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Abstract

Detecting windows or intervals of when a continuous prodgessperating in a state
of steadiness is useful especially when steady-state madebeing used to optimize
the process or plant on-line or in real-time. The term stestdie implies that the
process is operating around some stable point or within siat®nary region where
it must be assumed that the accumulation or rate-of-chahgeaterial, energy and
momentum is statistically insignificant or negligible. $imew approach is to assume
the null-hypothesis that the process is stationary absuté@an subject to independent
and identically distributed random error or shocks (witése) with the alternative-
hypothesis that it is non-stationary with a detectable aetérthinistic slope, trend,
bias or drift. The drift profile would be typical of a time-wang inventory or holdup of
material with imbalanced flows or even an unexpected leakaticig that the process
signal is not steady. A probability of being steady or atietstionary over the window
is computed by performing a residual Student-t test usiegestimated mean of the
process signal without any drift and the estimated stardawiation of the underlying
white-noise driving force. There are essentially two sgtior options for the method
which are the window-length and the Student-t critical eadund can be easily tuned
for each process signal that are included in the multivadatection strategy.

Keywords: steady-state, stationarity, random walk with drift, whiteise, hypothesis
testing, student-t.

1. Introduction

If the process or plant being monitored (passively) andfimuzed (actively) is
not at steady-state then applying a steady-state modehgtithe is obviously not
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suitable given that significant accumulation or rate-cdiudpe of material, energy and
momentum violates one of the principle assumptions of thdehd\pplying the right
model at the wrong time will result in more Type | and |l err¢iase positives, false
negatives), biased or inaccurate parameter estimateslametely inappropriate de-
cisions to be made on how to move the system to be more ecoabmfficient and
effective. Serious violation of the steady-state assurnpthay result in unstable op-
eration when on-line, real-time or closed-loop optimiaatis applied. Thus, correctly
detecting intervals, horizons or windows when steadyestaidels can most likely be
used is an important application. Knowing accurately inetiwmhen some processes
are steady and others are unsteady can also help to idendfgdiagnosis potentially
coincident abnormal events or symptoms noticed in otheasaod the plant such as
light-ends flaring, low-pressure steam venting and comated liquid effluents.

The subject of this work is to highlight a straightforwardheique to detect pe-
riods of time in the immediate past and present when the rootis process appears
to be running in a state of steady-ness or is stationary frdmnctwit is reasonable to
assume that steady-state models can be implemented foethe@ar future. Previ-
ous work in the area of steady-state detection (SSD) is suin@tbby Mhamdi et.
al. [1] as (a) performing a Student-t test on a linear regeésdope over the time
window, (b) performing a Student-t test on two recently cabted means with pooled
standard-deviations from two adjacent windows and (c)grering an F-test on two
recently computed standard-deviations either from twaeeatjt windows or from the
same window but using two different filtered means. Exampfdsa) can be found in
Holly et. al. [2] and Bethea and Rhinehart [3], examples dfifiNarasimhan et. al.
[4] and Holly et. al. [2] and examples of (c) in Cao and RhinéH&] and Mansour
and Ellis [6] using pre-specified exponentially-weightédiefs with an interesting re-
cursive window-based version found in Kim et. al. [7]. Thethoal of Mhamdi et.
al. [1] is somewhat similar to (a) except that it uses morehgijgated basis func-
tions implemented in wavelet theory instead of employintppes trend, bias or drift
component used here and as such is more difficult to apply.

Most industrial implementations of SSD use a form of (b) knoag the mathe-
matical theory of evidence (Narasimhan et. al. [4]) usualith another Student-t
test on the residuals of the raw signal minus its mean divieits standard-deviation
computed over the number of data values in the window. Uafately, the mean and
standard-deviation computed by these methods are nototedréor the drift compo-
nent as is done in this SSD algorithm below. Hence, the otlethods are biased (less
accurate) and require more adjustment to minimize Type |laedrors. Although
these techniques are easy to understand and implemeniyetliknown that they re-
quire substantial and subjective tuning or calibrationwdng intervals of when the
plant is possibly at steady-state (Campos et. al. [8]) aralpgrceived drawback.
In terms of computational expense, recursive techniquessicaificantly reduce the
computing load but since the eighties with mainframes astipervisory computers
and now with multi-core application servers this is not auésto consider further es-
pecially for the SSD algorithm described here. The SSD #lgoruses insignificant
CPU time because it only involves calculation of a mean dseshdeviation, and slope.

The SSD algorithm presented in this work is also window-teased utilizes the
Student-t test to determine if the difference between tbegss signal value minus its
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mean is above or below the standard-deviation times itisstal critical value. If less
than, then that time instant or point is steady and if grettan, then it is unsteady
where the aggregation is computed over the window apprdiiga probability or
frequency of being at steady-state. The details of thisrdlgn are now presented.

2. Steady-State Detection (SDD) Algorithm

Our fundamental assumption about the behavior of the uyidgrsystem for any
single process signal is to assume that it may be operatitihganion-zero slope mul-
tiplied by its relative time within the window defined by tha@lbwing equation forx
as:

X =mt+p+a 1)

wheremt is the deterministic drift component, is the mean of the hypothetical
stationary process that will also equal the sample meanithmaatic average over
the time window with zero slope, argj is the i.i.d. random error series or white-
noise sequence with zero mean and standard-deviatjonSubscriptt is an index
that indicates the cycle at which the sample is collectedeanhi refers to the slope
multiplied by cycle count. This is well-known as the “random walk with drift” non-
stationary time-series found in Box and Jenkins [9] whichlésarer to see when the
differencex is first lagged or time-shifted in the immediate past as:

X —X—1=M+a —a_1 (2)

wherea; —a;_1 by definition has an expected value of zero with a standavihtien
of 2 g;. This is the simplest type of a non-stationary process amdbeaused to
model any process with hon-constant accumulation or rat#range of material, en-
ergy and/or momentum. An example would be a process vestebwioldup or in-
ventory of material wheren would be non-zero with a net flow in or out of the vessel
or even an unexpected leak either at the input, output odéngie vessel itself due
to a loss of integrity in the system. If it is assumed that arocpss signal (usually a
dependent variable such as a temperature, pressure omt¢@ime) included in the
steady-state detection can accumulate over time, andsiigHound to be significant,
then the process variable can be declared to be unsteadyestatonary. A similar
approach was taken by Kelly [10] to model the non-statiordisyurbances caused
by either the input or output flow, depending on if the outputnput flows are the
manipulated variables, of a surge vessel. A pure random tivalicseries was chosen
to aid in the tuning of PI controllers for improved level caitknown as level-flow
smoothing. However, in this case the random walk with dsifised to hypothetically
model potentially sustained accumulation or rate-of-cjgaof holdup or level of the
vessel over the window. This can be equally applied to anggs®variable which can
accumulate other phenomenon such as energy or momentumesjthct to time.

lUnbiased if the noise is i.i.d. else if there are stationarpaegressive (AR) components (Box and
Jenkins [9]) then a biased estimate will result.
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By first differencingx it is possible to unbiasedtgstimate the slopm of the drift
componentrt as the arithmetic average &f — x_1 with n sampled values af; in
the window which are equally spaced in time i.e., given aamif sampling period or
cycle. Slope in the linear regression can also be obtainedibymizing the sum of
squared errors of the difference between the measured adel wedues, but this was
not applied here. The slope calculation is the arithmetiam the first difference in
¥ and is essentially a discrete-time or first-differencealiton of the first-derivative
or rate-of-change of with respectto time(%) and as suchis the direct calculation
or estimate of this accumulation. Obviously if there is d&ble accumulation then the
signal is by definition unsteady given th(a%x) is found to be non-zero. The intercept

U is obtained by subtracting the termt from x when Equation 1 is rearranged to

X —mt=u+a:
H= % (tixt - mit> (3)

Now that there is an estimate of the drift slomeand the meam of X, the standard-
deviation of the white-noise shocks can be estimated as:

an\/rlzt;(Xt—mt—H)z (4)

At this point along with a specified Student-t critical orékhold value at a particu-
lar significance levetr and degrees-of-freedom all of the necessary information is
available to test the null-hypothesis that the processasignsteady or is stationary
aboutu:

if % — | <tgitoathenyy=1lelsey =0 (5)

The sum ofy; divided bynis a fraction related to the likelihood that the null hypatise
is false. This is the fraction of time within the window thatetprocess or plant is
deemed to be at steady-state. A fraction of 0.95 or 95% wauitate that 5% of the
points are not at steady-state for example. A suitable ffidedermination of whether
the process is deemed to be at steady-state depends on licatigp A Student-t test
could also be applied on the estimated slopef the drift component used in previous
work (see point (a) above) but this was not found to be as ate@s computing the
probability over the window i.e., performingdrift-corrected residual Student-t tests
and taking the arithmetic averageypf

Before proceeding to the results and discussion secti@ne thre two issues that
need to be addressed and they are the window-length or sizlecanto manage mul-
tivariate processes. The guideline for the window-lengttoiset it at some number
of samples equivalent to greater than say three (3) to fivéirt®s the time-constant
of the process variable divided by the sampling time-periddis implies that some
prior knowledge of the process is necessary but it is morétgtiee than quantitative.
For example, if the time-constant is circa 30-minutes (theetto reach around 63%
or (1— e‘l) of its steady-state gain value for a first-order process)taadsampling
takes place every 2-minutes then the window-size shouldebeden 332 = 45 to
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5x %) = 75 number of samples in the window. This is a typical apprasad in indus-
try for two-stepon-line optimization installations. The window-lengthositd not be
too short because the process will not have time to reach Ewleof stability and the
steady-state probability will always be low precluding thee of steady-state models
to help improve the profitability and performance of the plafoo long, and multi-
ple intervals of unsteady-state behavior within the longiexdow may conclude that
the signal is steady when in fact it is not. These are wellkmeffects referred to as
low/high frequency aliasing and under/over-sampling. #weo possible short-coming
of this approach is that false indications of steady-statg atcur at the peak or valley
of an oscillating process. With the horizon window centeogdr the peak, a slope
of m= 0 and points within the confidence interval of Equation 5 wakult. In these
cases, the SSD will indicate periodic acceptance propwtito the frequency of the
oscillation.

To manage multiple process signals where collectively thetgrmine whether a
system is steady, the same approach is used as found in e @mor detection liter-
ature (Narasimhan and Jordache [11]) which was also eguithglpresented in Man-
sour and Ellis [6] to handle multivariate systems. Esséntithe individual signifi-
cance leveb’ is reduced or corrected from the overall significance lelpha derived
from the well-known Sidak inequality as:

a’:l—(l—a)% (6)

wherek is the number of key process variables selected to be indludéetermining
if the process or plant is steady or exhibits some level dfastarity where a number
between three (3) and thirty (30) is reasonable. This meaatsat will be smaller
compared tax if kis greater than 1.0 and will result in a larger Student-taaitvalue
for the same number of degrees-of-freedofior an individual signal. The types of
process signals included in the set of key variables shaikbime mix of manipulated
(independent) and controlled (dependent) variables. ofigi strictly speaking, the
k variables should be independent from each other for Equétito be valid, it is a
fair correction for these purposes to at least addressvarilite systems in some way.
Using several key process signals is also useful to ideimtifividual signals which if
always steady when the rest are unsteady, can be an indi¢h#ibits window-length
is too long. Or, if it is always unsteady when the rest aredstemay imply that its
window-length is too short.

For this study, the algorithm is applied to the data in offlbech segments as
demonstrated in the example applications. In these exanthlere is no overlap of the
analyzed time horizons. When the null hypothesis is notteg all of the points in the
time window are deemed to be at steady-state. An alternagipécation for real-time
systems is to process the data online as new measureméves @his moving horizon
approach would enable real-time monitoring of the procesadiness. Additionally,
multiple horizons could be processed at each samplingviaites determine the degree
of steadiness over multiple time periods.

2Two-step meaning that there is first an estimation run whastiopms parameterization and reconcili-
ation before the optimization run similar to “bias-updgtitin on-line model-based control applications.
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3. Resultsand Discussion

The testing of this SSD algorithm entails simulating a psscgignal with a mean
of zero(u = 0) and superimposed white-noiéa ) generated from the code found in
Ahrens et. al. [12] with a standard-deviation specified 89 &, = 1) for simplicity.

A window-size of 120 samples or time-periods is used wheeestdmpling instant
is assumed to be one-minute in duration simulating two-hairreal-time. Three
disturbance model structures were used to generate thee@@nces or time-series
which are a stationary periodic cycle withsin(t) # 0, a non-stationary drift with
mt # 0 and a stationary stochastic process WRMA (p = 1,q = 1). For the first two
disturbance models involvingn the value value is varied from 0.001, 0.01, 0.1, 1.0
and 10.0 in order to assess the sensitivity to the signabtee ratio which also varies
from 0.001 to 10.0 given the fixed choice@f = 1. For the auto-regressive part of the
model found below in Equation 7, thg parameter is varied within the set of 0, -0.7,
0.9, -0.95 and -0.99 and for the moving-average parBihgarameter is fixed at either
Oor-0.5.

1+ 912_1
1+@z1

wherez 1 represents the lagging of one sampling instant in the pasfy Approaches
1.0 then this becomes the most basic form of a non-statiqgrragess (random walk)
and when bothp, and 8; are zero then it reduces again to Equation 1. In order to
confirm the standard-deviation estimate of the white-no®e= 1) with m= 0, and
6, = 0, the window-lengths are varied to 120, 1200, 12000 and @4@fding 1.208,
1.034, 1.010 and 0.999 respectively. Since these estimatedose to 1.0, this con-
firms that the driving force for the simulation is sufficigndlistributed as random error.
It also verifies that the calculation of white-noise stadddeviation found in Equation
4 is acceptable as well. Tables 1 and 2 show the simulatedbilites in parentheses
at two different Student-t critical values of 2.0 and 3.0eMalue 2.0 typically repre-
sents a 5% significance level and 3.0 is typical of a 0.5% ggmice. Table 1 using
msin(t) is purposely chosen to be a stationary but cyclic determiirtigpe of process
to show that the SSD algorithm has no reason to reject thehgplbthesis that the sys-
tem is at steady-state although the signal is oscillatirtgiwithe window but it is not
static. All of the cells of Table 1 are sufficiently close td®%nd 99% confirming that
the process signal is statistically stationary.

Using the same random seed as for Table 1, Table 2 exhibisathe results for the
first row as in Table 1. The non-stationary disturbance isdet to be unsteady when
m is greater than 0.01 with only white-noise (second colummg as colored-noise
(ARMA(1,1)) is added unsteady-state operation is detectexhfzs low as 0.001 when
the colored-noise also tends to approach non-statior(@ifityand sixth columns).

The sensitivity of the SSD to identify unsteady-state digtiwhen a drift is injected
into the signal response has been demonstrated at lealsefathite and colored-noise
series considered here. As the drift component magnitucteases it gets easier for
the technique to declare the system unsteady (low probabflibeing steady) espe-
cially whenmt is consistently near or above the standard-deviation ofutiee-noise
driving force. This is easily seen in Figure 1 where bots 1 (solid line) andn=0.1
(dotted line) are plotted with only white-noise. The largeexhibits an obvious drift

X =mt+ U+ 7
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Figure 1: Plot of 10sin(t), 0.01t, and 01t over the window witm = 120.

Table 1: Simulated probability (%) results withsin(t) using two Student-t critical values.

m 91 =0.0 91 =-05 91 =-05 91 =-05 91 =-05

¢ =00 @=-07 @g=-09 @=-0.95 @ =-0.99
0.0 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (97.8)10
0.001  (95.8,100) (95.8,100) (95.8,100) (95.0,100) (906)
0.01 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (916)1
0.1 (96.7,100) (96.7,100) (95.8,100) (95.0,100) (96.0)10
1.0 (97.5,100) (97.5,100) (95.8,100) (97.5,100) (96.0)10
10.0 (100,100) (100,100) (100,100) (99.2,100) (99.2,100)
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Table 2: Simulated probability (%) results witht using two Student-t critical values.

m 9120.0 912 -05 912 -05 912 -05 912 -05
@ =0.0 n=-07 @=-09 @=-095 @ =-0.99

0.0 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (97.8)10
0.001  (95.8,100) (95.8,100.0) (95.0,99.2) (87.5,97.5) 7.%B9.2)
0.01  (92.5,98.3) (58.3,81.7) (38.5,52.5) (31.7,40.8) .3&%.7)

0.1 (20.0,26.7) (0.1,10.8) (0.0,10.0) (0.0,10.8) (0.®19
1.0 (0.0,00) (0.0,0.1) (0.0,0.1)  (0.0,0.1) (0.0,17.5)
100  (0.1,0.1) (0.0,0.0) (0.0,00)  (0.0,0.1) (0.0,16.3)

up whereas the smallarhas a more subtle trend up and cannot be declared as unsteady

although it does have a lower probability than= 0.001 in column two indicating an
increased residual violation of the stationarity assuomtirhe term 10sin(t) (second
dotted line) is also plotted to not only show it is stationag/confirmed in Table 1
but also to highlight the slight but noticeable drift up oétbkolid line as the sample
number increases. And expectantly, when the window-leisgtitreased from 120 to
480 samples probabilities of (49.0,70.0) are obtained owoirig that the signal is non-
stationary though requiring more time to statisticallyedetthat it is unsteady. This
is not an unusual observation given that it is well-accepied subtle perturbations
require more sample or data points.

3.1. Multivariate Case Sudy

A simple model of a jacketed continuously stirred tank rea(€STR) is used to
demonstrate the SSD algorithm. The problem has been usedsasly in the litera-
ture to benchmark new techniques because of some uniquactéidstics that pose a
variety of desirable challenges [13]. One challenge is thdinearity of the system
due to the exothermic first-order reaction. The exponedgalendency on tempera-
ture causes order of magnitude differences in reactios dgpending on the reactor
temperature. Above a jacket temperature of approxima@yi3 the CSTR enters a
sustained oscillation of temperature run-away followeddaction quenching and con-
centration build-up ofA. Once the concentratiddy reaches a sufficiently high level
the temperature runs away, leading to the next cycle. Fercidse study, the CSTR is
perturbed by adjusting the jacket temperaflirbut does not become unstable as men-
tioned above. The nonlinear model demonstrates that thea&gidithm is applicable
to multivariate processes with strong nonlinearities.

The CSTR model consists of a feed stream of fuag concentratiofa; and inlet
temperaturd;. The reactor is well mixed and produces prodBietith an exothermic
first-order reaction. The reactor temperature and extergaxtion are controlled by
manipulating the cooling jacket temperatevith negligible dynamics for the speed
of cooling jacket temperature response. The variablehfst@STR model are shown
in Table 3 and the equations are shown in Table 4.



Table 3: CSTR Parameters and Variables

Manipulated variable

Symbol Description Nominal  Units
Value

Te Jacket Temperature 300 K

State variables

Symbol Description Nominal  Units
Value

Ca Concentration of A in the reactor &7 %

T Temperature of the reactor 328 K

Other parameters

Symbol Description Value Units

Cai Concentration oA in the feed 10 ”?"3}

Cp Heat capacity of the liquid 239 k%—K

Ea Activation energy 284 ol

AH, Energy of reaction 8L.0* =

ko Pre-exponential factor .2e10 Fﬁ%

R Universal gas constant Bl451 moJ| K

p Mixture density 100® %

Ti Feed temperature 35D K

q Feed flow rate 100 mol

\% Volume of the reactor 100

Table 4: CSTR Model Equations

Component balance ok
V% =qCa, — qCa — koCaV exp(_ %)
Energy balance

PCV LT = pCpd(Ti — T) + AH koCaV exp(— & ) + UA(Te — T)
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Figure 2: Diagram of the exothermic CSTR with first-orderctem kinetics.

CaCs

The process simulation records data every 1-second ovéalditoe of 40-minutes
for a total of 2400 samples. A step test determined that the ttonstant is ap-
proximately 1-minute foCa and 45-seconds foF. According to the guidance pro-
vided earlier, a window of 3 to 5 time constants (using the iamt time constant)
is selected for analyzing the probability that the procasatisteady-state. In this
case, a time window of 5 time constants or 5-minutes is sadecEach time win-
dow includes 300 samples for bo@a andT. In the prior examples, the Student-t
critical values of 20 and 30 were used to determine the steady-state probabilities.
Because this system involves more than one variable, thekSiequality suggests
Student-t values of .25 and 304 for the 5% and %% significance levels, respec-
tively. The cooling temperature is initially lowered frond@ to 29X for a period
of 10-minutes followed by a step back to 30@r another period of 10-minutes. Fol-
lowing these step changeg, begins oscillating with a period of 3-seconds for 7-
minutes before returning to the constant value ofK3@0r the remainder of the total
40-minutes. Random stafe (w,) = 0.005 0 (wr) = 0.05) and measurement noise
(0(vc,) =0.02,0(vr) =0.2) are added at each sample point after the equations in
Table 4 are integrated forward in time as shown in Equation 8.

Xt +1] = f (X[t],ut]) + w (8a)

ylt] = g(x{t}, ult) +v (8b)

with x]t] andy[t] being the state and measurement vectors, respectivehofo€a and
T. The vectow[t] includes all exogenous inputs ani the cycle index. Functionk
andg are the nonlinear state and measurement functionsgrgitmplifying to (Ca T)T
for this example problem.

Windows 2, 7, and 8 have the highest probability90%) of being at steady-state
for bothCs and T above the minimum probability limit. Windows 4, 5, and 6 have
eitherCa or T greater than a 90% probability to a 5% significance levelt(fitsnber

10
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Figure 3: Simulated operational data for the CSTR. Periddssteady behavior in reactor concentration
and temperature are observed due to steps and sinusoidabflons in the jacket cooling temperature.

Table 5: Simulated probability (%) results with two Studentitical values. The first probability represents
a 5% significance level while the second represent&%Gignificance.

Index  Time Period Probability aZs  Probability of T
at Steady-State  at Steady-State

1 0 to 5-minutes (56.7,80.0) (17.7,100.0)

2 5 to 10-minutes (99.3,100.0) (100.0,100,0)

3 10 to 15-minutes (28.3,39.7) (37.3,100.0)

4 15to 20-minutes  (86.7,96.3) (100,0,100.0)

5 20 to 25-minutes  (97.7,100.0) (61.3,100.0)

6 2510 30-minutes  (54.3,78.3) (100.0,100,0)

7 30 to 35-minutes  (99.3,100.0) (100.0,100.0)

8 35to 40-minutes  (97.7,100.0) (100.0,100.0)
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in the parenthesis). The other two time windows (1 and 3 lldee deemed to not be
at steady-state because b@thandT fail to meet a minimum probability of steadiness
(<90%). These results are also visually consistent with Figure thaswo largest
step changes occur in time windows 1 and 3.

3.2. Scale-up to Large-Scale and Complex Systems

One concern with any data analysis technique is the scate-large-scale sys-
tems. In this regard, the CPU time requirements for this Si§bBrithm are negligible
because it only involves calculation of a mean, slope, aaldstrd deviation for each
measurement. For practical purposes, it may be reasoraligldct an appropriate
cut-off probability value such as 90% for instance and/dei@ an average of the two
low and high probability estimates (corresponding to thredmd high Student-t critical
values) and apply the cut-off to this average. This is lefamsmplementation issue
where it can be used to assist in the tuning or aligning of thentjtative results with
the qualitative expectations. Although the details calweatleased, an application us-
ing this SSD technique been implemented in a fully integtaiérefinery where SSD
was considered to be a key plant, process or performanasitodi KP1) and was used
to help isolate temporal root causes to process incidents.

An additional application of this technique is in identifice of historical data
windows that are at steady-state. This identification isulse select data sets for pa-
rameter identification with steady-state mathematical @ledwhen processing large
amounts of data, this identification typically yields mamyalwindows that are deemed
acceptable for parameter estimation. Taking similar detsfer the parameter fit gen-
erally leads to poor results because there is not enougldoatisity to fit parameters
in nonlinear relationships. One example of this is that latkemperature variabil-
ity in a reactor data does not allow activation energies tiadbatified because of the
co-linear relationship with the pre-exponential factoshewn in Table 4. If the tem-
perature data varies, a tighter confidence interval can terma for bothE, andkp.
The steady-state identification procedure shown in thikwan be applied to an op-
timization problem with an objective to obtain the best tiei number of diverse data
sets from a potential candidate pool.

Even though this technique is applied in time blocks, it dan be applied in a time
shifted approach to signal plant steadiness or unsteadimes continual and real-time
basis. For example, if a new sample is obtained every sedbadyast 3 to 5 time
constants could be used to determine the probability treaptiocess is currently at
steady-state.

4. Conclusion

Presented in this work is a straightforward technique tedtifely detect inter-
vals or windows of steady-state operation within contirsjprocesses subject to noise.
This detection is critical in applications that rely on steastate models for data rec-
onciliation, drift detection, and fault detection. The@iighm has minimal computing
requirements involving statistical estimates and has omty settings to specify i.e.,
the window-length and the Student-t critical value. Mdtiate systems can be easily
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handled by including several key process signals and adjusite critical Student-t
statistic accordingly. Finally, the benefit of detectingidows of steady-state behavior
in a plant with multiple interacting major processing urids example can be useful
even by itself without executing on-line steady-state nwd@ monitoring or opti-
mization.
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