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Abstract: A large-scale set of differential and algebraic equations (DAEs) is used to
model and control an industrial gas phase polymerization reactor. Moving horizon
estimation, preceding the nonlinear control optimization, provides an estimate
of the current states and unmeasured disturbances. MHE is compared to Implicit
Dynamic Feedback (IDFTM) ∗. With MHE, there is improved estimation of unmod-
eled disturbances in the UNIPOLTM ∗∗ polyethylene plant. The polymerization
model is converted to algebraic equations by orthogonal collocation and solved with
the MHE objective function in a simultaneous optimization. NOVATM, an active-
set sparse NLP solver, is used to converge the problem that has 46,870 variables.
This large, sparse optimization problem is initiated every 5 minutes to update
the model as new plant measurements become available and prior to the control
optimization. The same plant model is used for nonlinear model predictive control
(MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs).
In this case, MHE improves the control by better estimating reactor compositions
of hydrogen, the condensing agent, and other measured state variables.

∗ Unless otherwise indicated, all trademarks listed in this paper are of Honeywell International
∗∗ The UNIPOLTMtechnology is licensed by Univation, a joint venture between ExxonMobil and
Dow.
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1. INTRODUCTION

Unmodeled disturbances or features of a physi-
cal process pose a limitation, in particular, for
model-based control. Before optimal manipulated
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variable (MV) moves can be computed, the cur-
rent model states must reasonably match the
measurements from the actual process. Qin and
Badgwell (Qin and Badgwell, 2000) surveyed the
current state of nonlinear model predictive control
(MPC) applications. According to the survey, the
most popular feedback techniques at the time
were constant and integrating output bias distur-



bances. Froisy concluded that multivariable state
estimation is a key enabler that allows linear MPC
to reject disturbances more effectively than a well
tuned PID controller (Froisy, 2006).

State estimation of real systems may include
changing measurement frequencies and missing
measurements, multiple measurements at differ-
ent sampling frequencies, measurement delay,
large-scale nonlinear models, and constraints.
MHE, as a part of nonlinear dynamic data rec-
onciliation (Soderstrom et al., 2000), is flexible
to deal with these scenarios (Moraal and Griz-
zle, 1995). Liebman et al. was the first to propose
a simultaneous solution approach for MHE where
the differential equations are transformed into al-
gebraic equations through orthogonal collocation
on finite elements (Liebman et al., 1992). Later,
Albuquerque and Biegler improved the solution
approach by exploiting the MHE SQP structure
to achieve linear computational scaling with hori-
zon length (Albuquerque and Biegler, 1995). Fur-
ther computation improvement was proposed by
Hedengren et al. in an explicit solution to a sim-
plified nonlinear MHE problem (Hedengren and
Edgar, 2006).

Many of the papers on MHE discuss novel theoret-
ical aspects but do not address some practical is-
sues for industrial applications. The contribution
of this work is to discuss an industrial application
of MHE including practical issues in implemen-
tation and discuss how IDFTMand MHE can be
used with nonlinear MPC. Additional results and
discussion can be found in a similar paper on the
same application(Hedengren et al., 2007). Other
relevant papers are from ExxonMobil Chemical
Company on MHE for diluent inventory track-
ing (Soderstrom et al., 2000) and a liquid phase
polymerization reactor (Russo and Young, 1999).
Together, these studies show the success of MHE
as applied to models of industrial processes.

2. FEEDBACK STRATEGIES

MHE is compared with Implicit Dynamic Feed-
back (IDFTM) in this paper. These feedback tech-
nologies are available as options in Honeywell’s
ProfitNLCTMproduct to incorporate model feed-
back of measured states.

2.1 Implicit Dynamic Feedback (IDFTM)

The IDFTMformulation is a feedback strategy that
estimates disturbances related to the predictions
of the measured state variables. IDFTMis a pair-
ing of these measured states with unmeasured
disturbance variables. The disturbance variable
is adjusted to reduce model discrepancies with

process measurements. The IDFTMformulation is
compact enough as to be incorporated simultane-
ously with the control problem within one history
interval.

IDFTMis a proportional integral (PI) controller
that is integrated with the process model. The PI
controller input is the error between the measured
state (ys)and model state (ym). The output is an
unmeasured disturbance variable (d) of the model.
This disturbance variable is adjusted proportional
to the current and integrated measurement error.

d = K (ys − ym) +
K

τI

T
∫

t=0

(ys − ym) dt (1)

The tuning parameters for IDFTMare K and τI ,
the same as a PI controller. Using a large value of
τI and small K has the affect of heavily filtering
the error term for feedback. In this case the algo-
rithm will take longer to match the plant. Using
these tuning parameters and knowing the quality
and types of measurements enables trading off
of “speed of tracking the plant” versus “stability
concerns”. IDFTMhas been successfully used for
seven years to provide on-line estimation measure-
ment biases, catalyst activities, kinetic parameter
adjustment factors and heat transfer coefficients.
However, IDFTMlimitations are a limitation to a
past horizon length of one, requirement of equal
number of disturbance variables and measure-
ments, and an inability to handle disturbance
variable constraints.

2.2 Moving Horizon Estimation

The MHE objective function is posed as a mini-
mization of L2-norm error to reconcile the model
with measured values. Similar to IDFTM, the dis-
turbance variables (d) are the only degrees of
freedom to adjust model predictions to match
measurements.
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s.t. 0 = f(ẋ, x, u, d)
ys = g(x, u, d)
a ≥ h(x, d) ≥ b

(2)

where subscript s refers to sample values, and sub-
script m refers to model values, Φ is the objective
function value, ys is a vector of measurements at
all nodes in the orthogonal collocation structure
(ys,0,. . . ,ys,n)T , ym is a vector of model values at
the sampling times (ym,0,. . . ,ym,n)T , Qy is opti-
mally the inverse of the measurement error covari-
ance, f is a vector of model equation residuals,
x represents the model states, u is the vector of
model inputs, d is the vector of model parameters



or unmeasured disturbances, d̂ is the vector of pre-
vious unmeasured disturbances, Qd is a matrix for
the weight on changes of disturbance variables, g

is an output function, h is an inequality constraint
function, and a and b are lower and upper limits,
respectively.

Note that the full MHE problem would allow
violation of the state constraints and estimation
of the initial states. In such a formulation, state
continuity constraints are relaxed and violations
are penalized in the objective function. The op-
timization problem found in Equation 2 does not
allow state transition error because the state equa-
tions are exactly satisfied at a converged solution
(Binder et al., 2001). State estimation is accom-
plished by adjusting past values of disturbance
variables. This approach greatly reduces the num-
ber of optimization degrees of freedom while con-
verging to a solution that is consistent with the
measurements.

With a long extended prediction horizon of the
controller, it is important to have a reliable future
prediction of the disturbance. For this reason,
the disturbance value is held constant over the
MHE horizon. This single disturbance value is
then projected into the future for the control
optimization. Allowing the disturbance value to
vary from node to node did not produce a reliable
future prediction. Additionally, the penalization
for changes in the disturbance acts to improve the
reliability of the predicted disturbance.

A drawback to MHE implementation can be sum-
marized as “industrial inertia” due to configura-
tion and compute time concerns.

3. POLYMERIZATION MODELING

The polymerization modeling discussed here is
used directly in the nonlinear control application
(see Young (Young, 2001)). The gas phase poly-
merization reactor and plant are modeled with the
Polymer Dynamic Modeling System (PDMSTM).
The model consists of heat, mass, and species
balances with a kinetic mechanism for the poly-
merization reactor. The kinetic model and method
of moments for the polymer properties is based on
the work by Ray (Ray, 1972). In addition to the
fluidized bed reactor model, the flowsheet includes
a compressor, heat exchanger, vent stream, feed
streams, polymer takeoff line for degassing, and
dynamic models of the base regulatory control
system.

The steady state model, 0 = f(ẋ = 0, x, u, d), has
1927 state variables, 764 fixed model inputs, and
1 complementarity condition to account for the
variable condensed phase of the heat exchanger.
For nonlinear MPC, the model is solved over a

time horizon with ẋ 6= 0. There are a total of 10
MVs and 26 CVs, including some pass-through
CVs (MVs with CV tuning). The MVs are the feed
flows to the reactor, reactor temperature, and vent
to the monomer recovery unit. The CVs include
polymer properties, reactor pressure, reactor ethy-
lene partial pressure, and process constraints. The
following discussion focuses on feedback formula-
tion in relation to improving the prediction of the
effect of MV changes on the dynamic and final
values for the CVs. A diagram of the flowsheet
model is shown in Figure 1.

Fig. 1. Flowsheet of the polyethylene plant model.

IDFTMis implemented within the application as
a disturbance estimator for disturbances not in-
cluded in MHE and as a backup for MHE esti-
mation of disturbances. There are 27 IDFTMpairs
that couple measured state errors to model dis-
turbance variables. IDFTMactively manages 19
disturbances, with backup configuration for the
8 MHE disturbances. Note that the number of
IDFTMpairs is larger than the number of CVs.
This arises as some CVs are duplicated as mea-
sured states and matched by adjusting input
disturbances, which are tuned less aggressively.
Aggressive tuning on output biases is generally
incorporated for CVs explicitly exposed to the
controller. Also, note that the input disturbances
are abstractly set within the model to minimize
the model dynamics with respect to the model
measured state. This is done to also allow for more
aggressive tuning of IDFTM.

Due to the choice of MVs, many of the unmea-
sured input disturbances are ficticious flows to
and from the cycle gas loop to enable matching
of composition and pressure. This includes input
disturbance flows for both inert components and
reacting components. The inert compositions are
nearly integrating variables because they are not
consumed in the reaction. Practically, hydrogen
composition has some characteristics of these in-
erts components as it takes significant time to re-
act away given the concentration in the cycle gas.
The dynamics for inerts and hydrogen described
here are less well-suited for best performance of
IDFTM. In addition, there are some known process
phenomena that are not encapsulated within the



originally implemented model. These phenomena
relate to adsorption and desorption within the
polymer bed of heavy hydrocarbon components.
Taking these issues into consideration, one could
expect that the IDFTMfeedback on the relevant
input disturbances may lead to oscillation. As
such, 8 of these input disturbances were defined
to be updated by MHE.

As configured, the MHE optimization problem
contributes an objective function and 8 degrees of
freedom for the 8 disturbance variables referenced
in Table 1. These disturbances are configured to
move only on the first collocation point of the
first interval in the horizon. Because MHE does
not require one to one pairing of disturbance
variables and measured states, additional mea-
surements may be included in the objective func-
tion without adding disturbance variables. These
measured states are comonomer (comonomer A
and/or comonomer B) to monomer (ethylene)
mole ratios in the reactor. For control of prop-
erties, it is more important to match this ratio
rather than the absolute mole fraction of either.
This is reflected in the higher weighting given to
these mole ratios.

Table 1. IDFTMPairing and Tuning

Measured State Disturbance K τI

(min)

C2= mol% C2= Feed Bias 3 5
Com A mol% Com A Feed Bias 2 5
Com B mol% Com B Feed Bias 4 5
Condensing Condensing Agent 0.25 5
Agent mol% Feed Bias
Hydrogen mol% Hydrogen 1 5

Feed Bias
Pressure Vent Flow Bias 50 5
Prod Rate Cat Activity 0.0001 10
Cooler Temp Heat Bias 0.5 10

The tuning parameters were set through the fol-
lowing strategy. First, the relative importance of
the measured states was defined and weights set
such that the reference weight was 1. All tuning
matrices are diagonal in this application. Weights
on the measured states were increased across the
board, for selected intervals of the horizon. This
weighting reflected the desire to have current
states match the currently measured values more
closely. Then, typical steady state gains from the
model were used to determine initial values for the
regularization weights (input weights) on move-
ment of disturbances with the intention of restrict-
ing moves compared to no weight. The predictions
were monitored each day and the regularization
weights adjusted. A half/double rule was used to
change the regularization weights and influence
the relative movement of the disturbances. After
3 days of online tuning, performance would be
judged optimal for the selected horizon. Horizons
of 30, 50, and 70 minutes were evaluated and a

horizon of 50 minutes was selected. For the 30
minute horizon, there was judged to be unnec-
essary movement of the disturbances. The tun-
ing parameters or weights on the squared mea-
surement errors and disturbance regularization
weights are shown in Table 2.

Table 2. MHE Tuning

Measured State Weight

Rx Ethylene mol% 1.0
Rx Comonomer A mol% 0.1
Rx Comonomer B mol% 0.1
Rx Condensing Agent mol% 1.0
Rx Hydrogen mol% 0.1
Rx Pressure 4.0
Production Rate 1.0
Cooler Temp 1.0
Rx ComA/C2 Mole Ratio 4.0
Rx ComB/C2 Mole Ratio 4.0

Input Disturbance Weight

Ethylene Feed Bias 1

200

Comonomer A Feed Bias 1

15

Condensing Agent Feed Bias 1

7

Comonomer B Feed Bias 1

15

Hydrogen Feed Bias 1

40

Catalyst Activity 1

3

Heat Loss Bias 1

50

Vent Bias 1

10000

The MHE problem typically solves in 2-3 itera-
tions and in under 30 seconds of CPU time on a 3.4
GHz PC computer. Once converged, the estimate
of the current states and disturbance variables are
transferred as initial conditions for the control
optimization. In the event that MHE does not
converge or converges with an infeasible solution,
IDFTMautomatically initiates.

4. RESULTS

These results are from testing performed on an
industrial gas phase polymerization plant with
on-line process measurements, occasionally cor-
rupt or missing data, and polymer grade and
production rate transitions. The process model
is run real-time in parallel to the plant, but no
optimal control results are transferred to the pro-
cess (open loop control during model validation
prior to controller commissioning). The compari-
son is between the two modes of feedback noted
in Section 3 with one mode exclusive of MHE
and the other mode with IDFTMand MHE. The
IDFTMand MHE results are shown for production
rate (Figures 2 and 3) and reactor hydrogen mole
fraction (Figures 4 and 5). All results are nor-
malized to the average measured values for the
IDFTMperiod. Both IDFTMand MHE periods are
shown for 2 days of plant testing, with different
time periods for each. A better comparison would
be against the same plant data, but performance
indicators can still be compared with these results.
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Fig. 2. IDFTMfor production rate.
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Fig. 3. MHE for production rate.

Two performance indicators for the feedback tech-
niques are (1) Normalized variance of the model
error and (2) Variance of the disturbance variable.
As a generalization, each indicator is a separate
quantitative measure of the feedback effectiveness.
Indicator #1 displays the estimator’s ability to
track the process (see Table 3). Indicator #2
displays the ability to track the process without
aggressive movement of the disturbance variables
(see Table 4). The feedback can be tuned ag-
gressively to improve indicator #1. However, ag-
gressive feedback will increase indicator #2 and
lead to poor future predictions in the subsequent
control problem. Indicator #1 and #2 are perfor-
mance measures for state and disturbance track-
ing, respectively.

Table 3. Normalized Standard Devia-
tion of Model Error for the Data Shown

in Figures 2 to 5

IDFTM MHE Improved

Production Rate 0.0275 0.0113 143%
Pressure 0.0083 0.0019 332%
Ethylene mol% 0.0059 0.0029 108%
Hydrogen mol% 0.1034 0.0026 3909%
Condensing 0.0489 0.0014 3288%
Agent mol%

The performance indicators for MHE are better
than for IDFTMwith the exception of indicator #2
for catalyst activity. It is speculated that this is
due to the production rate increase that occurred
during MHE testing, but not during IDF testing.
During this time, there was an unmodeled shift in

Table 4. Disturbance Variance for the
Data Period in Figures 2 to 5

Disturbance IDFTM MHE Improved

Cat Activity 0.08 0.14 -43%
Vent Bias 278.53 168.24 66%
C2= Feed Bias 5.28 4.47 18%
H2 Feed Bias 2.36 0.52 354%
Condensing Agent 2.63 0.41 537%
Feed Bias

the production rate that was adjusted by catalyst
activity.

The improvements evident for the condensing
agent and hydrogen are consistent with the dis-
cussion in Section 3. Hydrogen is a chain transfer
agent that shortens polymer chains, making less
viscous polymer. Roughly one hydrogen molecule
is consumed for every polymer chain produced.
The consumption rate of hydrogen is small com-
pared with the total amount present in the recir-
culating reactor gas. This leads to integrating be-
havior of the disturbance variable. The improved
estimation of hydrogen and the condensing agent
suggests that MHE is particularly suited for dis-
turbance variables that have integrating effect on
the measured state (see Figures 4 and 5).
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Fig. 4. IDFTMfor reactor hydrogen mole fraction.
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5. CONCLUSIONS

MHE facilitates improved state estimation com-
pared to IDFTMonly. There is reduced variability



of model error and generally reduced movement
of disturbance variables. In fact, the project team
associated the use of MHE with enabling the use
of feed flows as MVs for this control problem.
This benefit was gained by improving the model
predictions without improving the modeling of
the unmeasured disturbances to hydrogen and the
condensing agent. MHE was able to readjust past
model predictions over a longer horizon, leading
to improved current states.

Besides better tracking of the process with less
variability in prediction error, a major driving
force for MHE application is the use of less so-
phisticated models for predictive analysis (in this
case, nonlinear MPC). MHE enables a simpler
model to be used with an improved selection of
MVs and additional CVs for an improved con-
trol application. Marquardt stated that the major
bottleneck to successful nonlinear MPC is the
lack of reliable first-principles or hybrid mod-
els (Marquardt, 2001). With MHE this bottleneck
is reduced by allowing simpler models to be used
in more advanced applications. Future focus will
center on a more complete MHE formulation for
industrial problems.
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