1 u1 u2 y1 y2 p1 p2

Normal drilling pbit pchoke qp spp pbit fa fd

Pipe connection pbit pchoke qp spp pbit fa fd

Density displacement pbit pchoke qp ρmud spp pbit fa fd

The horizon lengths and weighting factors for both MPC and MHE are282

obtained by manual tuning based on operational preference and experience, and283

are reported in Tables 6 and 7. The single value of the weighting factor is used for284

the each elements of the diagonal weighting matrix. There are research studies285

that propose the methods of finding optimal weighting matrices [36, 37, 38].286
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Table 6: Horizon lengths and weighting factors for MPC

Case MPC

P ∗ M∗ qy1 ru1 ru2

Normal drilling 40 15 1000 100 0.1

Pipe connection 10 10 1000 100 0 (DV )

Density displacement 300 240 1000 100 0.05

* P and M represent a prediction and a control horizon, respectively.

Table 7: Horizon lengths and weighting factors for MHE

Case MHE

semi full

N∗ wy1
vp1

vp2
wy1

wy2
vp1

vp2

Normal drilling 25 1 500 200 1000 2000 2000 500

Pipe connection 30 1000 1000000 1 100 500 10000 10000

Density displacement 120 1 500 200 1 100 500 200

* N represents an estimation horizon.

5. Case Studies287

In this section, the three MPD operating scenarios used to test the RT-HFM-288

based controller are described. In each test case, the response of the well pressure289

is simulated by an HFM. As mentioned previously, this HFM has been shown290

through field experience to accurately represent field conditions in the tested291

regime [31]. Referring to Figures 4 and 5, the HFM simulates those physical292

processes denoted by the “Rig” block in the diagrams (including the physical293

well being drilled). A vertical wellbore profile has been chosen to reproduce a294

recent MPD operation in the North Sea [39], with model parameters as shown295

in Table 8.296
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Table 8: Wellbore Conditions

Parameter Value (AES) Value (SI)

Well depth 12,349 ft 3,764 m

Riser inner diameter 9.66 in 0.25 m

Water depth 731.6 ft 223 m

Casing inner diameter 8.535 in 0.216 m

Casing depth 12,349 ft 3,764 m

Drill string average outer diameter 5.0 in 0.127 m

Pore pressure gradient 11.0 ppg 1,330 kg/m3

Fracture pressure gradient 16.0 ppg 1,927 kg/m3

Initial mud density 12.4 ppg 1,490 kg/m3

Mud temperature 122 ◦F 50 ◦C

The performance of the controller for each scenario was observed for both297

semi- and full-closed loop configurations. In the drilling industry, the full-closed298

loop configuration is a less common option because a real-time feedback signal299

from the well bottom is frequently not available; the majority of drilling oper-300

ations presently use a semi-closed loop configuration, where sensor data may301

be provided at infrequent or irregular intervals. However, the full-closed loop302

configuration is at times available and the level of control achieved with this303

configuration represents a best-case scenario to which we can compare control304

achieved by semi-closed loop. Therefore, the purpose of this comparison is not305

to show that one configuration is superior to the other (full-closed loop con-306

trol is certainly the ideal case), but rather to determine whether the model of307

the system provided by the RT-HFM can enable the controller in a semi-closed308

loop configuration achieve a level of control similar to that in the full-closed309

loop configuration. The semi-closed loop configuration relies more on the model310

equations than the full-closed loop configuration in the absence of the BHP mea-311

surement; thus, by comparing the two, we are able to measure the effectiveness312

of the model.The performance comparisons between various controllers such as313
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PID vs. Hammerstein-Wiener MPC [20] and LFM MPC vs. HFM MPC [30]314

have been investigated in previous research.315

Both semi-closed loop and full-closed loop control schemes were tested under316

the following scenarios:317

1. Normal drilling (mud flow, drillstring rotation, formation penetration)318

2. Pipe connection (cessation of mud flow and drillstring rotation)319

3. Mud density displacement over a fixed period of time320

Prior to each of the scenarios listed above, an initial model calibration step321

is performed. This step uses the MHE exclusively, and it is assumed that both322

BHP (pbit) and SPP (standpipe pressure, spp) measurements are available dur-323

ing this period. In common practice, the BHP measurement is available from324

downhole sensors at various points in time for model calibration. The friction325

factors in the annulus and drillstring (fa and fd) are estimated based on both326

BHP and SPP by minimizing the differences between the model and the mea-327

sured value. The estimated parameters (EPs), which are fa and fd, are updated328

in the MPC model to allow prediction with improved model accuracy.329

After the model calibration period, the three control scenarios use the MHE330

and MPC in parallel for real-time estimation and control. For these three control331

scenarios, the variable configurations in the MPC are changed based on the332

scenarios, while the MHE uses the same variable configurations for all scenarios333

(Table 5). The detailed description of each scenario is shown in the following334

subsections335

5.1. Normal Drilling336

BHP control provides the ability to drill in narrow pressure profile wells337

in addition to optimizing the ROP [40]. Thus, the controller’s ability to re-338

spond appropriately (e.g., quickly but with a minimum of overshoot) to set-339

point changes is important when drilling within these tight pressure limits. To340

quantify the controller’s ability to track setpoint changes, the “normal” drilling341

scenario introduces three different step changes in setpoint.342
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In a normal drilling scenario both the choke pressure (pchoke) and drilling343

fluid flow (qp) can be manipulated by the controller. Once key unmeasured344

variables, including system friction factors (fa, fd), are initially calibrated in345

the model by the model calibration procedure, the MPC algorithm adjusts the346

manipulated variables to minimize the difference between the set point and the347

calculated BHP (in semi-closed loop) or measured BHP (in full-closed loop)348

across the prediction horizon. This accurately drives the BHP to the set point349

while complying with any user-provided constraints, such as the maximum rate350

of change for the manipulated variables such as choke pressure (pchoke) and mud351

flowrate (qp).352

5.2. Pipe Connection353

During a pipe connection procedure, the normal control processes must be354

modified to accommodate the addition of more pipe. As the drill bit deepens355

during the drilling process additional pipe lengths are periodically added to the356

drill string. The addition of pipe is typically required every one to three hours357

but is dependent on the pipe stand length and the ROP [41]. During this pipe358

connection it is necessary to ramp the drilling fluid flow rate to zero, attach359

the new pipe length, and then bring the flow rate back up to normal conditions360

again. As the mud flow rate is brought to zero the controller then relies solely on361

the choke pressure until the pipe connection is complete. However, because pipe362

connection is a planned event and the ramp rate is known in advance, the ramp363

rate can be passed into the MPC acting as a measured disturbance variable364

(DV) so that the changing mud flow can be considered in the BHP predictions365

of the MPC and improve control accuracy during the pipe connection period.366

5.3. Mud Density Displacement367

At the end of the MPD operation it is optimal to shut off the choke valve.368

To reduce reliance on the choke pressure in the control scheme, higher density369

mud is fed to the bottom hole. This higher density mud serves as a less accurate370

substitute for the choke valve because it exerts a higher pressure on the open371
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hole so that the choke manifold can be released and disengaged from BHP372

management. In this scenario, the mud density changes over a period, thus373

allowing for a slow opening of the choke valve. As the density changes, the374

controller accounts for this change in system dynamics as it manages the BHP.375

This scenario differs from the pipe connection scenario in that the controller376

adjusts to rely solely on the drilling fluid flow, whereas for pipe connection the377

drilling fluid flow must be ramped down. Throughout the period of density378

transition and choke valve ramp up, the estimator is relied upon to provide379

accurate friction factors that keep the model accurate despite the changing380

conditions.381

6. Results and Discussions382

This section presents the results of the case studies. The control perfor-383

mances of both semi-closed loop and full-closed loop configurations are shown384

and quantified using ISE (integral of squared error) index shown in Table 9.385

6.1. Normal Drilling386

Figures 6 and 7 display the results of the normal drilling case study for the387

semi-closed loop and full-closed loop configurations, respectively. Although the388

results appear to be nearly equivalent, the two cases are important to compare389

and contrast. Figure 6 represents the case where downhole measurements are390

unavailable; therefore, there is an expected offset between the model-predicted391

values and the measured values. In an actual drilling process without any bot-392

tomhole measurements, there would likely be an even more substantial offset393

between the true and estimated BHP. Large sources of potential error include394

unknown temperature profiles along the drillstring annulus and non-Newtonian395

fluid properties that are influenced by high pressures and varying temperatures.396

In Figure 7 the bottomhole conditions are directly measured and transmitted in397

real-time to the surface. This allows for offset-free control, which is the most de-398

sirable condition. However, even with downhole sensors and near-instantaneous399
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feedback, there are likely to be periods of time when the telemetry system is not400

available or when there is sensor error. Highlighting both case studies shows401

that MPC can be used with or without the bottomhole sensors with an accurate402

predictive model that is calibrated to the drilling process. The suitability of a403

semi-closed loop approach using real-time model-based control as opposed to a404

full closed loop approach depends upon the tolerance of the specific application405

to the presence of an offset.406

In the semi-closed loop case the BHP is calculated by the MHE, minimizing407

the difference between measured and modeled SPP. It is assumed that bottom408

hole conditions are communicated to the surface at infrequent intervals during409

the drilling process. This is compared to the full-closed loop conditions where410

BHP measurements are regular and frequent. The model parameters (fa and fd)411

are calibrated during the model calibration period. This calibration is observed412

in Figures 6 and 7 between 0 and 200 seconds. The model calibration period413

is shown in Figure 8 separately in magnified time scale. The MPC controller414

is activated after 200 seconds. The control movements of the MVs (pchoke,415

qp) are observed in Figures 6c and 7c. Figures 6b and 7b show the estimated416

friction factors (fa and fd). The BHP control is more effective in a full-closed417

loop scenario as the controller is able to use actual bottomhole conditions to418

inform the control moves. However, it is of interest that the improvement in419

control performance observed in the full-closed loop case is minor and that the420

full-closed loop scenario brought the BHP about 0.5 bar closer to the setpoint421

as compared to the semi-closed loop scenario. While this is not an exhaustive422

survey across a multitude of well conditions, it is indicative of the value and423

effectiveness of using a semi-closed loop system that employs a RT-HFM. As424

can be seen in Figures 6 and 7, very similar control moves were made, and the425

resulting BHP measurements differed by less than one bar.426
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(c) Choke pressure (MV1) and Mud flowrate (MV2)

Figure 6: Control performance for normal drilling scenario (Semi-closed loop)

26



� ��� ��� ��� 
�� ���� ����

���

���

���

��
��
��
��
�

�������������
������������
��������

� ��� ��� ��� 
�� ���� ����
��������

��

	�


�

��

��
��
��
��
�

�������������
������������

(a) Bottomhole pressure (CV) and Standpipe pressure

� ��� ��� 	�� 
�� ���� ����
���

���

���

���

���

� a

����������������������������������

� ��� ��� 	�� 
�� ���� ����
�������

���

���

���

��	

� d

��������������������������������������

(b) Friction factors in annulus and drill string

� ��� ��� 	�� 
�� ���� ����

��

��

��

 c
ho

ke
���

��
�

����������������������

� ��� ��� 	�� 
�� ���� ����
��������

�	�

�
�

����

����

� p
���
��

�

����������������������

(c) Choke pressure (MV1) and Mud flowrate (MV2)

Figure 7: Control performance for normal drilling scenario (Full-closed loop)
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Figure 8 presents the results of the MHE for the initial model calibration427

of the annulus and drillstring friction factors. The MHE first estimates the428

annulus friction factor (fa) at 150 seconds by minimizing the difference between429

the RT-HFM BHP and the HFM BHP. At 400 seconds the MHE finds the drill430

string friction factor (fd) by minimizing the difference between the RT-HFM431

SPP and the HFM SPP. Once both friction factors are estimated, the model432

is ready to be used effectively for control. After this initial model calibration433

step, the MPC controller is turned on with the updated friction factors for the434

subsequent control scenarios. While the controller turns on, the friction factors435

are continuously adjusted by the MHE in parallel with MPC in real-time.436
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(b) Friction factors in annulus and drill string

Figure 8: Model calibration using MHE

6.2. Pipe Connection437

The pipe connection procedure results are shown in Figures 9 and 10. During438

the pipe connection procedure, mud flowrate moves through a wider operational439

range from the range of normal drilling to a zero flow rate which produces greater440

model mismatch than the normal drilling scenario. According to the settings441

and models of this study, the primary factor influencing the model mismatch is442

the mud flowrate because the friction factor of the drill string and annulus is443

only important when the mud is flowing. At the beginning of the case study,444
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the model calibration proceeds until the MPC control starts at 400 seconds.445

From 600 seconds, mud flowrate starts ramping down and stays at the zero446

flowrate for about 300 seconds until the new segment of a drill string is added.447

The mud flow rate is then ramped back up to the normal drilling range (1000448

l/min). As the mud flow ramps down, the BHP is maintained by compensatory449

moves in the choke pressure. Because it is a planned change in the mud flow,450

the ramp down is communicated to the predictive controller and the controller451

determines effective moves to maintain a steady bit pressure through the pipe452

connection procedure. The MHE continuously adjusts the annulus and drill453

string friction factors to match the BHP or SPP, depending on the control mode.454

Figures 9 and 10 show the results of the semi-closed loop and full-closed loop455

control mode, respectively. Although the mud flowrate is varied greatly, both456

control modes show acceptable control performance maintaining the BHP within457

± 1 bar deviation. However, the semi-closed loop mode shows slightly worse458

control performance than the full-closed loop mode after mud flowrate ramps up459

completely because the friction factors are not stabilized their original values.460

The objective of MHE to minimize model and process discrepancies is satisfied461

for the semi-closed loop mode by minimizing the SPP difference between the462

HFM and RT-HFM instead of BHP difference in full-closed loop. Thus, the 0.5463

bar gap between ‘Simulated BHP (HFM)’ and ‘Estimated BHP (RT-HFM)’ is464

observed in Figure 9a but not shown in Figure 10a.465
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(b) Friction factors in annulus and drill string
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(c) Choke pressure (MV) and Mud flowrate (DV)

Figure 9: Control performance for pipe connection scenario (Semi-closed loop)
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(b) Friction factors in annulus and drill string
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(c) Choke pressure (MV) and Mud flowrate (DV)

Figure 10: Control performance for pipe connection scenario (Full-closed loop)
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6.3. Mud Density Displacement466

The results in Figures 11 and 12 demonstrate the impact of changes in467

drilling fluid density on the estimated friction factor and the resultant changes in468

the choke pressure and drilling fluid flow. The differences between a semi-closed469

and full-closed loop mud density displacement scenario are also displayed. The470

drilling fluid density change is observed at 0.5 hours as the density is stepped471

up from 1.5 S.G. to 1.6 S.G. The choke valve is subsequently ramped down472

over a 2.5 hour period between 0.5 and 3 hours. It is observed that because of473

the aforementioned system changes, the drilling fluid flow slowly decreases to474

further counteract the increase in density. This indicates that fully opening the475

choke valve does not provide enough pressure relief and the controller selectively476

relies on the drilling fluid flow to maintain control. Additionally, the standpipe477

pressure drops off substantially but the BHP stays high as a result of the higher478

density drilling fluid. In the full-closed loop configuration, the RT-HFM matches479

the simulated real world conditions more closely, which improves the quality of480

BHP control provided by the MPC controller.481
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(c) Choke pressure (MV) and Mud flowrate (DV)

Figure 11: Control performance for mud density displacement scenario (Semi-closed loop)
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(b) Friction factors in annulus and drill string
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(c) Choke pressure (MV) and Mud flowrate (DV)

Figure 12: Control performance for mud density displacement scenario (Full-closed loop)
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Table 9: Control performance comparison in ISE index

Case ISE

Semi-closed loop full-closed loop

Normal drilling 762.86 756.35

Pipe connection 53.64 17.14

Density displacement 64.62 58.39

7. Conclusions and Future Work482

This study represents the first implementation of a high-fidelity grade physics-483

based model in a real-time control application using MPC. In the simulations484

reported herein, the model-based control schemes achieved tight controller per-485

formance that successfully maintained the BHP to within one bar of the set486

point during normal drilling, pipe connection, and mud density displacement487

operations. Although the results are obtained from the simulation environment488

under the noise-free condition, this responsive model performance validates our489

hypothesis that high-fidelity physics-based models can be successfully embed-490

ded in real-time control systems, and suggests the suitability of this model for491

use under real MPD conditions, including wells with tight pressure margins.492

Moreover, the highly detailed model embedded in the estimator and con-493

troller provides advantages when operating in the relatively harsh oilfield drilling494

environment, since it allows for periods of sparse feedback communication that495

is characteristic of the environment, with minimum performance degradation.496

Our simulation studies have shown that in all three operational scenarios, the497

difference in controller response between a full-closed loop control scheme and498

a semi-closed loop is marginal. Future work should include optimization of tun-499

ing parameters to maximize controller performance, and testing on a broader500

suite of field conditions which include the measurement noise and unmeasured501

disturbances.502

This work also lays the foundation for further work with more complex503
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systems and control scenarios that leverage the power of MPC.504

For example, although pressure and vibration control methods are evolv-505

ing separately in the drilling industry, these should be integrated into a single506

research topic in the future as the technologies mature. A recent example of507

such multivariable control investigates ROP optimization combined with BHP508

control based on fundamental flow models [42]. In this work, the mutual effects509

of the drill string dynamics and hydraulics are considered. This topic should be510

revisited in view of the advances made on both research fronts.511
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