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Environmental regulations restrictthe allowed amount of pollutant gases emitted to the surrounding environment. Thermal
Oxidizers (TO)are of paramountimportance indestroying organic pollutant compounds in waste streamsoflow heating value.
This capability has increasedthe use of TOs in many chemical plants which in turnhas raised the importance of developing more
precise and robustdynamiccontrol systems for these reactors.

In this work a thermal oxidizer was modeled dynamically using both empirical and first principles models. Next,Advanced
Process Monitoring (APM) software[1] which is available online and has found applications in many downstream,upstream,and
chemical industries [2-3]was utilized to implementthe nonlinear Model Predictive Control (MPC) algorithm as the control strategy
on the system.Nonlinear MPC is based on determining the best manipulated variable control action using optimization
techniques and a nonlinear model of the process. In estimation mode, APMattempts to optimally estimate the true state of the
dynamic system, given a real-time stream of measurements and a model of the physical process.

MPC has been applied to numerous systems[4] but none of these studies have focused on implementing nonlinearMPC on a
TO system. The complex nature of the combustion reactions have made it challenging to model and control the thermal
oxidation. Part of the control challenge is due to the combustion reactions that are very sensitive to changes in temperature. For
example, a100A°C increase in temperature can make the reaction rateconsiderablyfaster than its original value and drastically
changes the characteristics of the process response.

Because of the inherent complexity of dynamic control systemsitis notfeasible to use a more detailed combustion model with
all potential chemical species and at the same time get a fast control decision. Likewise, using a detailed model can even lead
to ahigher deviation of the predicted results from the measured ones as complexity does not always correlate to accuracy.
Therefore, arelatively simple but practicallydemonstrated combustion mechanism was used as the basis for the model
equations.This kinetic mechanism is restricted to the species of carbon monoxide, carbon dioxide, nitrogen, oxygen,water, and
intermediate radicals.

As mentioned before, the TO model used in this work takes advantage of both first principles and empirical equations. The first
principles model consists of material, species, and energy balances generally shown as

Rate of mass or energy accumulation in the system = rate of mass or energy entering the system -- rate of mass or energy
leaving the system

Because the Reynolds number in the TO chamber was found to be higher than 10,000, it can be assumed that there is
turbulence inside the TO and the species are completely mixed in the radial direction[5]. Thusthe momentum balance is of much
less importance than the material and energy balances.Moreover, average outlet concentration is of higher interestin industrial
systems which excludes the need for detailed species profiles in the reactor. Amomentum balance can be taken into accountin
design of TOs in order to increase the mixing and is of secondaryimportance for a control- relevant model.

An empirical reaction rate introduced by Howard et al.[6]was used for modeling the combustion reaction. The applicability of this
equation has been demonstrated for the postflame combustion region which is suitable for the TO case.The simplified kinetic
mechanism was determined after review of numerous experimental studies for a wide temperature range (840-2360 K). This
reaction equation has also been considered as a valid expression for determining CO combustion rate in a TO by Cooper et al
[7].

Aschematic of the TO including manipulated and control variables is shown in Figure 1.
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Figure 1.Schematic of the modeled thermal oxidizer. The fuel (often natural gas) is combusted to provide thermal energy to react
the waste stream (low heating value) into acceptable waste products.

Excess air and the burner fuel flow rates were selected as manipulated variables while exit CO and O2 concentrations were
assignedas controlled variables.Typical values of 0.1% and 0.01% were selected as upper and lower CO exit concentration
limits while 3 and 10 % were used for lower and upper limits forO2exit concentrations, respectively. Allowable CO exit
concentrations are determined by environmental regulations while anO2 lower limit of 3% was selected to insure excess oxygen
and to avoid a reducing environment inside the TO[5].

The partial differential algebraic equation (PDAE) model of the thermal oxidizer system was first discretized in space and then in
time. For the spatial discretization, the chamber was modeled as successive mixed flow reactors in which outlet of each CSTR
reactor serves as the input for the next one. First, steady state modeling was performed and the result was used to initializethe
dynamic control application.

Economiceffects were included in the optimization by adding a cost on the burner fuel flow rate. Fuel cost drives the controller to
the maximum allowable CO and minimum O2exit concentrations. This behavior can be explained by considering that the lower
CO exit concentration reflects the need for lower conversion which in turn requires less burner fuel flow rate. Moreover, lower
oxygen exit concentration means less excess air is required to be mixed with the waste gas entering the TO which is equivalent
toneedingless burner fuel to heat the incoming gas to the desired temperature. Figure 2 show the trends of manipulated
variables and controlled variables respectively.
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Figure 2.A: Trend of fuel flow rate change
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Figure 2 B: Trend of excess flow rate change
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Figure 3 A:'Trend of carbon monoxide exit concentration change
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Figure 3 B: Trend of Oxygen exit concentration change

To check the validity of the simulation result,an attempt was made in comparing the steady state modeling results with empirical
statistical equation results for COpresentedbylee et al.[7]. in several temperature and reaction times.Lee et al. developed their
model after conducting numerous experiments and reported this to be a precise method. Results showed good agreement
between the current model results and the statistical analysis.Table 1 shows a comparison between the temperature required
for 99% and 99.9% destruction efficiencies atthe same residence times from both works.

Table 1. Comparison of Temperature required for destruction of CO to desired levels

99% destruction|99.9% destruction
Resuts from Lee [7] 1058 K 1075 K
Results from current work|1051 K 1141 K

Simulation results showed thatthe nonlinear behavior of the TO can be completely captured by the controller. Therefore,
nonlinear MPC can be considered as an option of choice for controlling the TOs in practice. Nonlinear MPC control systems are
more precise in adjusting the controlled variable to its set- pointand can use less control actions to reach this goal compared to
traditional PID or linear MPC controllers.
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