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Abstract: This paper presents a novel method for UAV based 3D modeling of large infrastructure1

objects such as pipelines, canals, and levees that combines anomaly detection with automatic on-board2

3D view planning. The study begins by assuming that anomaly detections are possible, and focuses3

on quantifying the potential benefits of the combined method and the view planning algorithm. A4

simulated canal environment is constructed, and several simulated anomalies are created and marked.5

The algorithm is used to plan inspection flights for the anomaly locations, and simulated images6

from the flights are rendered and processed to construct 3D models of the locations of interest. The7

new flights are compared to traditional flights in terms of flight time, data collected, and 3D model8

accuracy. When compared to a low speed, low elevation traditional flight, the proposed method is9

shown in simulation to decrease total flight time by up to 55% while reducing the amount of image10

data to be processed by 89% and maintaining 3D model accuracy at areas of interest.11

Keywords: UAV; infrastructure monitoring; structure-from-motion; view planning; intrusion12

detection13

1. Introduction14

The advent of small Unmanned Aerial Systems (sUAS) has given rise to a host of new applications15

for aerial imaging technology in many fields [1–5]. Together with the increasing ease of obtaining16

imagery, advances in computer vision and computer processing power have led to a widespread17

increase in aerial mapping and 3D-reconstruction [6–8]. In the field of infrastructure monitoring, the18

clear advantages of on-demand, high precision 3D modeling are driving companies and researchers19

to explore the possibilities of this technology (for an excellent overview, see [9]). However, current20

UAV and 3D reconstruction technology still has limitations. While excellent results can be obtained21

for single site projects as demonstrated by [10], UAV flight time, computational power, data storage,22

and model processing time all constrain the scalability of this technology to large scale infrastructure23

systems such as pipelines, canals, levees, railroads, utility lines and other long linear features ([11]).24

Because of these constraints, creating a single detailed 3D model of a large infrastructure object is in25

many cases impractical.26

In this paper, the authors attempt to address some of these limitations by introducing a concept27

in which a single UAV platform serves as a multi-scale monitoring system. The UAV first inspects28

the structure at a relatively high level, collecting imagery and searching for potential anomalies. A29

detection triggers a 3D flight planning algorithm that updates the UAV path to collect additional30
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images of the detection area. This allows the area of interest to be reconstructed at a higher level of31

detail than would be possible in the baseline survey. This multi-scale monitoring concept focuses flight32

time and computational resources on areas of the infrastructure with high information content.33

Although there is a large body of work relating to UAVs tracking moving objects and real-time34

detection of specific objects, real-time detection of unknown anomalies is a challenging problem, and35

this paper does not attempt to address it directly. See [12], [13], [14], [15], [16], and [17]. Many possible36

approaches to detection are possible, including cascade classifiers, neural networks or change detection37

between monitoring flights and a known baseline data set ([18]). The approach could also be expanded38

to other sensors such as multispectral or hyperspectral sensors, real-time stereo, LiDAR, chemical39

sniffers, or any other sensor capable of detecting the desired anomalies. The body of the work proceeds40

on the assumption that accurate detections can be made, and the focus is placed on the potential41

benefits of a multi-scale approach in terms of model accuracy, flight time and data quantity, with the42

goal of motivating further work in real-time detection technology and algorithms.43

1.1. Related Work in Linear Feature Monitoring44

Although the use of UAV technology in civil applications is a relatively new field, a number of45

authors have explored various aspects of monitoring long linear infrastructure with UAVs. [19] analyze46

a wide variety of UAV platforms and sensors subject to the application infrastructure inspection. They47

comment on what is currently available "off the shelf" to gather optical data of infrastructure using48

relatively low cost UAV systems. They also conduct a test case using a small quadrotor UAV to inspect49

a section of railroad tracks. [20] consider two possible UAV systems for the inspection of natural gas50

pipelines. The first system, a low altitude, small UAV with visual sensors, is most similar to the UAV51

platform considered in the current work. Portions of the system are demonstrated, including automatic52

detection and marking of areas of concern. The authors conclude that although a lack of operation53

standards impedes immediate adoption of the technology, the system is technologically feasible in this54

application.55

In another application, [21] study the high speed inspection of power lines using UAVs.56

Their focus is primarily on automatic detection and tracking of the lines in video. [22] detail the57

implementation of an algorithm that utilizes optical imagery to guide a small UAV along long58

linear infrastructure such as canals, roads, and pipelines without the use of GPS waypoints. Several59

experiments were conducted that demonstrated the effectiveness of the algorithm in navigating a60

small UAV over canals and roads to collect optical imagery. They conclude that small UAVs can gather61

a large amount of optical data of long linear sites in a relatively short period of time.62

[23] propose a navigational framework to detect and track road networks. They were able to63

demonstrate via simulation that their framework could be used to navigate a UAV over long stretches of64

road for the purpose of visual inspection. The current work extends upon these studies by considering65

the case of a UAV platform that not only passively monitors infrastructure, but actively re-plans its66

flight path using optimized view planning when anomalies are detected.67

1.2. Optimized View Planning68

[24] defines view planning as the strategic placement of sensor(s) to gather desired information69

about an object or scene. The origins of view planning are discussed by [25]. View planning has70

its earliest roots in the “art gallery” problem, where one desires to place security guards in optimal71

locations to monitor an art gallery. [26] examine how view planning has also been used in quality72

control, where ideal locations for sensors are desired to ensure product quality in manufacturing.73

Modern examples of view planning often utilize remote optical sensors, and the placement74

is typically automated by robotic arms, gimbals, and unmanned aerial vehicles. [27] describe a75

step-by-step process for automating the surveillance of a construction site with a UAV, with an76

emphasis on the UAV’s ability to easily survey areas that pose significant danger to human operators.77

A simple grid pattern or ’lawnmower’ pathway is used at a set altitude, with the UAV constructing78
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an orthophoto from images taken exclusively in the nadir position. The lawnmower pathway is79

commonly used in UAV applications due to its simplicity and even coverage.80

The view planning problem is decribed by [28] as NP-complete, which is the most difficult subset81

of problems. The NP-complete class of problems is characterized by having an easy method to check if82

solutions are correct, but having no known algorithm for efficiently generating solutions.83

Work by [29] shows the difficulty of the viewing problem. Saadat and Samadzadegan use a84

genetic algorithm to create a Pareto front where multiple optimized viewing networks are generated.85

However, an experienced operator is then needed to select which one is anticipated to result in a86

superior network.87

[30] emphasize the need to generate view planning solutions for UAVs that give the best results88

given constraints, such as flight time or battery life of the UAV. They address the situation of a UAV89

tasked with surveying more infrastructure objects than can be visited within a single battery charge.90

A weighted objective function is used that assigns rewards for exploring unknown area as well as91

inspecting certain points that are deemed more important. The authors use a simple heuristic approach92

to connect the waypoints, solving the Traveling Salesman Problem with an approximation. Their93

overall method yeilded good results in real time, even though sub-optimal heuristic approaches were94

used.95

The work of [31] presents an algorithm for efficiently generating potential view points then96

heuristically selecting the view points that best contribute to network strength. The flight planning97

method presented in the current work builds upon the algorithm developed by Hoppe et al. Their98

method is extended from known 3D structures to unknown objects located on potentially flat surfaces.99

The new algorithm presented is also configured to be called in real-time by the UAV during flight to100

re-plan the mission based on updated information.101

1.3. Simulation102

Experiments for this paper are performed in both a terrain simulation environment and a103

software-in-the-loop flight simulator. This approach is relatively novel in this field, but it has been104

demonstrated in some capacity before [32]. In one example of a similar approach, [33] develop a105

simple 3D environment for use in photogrammetric simulations. They demonstrate a process for106

reconstructing perspective imagery from their scenes with user specified camera parameters. While107

some mission planning capabilities are also shown, the scene geometry is limited to simple shapes,108

and the software package is developed primarily as a learning tool for students. [34] also use a109

simple 3D simulation, though in this case the objective is to evaluate the effects of various UAV image110

configurations on the systematic error in the resulting DEM.111

Although uncommon to this point in civilian applications, the simulation of UAV surveillance112

flights using synthetic imagery generated by military simulation packages has also been explored.113

In particular, the simulation environment Virtual Battle Space 3 has been used by [35] to perform114

experiments in the context of a UAV road monitoring and change detection problem. The authors115

concluded that although some artifacts were introduced by the rendering process, the resulting images116

were of sufficient fidelity to evaluate their computer vision algorithms.117

Terragen 3, the environmental simulator used in the current work, has been used successfully118

by the authors in a previous paper in which it was used to evaluate the performance of a genetic119

algorithm based planner for UAV infrastructure modeling ([36]). This approach differs from related120

work in the field through an increased level of fidelity in the simulation environment, including highly121

detailed vegetation models, realistic atmospheric effects, cloud cover, haze, and fine control of camera,122

lens, and lighting conditions. This allows for simulations more closely approximating actual field123

conditions, and increases the amount and quality of testing that can be performed prior to physical124

flight tests.125
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1.4. Novel Contributions and Paper Overview126

This paper advances the state of the art in the following areas.127

• It is shown that when a reliable anomaly detection system becomes available, the proposed128

method will be capable of generating detailed 3D models of the areas of interest while avoiding129

the often unwieldy amounts of data produced by repeatedly creating 3D models of the entire130

structure in routine inspections.131

• The monitoring system incorporates on demand optimized view planning, taking advantage of132

the onboard processing capabilities of unmanned aircraft to maximize information gain through133

in-flight re-planning.134

• The potential benefits of this method are demonstrated and quantified in simulation, motivating135

further work on the supporting automatic detection technologies.136

The paper begins with an overview of the simulation environment used to perform the137

experiments described in the paper. This is followed by an explanation of both the standard linear and138

the optimized flight paths used for generating synthetic UAV images in the simulation environment.139

The process of 3D model creation and accuracy testing is described, as is the configuration of the140

real-time simulated flight testing system. The results of the testing for 3D model accuracy, flight141

time, and data quantity are then presented, and the implications of the results are summarized and142

discussed.143

2. Methods144

2.1. Simulated Test Scene145

Synthetic images for this study are generated using the terrain simulation environment Terragen146

3. The simulated scene is based on 0.5 meter elevation data taken from a one mile section of canal147

near Payson Utah. Satellite imagery at 12.5 cm resolution is overlaid on the elevation data, and high148

quality 3D vegetation and trees are added to approximate the actual environment at the site. Lighting149

conditions and the position of the sun are chosen to match those for Payson, Utah on March 28th, 2016150

at 12:00 p.m. Figure 1 shows a portion of the completed simulation site.151

In order to simulate a wide variety of potential infrastructure anomalies, additional 3D objects are152

introduced into the scene and placed at intervals along the canal. These included a set of power lines153

with structural damage, a colored disc placed on a road, a section of industrial piping with horizontal154

displacement, and short segment of railroad with a tie out of place. A slump in the side of the canal is155

also simulated by displacing a portion of the canal bank and filling the vacant area with water. Each156

anomaly in this study is a displacement on the order of 50 cm from a baseline case. A full description157

of the exact nature of the anomalies is not given here, as the purpose of the anomalies in this paper is158

only to illustrate potential locations where they could be found. A follow-up study will investigate159

the specific types of anomalies that can be detected, and quantify the limitations of the method with160

regards to anomaly size. Closeups of four of the anomaly locations can be seen in Figure 2.161

Terragen 3 permits full control over camera positioning, orientation, and parameters. Camera162

parameters for this study are chosen to simulate a Nikon D7100 DSLR camera, and are detailed in163

Table 1.164

While the simulation engine used is capable of generating photo-realistic images, it is not a perfect165

representation of reality. In particular the effects of wind on the scene and the rolling shutter effect due166

to camera movement are not accounted for. These effects are important in UAV photogrammetry, and167

including them in a simulation environment would be an interesting area of future work.168
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Figure 1. Simulation of the Highline Canal near Payson, Utah

Figure 2. Closeup views of anomaly locations. (1) Canal Slump, (2) Industrial Piping, (3) Power Line,
(4) Railway.
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Table 1. Camera settings for image generation.

Setting Value

Sensor Width (mm) 23.5
Focal Length (mm) 35

Image Width (pixels) 6000
Image Height (pixels) 4000

2.2. Standard Path Planning169

To facilitate comparison with standard flights, a planner is created to generate flight paths along170

the canal. Given a vehicle speed, desired image overlap, and camera frame rate, the planner generates a171

sequence of image locations at the required spacing and elevation. The planner is capable of generating172

single track paths, in which the UAV flies only one direction, as well as double track, in which the173

UAV flies down and back. This is illustrated in Figure 3. In the case of the double track path, the side174

overlap between the two tracks can also be specified.175

Figure 3. Illustration of single track (above) and double track (below) UAV flight paths

Image locations are generated for a range of flight speeds between 20 and 60 mph, and image176

overlaps between 75% and 90%. Double track flight paths are also generated, with a 50% overlap177

between the tracks. These ranges were based on commonly used corridor mapping guidelines [37].178

All paths are created using a fixed camera frame rate of 0.5 frames per second.179

The required elevation and number of images for each path generated by the standard path180

planner are shown in Tables 2 and 3.181

Table 2. Standard Path Planner: Single Path Results

Case # Speed (mph) Overlap (%) # of Images Elevation (m) GSD (cm)
1 20 75 193 84 0.94
2 60 75 65 252 2.8
3 20 90 193 210 2.3
4 60 90 65 630 7.1

Table 3. Standard Path Planner: Double Path Results

Case # Speed (mph) Overlap (%) # of Images Elevation (m) GSD (cm)
5 20 75 392 84 0.94
6 60 75 137 252 2.8
7 20 90 403 210 2.3
8 60 90 158 630 7.1



Version April 20, 2017 submitted to Remote Sens. 7 of 22

Because the camera frame rate has been fixed at 0.5 frames per second in this study, some182

combinations of speed and image overlap produce a very high elevation requirement. These elevations183

are outside the typical operating range of a small UAV, but are included for completeness.184

2.3. Optimized 3D Flight Path Planning185

Calculations that result in the global optimum for view planning are difficult to formulate and186

lead to very expensive computational loads. The view planning algorithm developed in this paper187

therefore focuses on identifying a sub-optimal solution capable of producing desirable results with188

a computational load that permits near real time calculations. The algorithm includes high degree189

of adaptability to different UAV platforms and desired image resolutions by accepting several user190

specified parameters that define the capabilities of the camera and desired resolution. Given these191

parameters, the algorithm estimates the minimal set of camera locations required for 3D reconstruction,192

as well as the optimal order in which to visit them. For a typical site of interest (about 900 m2), the193

algorithm finds acceptable image positions and a near optimal route through those points in about194

0.65 seconds on an Intel I7 CPU with 16 GB of RAM.195

As it is desirable for the algorithm to eventually run on-board a UAV, the algorithm is also tested196

on a Raspberry Pi 3. The Pi 3 is a small, single board computer with a 1.2 GHz 64-bit quad-core ARMv8197

CPU, and 1 GB of RAM. The board measures 85.60mm x 56.5mm and weighs 45g, which makes it198

feasible for use on-board a UAV. Running on the Raspberry Pi 3, the algorithm took an average of 7.02199

seconds to compute both the image positions and route for the five test areas in the study, placing it200

within range of in flight re-planning.201

The view planning algorithm can be summarized as follows:202

1. Receive detected anomaly location203

2. Obtain a point-cloud204

3. Add dome projection at the point of interest205

4. Convert the point-cloud terrain into a triangle mesh206

5. Place an aerial camera location on the normal line of every triangle207

6. Remove underground and blocked images208

7. Select the best images from the group based on a set of value heuristics209

8. Find the shortest path through all these points210

The following is a description of each of the above steps. Elevation data for the area to be211

surveyed is downloaded prior to the flight from public data sources, such as the USGS National212

Elevation Dataset. During an actual UAV flight, points of interest are flagged by anomaly detection;213

however, for the purposes of this paper, the points of interest are manually tagged before the simulated214

flight begins. When a point is detected, a geometric area of interest is constructed around the point to215

define the area to be inspected.216

After identifying the area of interest, the full elevation data set is trimmed down to an area only217

slightly larger than the area of interest. The slight excess of data is retained to ensure the UAV remains218

safe from potential obstacles or obstructions. Using only a subset of the original data also greatly helps219

to minimize computational costs when determining which points are within the view of each camera.220

In many cases, the geometry of the detected anomaly is unknown, and is not included in the221

available elevation data. This can lead to insufficient oblique imagery of the anomaly, especially if the222

shape of the anomaly differs significantly from the underlying terrain. To improve coverage, when223

an anomaly is detected the algorithm automatically inserts a dome projection at the point of interest,224

as demonstrated in Figure 4. The authors have found that the addition of the dome into the dataset225

aids the algorithm in selecting sufficient oblique imagery to capture the sides of an unknown object,226

regardless of whether the object is on relatively flat ground or on a steep grade. The dome is created227

by translating the elevation of each data point upward using a spherical cap, which results in a dome228

shape that still maintains the underlying geometry of the surface. Without the dome, a flat surface229

would result in the camera set all pointing directly downwards and the resulting 3D reconstruction230
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could yield undesirable results. The authors have found that a dome height of 5-10 meters and an231

incident angle with the horizontal of 15-30◦ provide an optimal increase in coverage. If the approximate232

size of the anomaly is known, it is best that the dome is tall and wide enough to completely enclose233

the anomaly. In the case that additional information is available about the nature of the anomaly, that234

information should be used in the planning rather than the generic dome projection. To clarify, the235

dome is not inserted into the Terragen simulation, it is only used in the view planning algorithm to aid236

in selecting imaging locations.237
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(a) Terrain without dome projection.
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(b) Terrain with dome projection.

Figure 4. Dome projection inserted to account for unknown anomaly shape.

(a) Selected camera positions with no added dome. (b) Selected camera positions with added dome.

Figure 6. The added dome projection helps guide the algorithm to capture additional oblique imagery
of an anomaly with unknown geometry.

This resulting elevation data is then converted to a triangle mesh, and the triangle size is238

normalized by recursive subdivision. This ensures even coverage of vertical features such as cliffs,239

hills, and canyons, even though the original telemetry data is spaced evenly for latitude and longitude.240
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After creating the triangle mesh and adjusting the terrain, tentative camera locations are generated241

at a fixed distance from each triangle midpoint along the normal from each surface. This typically242

results in several thousand tentative camera locations. Potential camera locations that are generated243

underground or are otherwise blocked from viewing their original triangle midpoints are removed.244

The image selection criteria is based on minimizing the total number of images while maximizing245

the terrain coverage. A visibility matrix similar to the 3M matrix used by [38] is constructed, containing246

information on the visibility of each point in the terrain from each camera location, and the angles247

(relative to each surface’s normal) at which each point is viewed. The angles are divided into three248

ranges (see Figure 8) and the resulting range is recorded in the histogram. An iterative process then249

selects camera locations which maximize the number of triangle midpoints viewed from previously250

unused angles. That is, once a point is viewed from an angle range, it is considered viewed, and it no251

longer contributes to the value of other camera locations which view it from within the same angle252

range. This results in a sub-optimal heuristic algorithm which, while not guaranteed to be optimal, can253

be completed very quickly with satisfactory results. As noted in [39], this type of heuristic algorithm254

provides a (1+ln n) approximation, where n is the number of images in the optimal solution.255

Figure 8. Angle ranges for histogram, where α is the camera angle of view.

Once the optimal images are chosen, a short route must be planned for the UAV to visit all the256

points; this is an example of a 3D Traveling Salesman problem. To find a solution, the Christophides257

Algorithm is employed. This algorithm is an approximation, but is guaranteed to find a solution258

within 1.5 times the length of the optimal solution ([40]). For this application, it was observed that the259

Christophides algorithm typically generates solutions that are within 10% of the optimal length as260

computed by integer linear programming, as shown in Equations 1-3.261

minimize
k

∑
i=1

k

∑
j=1

Di,j ∗ xi,j (1)

Here each of the k waypoints is numbered from 1 to k, and i and j represent the waypoints at either262

end of a selected pathway. D contains the distance measurements between each of the waypoints. The263

end solution x contains integers bounded between 0 and 1.264

The equality constraints are shown in Equation 2 and the inequality constraints are shown in265

Equation 3.266
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k

∑
i=1

k

∑
j=1

xi,j = k (2a)

for j in range {1...k} :
k

∑
i=1

xi,j = 2 (2b)

If a solution is achieved with subtours, Equation 3 is added as an inequality constraint and the267

problem is solved again. The variable s represents a subtour that occurred in a previous solution.268

k

∑
i=1

k

∑
j=1

si,j ∗ xi,j <=
k

∑
i=1

k

∑
j=1

si,j − 1 (3)

A sample comparison between the Christophides solution and the optimal solution from linear269

programming can be found in Table 4. A completed solution for a generic anomaly, including selected270

camera locations and the shortest flight path can be found in Figure 9. For comparison, Figure 9 also271

shows the optimal solution when the dome projection is not used.272

Table 4. Christophides Algorithm Performance

Christophides (m) Optimal (m) Difference (%)
1270.2 1202.9 5.59 %
998.6 918.8 8.69 %
851.4 800.8 6.31 %
678.8 634.6 6.96 %
205.1 189.4 8.31 %

For comparison with Tables 2 and 3, the number of images taken by the optimized path planner273

at each anomaly location as well as the average elevations of the images are shown in Table 5.274

Table 5. Optimized Path Planner Results

Anomaly # of Images Average Image Elevation (m)
Power Line 14 90.2
Road Disc 14 91.0
Piping 58 86.0
Railway 19 85.4
Canal Slump 23 84.8

The number of images required to model the section of industrial piping is significantly larger275

than the other anomaly areas. This can be explained by the fact that this anomaly location has the276

largest area of the five due to the fact that it contains the largest structure.277

2.4. 3D Modeling278

The synthetic imagery from the terrain simulation environment is processed to created 3D point279

cloud models in the software package Agisoft Photoscan ([41]). No ground control points are used in280

processing the models, and the software is allowed to self-calibrate all camera parameters. An example281

of one of the 3D models generated is shown in Figure 12. The program settings used to generate the282

models are detailed in Table 6.283

2.5. 3D Accuracy Testing284

For each flight case in Tables 2 and 3, the accuracy of the 3D model is measured at each of the five285

anomaly locations. Similar measurements are performed for the optimized case. The accuracy of the286

3D models is evaluated by comparing against a ground truth point cloud created by exporting the287
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(a) Optimized flight plan with dome projection.
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(b) Optimized flight plan without dome projection.
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(d) Top down view of (b).

Figure 9. Example of an optimized camera view plan and flight path for a generic anomaly with
and without the added dome projection. Yellow circles represent image locations, green triangles are
corresponding image targets.

Table 6. Program settings for model reconstruction

Setting Value
Photo alignment High
Pair preselection Generic
Key point limit 100,000,000
Tie point limit 10,000

Dense cloud quality High
Depth filtering Mild
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original geometry of the scene from Terragen. This includes terrain, vegetation, and 3D objects, and288

preserves the scale of the scene. The geometry is exported as a 3D mesh, and is then sampled at a high289

density to create a point cloud.290

Each model is evaluated for accuracy against the ground truth model using the techniques291

described in [36]. The models are aligned to the ground truth data set using the open source software292

package CloudCompare ([42]). This alignment is done in 2 parts. The first is to roughly align the293

models using 4 pairs of corresponding points on each model where the chosen points correspond294

to distinct features like hard edges of canals or other structures. These points are used to scale and295

rotate the compared model relative to the ground truth data. Once the models are roughly aligned, the296

alignment is refined by using an iterative closest point (ICP) algorithm. The ICP algorithm minimizes297

the distance between two point clouds by using a mean squared error cost function to estimate the298

rotation, translation and scaling that most closely aligns the two point clouds. With the models aligned,299

a local quadratic fitting technique is used to determine the distance between each point of the compared300

model and the interpolated surface of the ground truth model. This technique is shown in Figure 11.301

The cloud to cloud differences are finally fit to a Gaussian distribution and the mean error between the302

surfaces is computed (See Table 7). The standard deviation of the error is also computed.303

Figure 11. Illustration of the quadratic fitting technique used to find the distance between the reference
cloud (black) and the compared cloud (blue).

(a) Ground truth model geometry exported from
Terragen.

(b) Model reconstructed from images in Agisoft
Photoscan.

Figure 12. Examples of a ground truth model and a reconstructed model for the piping anomaly
location.

2.6. Simulated System Implementation304

Following the collection of simulated images, the physics of each flight is simulated using the305

ArduCopter Software-in-the-Loop (SITL) package. The main objective of these simulations is to306

compare the flight time required for each path. The optimized flight planner is implemented in Python,307
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and connected to the flight simulation using the 3DR DroneKit library. For these simulations, the308

desired waypoint navigation speed is set to 60 mph. It is assumed that the UAV platform used has309

the flight characteristics of a multi-rotor, though for longer endurance it would be preferable to use a310

larger single-rotor craft or a UAV capable of transitioning between hovering and forward flight.311

The base flight elevation is set to 90 meters, which corresponds to a 10 cm Ground Sampling312

Distance (GSD) for an HD video camera. This is done to simulate a two camera multi-scale setup in313

which most of the long linear feature is captured using lower resolution video, while points of interest314

are imaged using a higher resolution camera.315

The UAV is set to fly a path along the one mile canal segment simulated in earlier sections. For316

this study, optimized flight planning is executed in-flight, however anomaly detection is not performed317

in real-time, and anomaly locations are marked in advance. When the vehicle reaches each of the318

pre-defined anomaly locations, the location of the anomaly is passed to the optimized flight planner,319

and an inspection path is generated in real-time. The UAV then executes this path before continuing320

with its original flight route. The flight path taken by the UAV can be seen in Figures 14 and 15. The321

average planning time for each anomaly inspection is approximately 2.3 seconds.322

Figure 14. Flight Path simulated along Highline Canal section.

To create a baseline for comparison, two additional flights are performed with no anomalies323

present. The first flight is performed at 20 mph, and provides an upper bound on flight time. The324

second, at 60 mph provides a lower bound on flight time for the conditions tested.325

3. Results326

3.1. 3D Accuracy Testing Results327

The results of the 3D accuracy testing described in Section 2.5 are shown in Tables 7 and 8. Note328

that because the flight in Case 1 is relatively close to the ground, the piping is outside the camera field329

of view, and thus does not appear in the 3D model.330

As summarized in Figure 16, the average accuracy of the 3D models produced by the multi-scale331

approach is 11.0 cm. This is much better than the majority of the traditional flights, which average 29.8332

cm, and is matched only by the low, slow flight of Case 1 with 11.5 cm.333

An unexpected result from this study is the decrease in accuracy between the single path and the334

double path, as the double path is expected to be more accurate. The authors believe that this result335

stems from the setup of the test scene, in which the canal lies directly between the two paths in the336
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Figure 15. Top view of flight path simulated along Highline Canal section.

Table 7. Mean Accuracy (m)

Site Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Opt
Power 0.15 0.14 0.12 0.22 0.51 0.19 0.48 0.19 0.16
Disc 0.16 0.33 0.12 0.51 0.41 0.15 0.46 0.52 0.08
Pipe N/A 0.19 0.19 0.57 0.26 0.21 0.4 0.61 0.09
Rail 0.09 0.26 0.15 0.28 0.11 0.21 0.29 0.42 0.10
Slump 0.06 0.31 0.34 0.68 0.13 0.31 0.39 0.69 0.12
Average 0.12 0.25 0.18 0.45 0.28 0.21 0.40 0.49 0.11

Table 8. Standard Deviation (m)

Site Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Opt
Power 0.18 0.15 0.12 0.27 0.37 0.2 0.35 0.23 0.15
Disc 0.18 0.44 0.22 0.79 0.29 0.19 0.39 0.72 0.11
Pipe N/A 0.03 0.35 0.90 0.27 0.34 0.33 0.81 0.18
Rail 0.02 0.29 0.26 0.28 0.11 0.25 0.27 0.50 0.20
Slump 0.09 0.41 0.48 0.48 0.16 0.39 0.49 0.53 0.19
Average 0.12 0.26 0.29 0.54 0.24 0.27 0.37 0.56 0.17
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Figure 16. Average Accuracy of 3D Models from Test Cases

double path scenario. Terragen uses a realistic lighting model, which includes specular highlighting337

and glare on water. The authors believe that the moving highlights and glare on the canal during338

the flight make it difficult to match points between the forward and backward path during the 3D339

reconstruction, and lead to decreased accuracy. Because the single path cases are flown directly above340

the canal, glare is reduced and this problem is avoided. This is illustrated qualitatively in Figure 17341

and Figure 18. Figure 17 compares the original geometry of a model segment to the single path and342

double path reconstructions. Figure 18 shows a cross section of the canal from one of the double path343

models. In both double path cases it can be seen that the model is inaccurate and disjointed at the344

canal, supporting the author’s conclusions.345

3.2. Flight Time Results346

The proposed monitoring system shows improvements over traditional methods in terms of flight347

time. Based on the simulated results, the average inspection time per anomaly including planning348

and flight time is 1.89 minutes. The flight time savings of this approach scale according to the number349

of anomalies detected during the flight. Figure 19 shows the case of a 100 mile flight, comparing350

traditional 20 mph and 60 mph monitoring flights to the multi-scale approach. Multi-scale flight times351

are calculated by multiplying the average anomaly inspection time by the number of anomalies found352

per mile and adding that time to the time required for a baseline 60 mph flight.353

As Figure 19 shows, flight time savings increase with decreasing anomalies, approaching the354

lower limit of the 60 mph flight. One anomaly every five miles produces a 55% savings in flight time355

versus the 20 mph case. The break even point, or the point at which a 60 mph flight with inspection356

stops takes the same amount of time as a 20 mph flight without stops is 0.67 miles per anomaly.357

Combined with the above accuracy testing results, this means that for cases with anomalies spaced358
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Figure 17. Qualitative comparison of canal models: a) original geometry, b) reconstruction from single
path, b) reconstruction from double path. Note the disjoint at the canal surface in the double path case.

Figure 18. Cross section view of canal from a double path model. Again, the model is seen to be
disconnected at the canal surface.
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Figure 19. Flight Time Comparison for 100 Mile Flight

farther than 0.67 miles apart, the multi-scale approach produces 3D models at the same accuracy as a359

low slow flight with less flight time.360

3.3. Data Quantity Results361

The proposed methods also show improvement over traditional methods with regards to the362

amount of data collected. A major problem with current 3D reconstruction techniques is the large363

amount of data generated, which makes viewing, analysis, and storage difficult on a standard364

workstation, requiring investments in more powerful computing resources. Reconstruction in365

particular scales poorly, with complexity estimates ranging from O(n2) to O(n4), where n is the366

number of images [43,44].367

The new method alleviates this problem by focusing data collection and processing power on368

infrastructure areas with high information content. High resolution images for 3D reconstruction are369

captured only in problem areas, leaving the remainder of the infrastructure to be captured in lower370

resolution video for further review if needed. The benefits of this approach in terms of data savings371

are expressed in Figure 20.372

The values in Figure 20 were generated using Equation 4.373

Data = Miles ·
FPM(FO) · M1 + IPA·M2

MPA
1000

(4)

This equation describes the gigapixels of imagery collected over a flight using the two camera374

setup described above. Here, FPM or Frames Per Mile is the number of HD (1920x1080) video frames375

needed per mile to achieve the desired percentage of frame overlap (FO) at the chosen flight speed.376

M1 is the number of megapixels per image captured by the HD video camera. MPA is the average377

number of Miles Per Anomaly detected. IPA or Images Per Anomaly is the average number of high378

resolution images needed per anomaly. M2 is the number of megapixels per image captured by the full379

resolution camera. For comparison, Figure 20 also includes the amount of data generated by capturing380

full resolution imagery of the entire length of infrastructure during 20 mph and 60 mph flights with381

90% overlap. The parameters used to generate Figure 20 are given in Table 9.382
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Figure 20. Data Quantity Comparison for 100 Mile Flight

Table 9. Parameter Values used in Equation 4

Parameter Value
Miles 100

HD Frames-per-Mile (FPM) 193
Desired Frame Overlap (FO) 90%

Camera One Megapixels (M1) 2.1
Average Images-per-Anomaly (IPA) 25

Camera Two Megapixels (M2) 24
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Together, the results for 3D model accuracy, flight time, and data quantity provide a number of383

interesting insights. If accurate anomaly detections are possible, the proposed multi-scale infrastructure384

monitoring approach has the potential to reduce flight times by up to 55% and the quantity of data385

generated by up to 89% while maintaining accuracy at areas of interest when compared to a low386

altitude, low speed flight.387

4. Discussion388

Much of the research done using UAVs for inspecting long linear infrastructure has focused on389

using vision to track and follow infrastructure features such as roads and pipelines [22,45,46]. These390

tracking methods could potentially be combined with the results of this project to create an even more391

capable system. This project is more similar to the ideas presented in [47], where a network of sensors392

on an oil pipeline triggers a UAV to investigate an area of possible tampering. In contrast, the method393

in the the current paper presents the idea of using sensors on-board the UAV itself to trigger flight394

planning for an area of interest. The view planning algorithm presented is similar to others in the395

literature [31,48], but as demonstrated provides value when combined with the ideas of anomaly396

detection and on-board flight planning. This is in contrast to most UAV re-planning literature, where397

in-flight re-planning is mainly used in exploring unknown environments [49,50].398

The simulation environment used can be considered both a strength and a limitation of the study.399

It is a strength because it allows a variety of flight plans and imaging sequences to be constructed400

and evaluated, which can be difficult in physical tests. It also allows experiments to be conducted in401

custom environments that can be tailored to test a large combination of specific conditions. However,402

as no simulation is perfect, this adds the requirement that the results must eventually be validated in403

physical tests. The authors plan to confirm and extend the results of the study in future real-world404

flight tests.405

5. Conclusion406

This paper proposes a novel method for inspection and monitoring of long linear infrastructure407

features using UAVs equipped with real-time anomaly detection and in flight re-planning. A simulated408

test environment is constructed and used to collect synthetic photographs as if taken from UAV409

flights. A 3D flight planning algorithm suggests sub-optimal but sufficiently accurate waypoints410

within acceptable CPU time constraints. The procedure and settings used for 3D model reconstruction411

are also detailed. Standard single and double linear flight paths are compared against the new method412

in terms of 3D model accuracy, flight time, and the quantity of data collected. A basic demonstration413

of anomaly detection using a Haar classifier is shown, and additional alternatives discussed.414

It is shown that compared to a linear flight, the proposed method is able to maintain 3D accuracy415

at the areas of interest while reducing flight time by up to 55%, and the amount of data generated416

by up to 89%. This reduces the time required in the field, the image storage required on-board the417

UAV, and the computer power and storage required for data post processing. These savings reduce418

the time and cost associated with the monitoring of long linear infrastructure such as pipelines, roads419

and levees.420

This paper touches only briefly on the detection of unknown anomalies, instead focusing on421

quantifying the potential benefits given the assumption such detections are possible. The authors422

recommend that further work be performed in the area of real-time detection of unknown anomaly423

detection during UAV flights. Reliable, automatic detection of known objects of interest is valuable.424

Future work also includes improving the efficiency and effectiveness of the optimized view planning425

algorithm, and extending it from multi-rotor and single-rotor aircraft to fixed wing platforms. While426

the simulated environment is useful for identifying general trends, field tests are also needed in the427

future to validate the simulated results and further explore the details of field implementation. As the428

simulations in this paper represent a physical location of interest, future field work planned by the429

authors at that site will be directly comparable to the presented results.430
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