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Abstract

Detecting windows or intervals of when a continuous processis operating in a state
of steadiness is useful especially when steady-state models are being used to optimize
the process or plant on-line or in real-time. The term steady-state implies that the
process is operating around some stable point or within somestationary region where
it must be assumed that the accumulation or rate-of-change of material, energy and
momentum is statistically insignificant or negligible. This new approach is to assume
the null-hypothesis that the process is stationary about its mean subject to independent
and identically distributed random error or shocks (white-noise) with the alternative-
hypothesis that it is non-stationary with a detectable and deterministic slope, trend,
bias or drift. The drift profile would be typical of a time-varying inventory or holdup of
material with imbalanced flows or even an unexpected leak indicating that the process
signal is not steady. A probability of being steady or at least stationary over the window
is computed by performing a residual Student-t test using the estimated mean of the
process signal without any drift and the estimated standard-deviation of the underlying
white-noise driving force. There are essentially two settings or options for the method
which are the window-length and the Student-t critical value and can be easily tuned
for each process signal that are included in the multivariate detection strategy.

Keywords: steady-state, stationarity, random walk with drift, white-noise, hypothesis
testing, student-t.

1. Introduction1

If the process or plant being monitored (passively) and/or optimized (actively) is2

not at steady-state then applying a steady-state model at that time is obviously not3
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suitable given that significant accumulation or rate-of-change of material, energy and4

momentum violates one of the principle assumptions of the model. Applying the right5

model at the wrong time will result in more Type I and II errors(false positives, false6

negatives), biased or inaccurate parameter estimates and ultimately inappropriate de-7

cisions to be made on how to move the system to be more economical, efficient and8

effective. Serious violation of the steady-state assumption may result in unstable op-9

eration when on-line, real-time or closed-loop optimization is applied. Thus, correctly10

detecting intervals, horizons or windows when steady-state models can most likely be11

used is an important application. Knowing accurately in time when some processes12

are steady and others are unsteady can also help to identify and diagnosis potentially13

coincident abnormal events or symptoms noticed in other areas of the plant such as14

light-ends flaring, low-pressure steam venting and contaminated liquid effluents.15

The subject of this work is to highlight a straightforward technique to detect pe-16

riods of time in the immediate past and present when the continuous process appears17

to be running in a state of steady-ness or is stationary from which it is reasonable to18

assume that steady-state models can be implemented for the very near future. Previ-19

ous work in the area of steady-state detection (SSD) is summarized by Mhamdi et.20

al. [1] as (a) performing a Student-t test on a linear regressed slope over the time21

window, (b) performing a Student-t test on two recently computed means with pooled22

standard-deviations from two adjacent windows and (c) performing an F-test on two23

recently computed standard-deviations either from two adjacent windows or from the24

same window but using two different filtered means. Examplesof (a) can be found in25

Holly et. al. [2] and Bethea and Rhinehart [3], examples of (b) in Narasimhan et. al.26

[4] and Holly et. al. [2] and examples of (c) in Cao and Rhinehart [5] and Mansour27

and Ellis [6] using pre-specified exponentially-weighted filters with an interesting re-28

cursive window-based version found in Kim et. al. [7]. The method of Mhamdi et.29

al. [1] is somewhat similar to (a) except that it uses more sophisticated basis func-30

tions implemented in wavelet theory instead of employing a slope, trend, bias or drift31

component used here and as such is more difficult to apply.32

Most industrial implementations of SSD use a form of (b) known as the mathe-33

matical theory of evidence (Narasimhan et. al. [4]) usuallywith another Student-t34

test on the residuals of the raw signal minus its mean dividedby its standard-deviation35

computed over the number of data values in the window. Unfortunately, the mean and36

standard-deviation computed by these methods are not corrected for the drift compo-37

nent as is done in this SSD algorithm below. Hence, the other methods are biased (less38

accurate) and require more adjustment to minimize Type I andII errors. Although39

these techniques are easy to understand and implement, it iswell-known that they re-40

quire substantial and subjective tuning or calibration knowing intervals of when the41

plant is possibly at steady-state (Campos et. al. [8]) and isa perceived drawback.42

In terms of computational expense, recursive techniques can significantly reduce the43

computing load but since the eighties with mainframes as thesupervisory computers44

and now with multi-core application servers this is not an issue to consider further es-45

pecially for the SSD algorithm described here. The SSD algorithm uses insignificant46

CPU time because it only involves calculation of a mean, standard deviation, and slope.47

The SSD algorithm presented in this work is also window-based and utilizes the48

Student-t test to determine if the difference between the process signal value minus its49

2



mean is above or below the standard-deviation times its statistical critical value. If less50

than, then that time instant or point is steady and if greaterthan, then it is unsteady51

where the aggregation is computed over the window approximating a probability or52

frequency of being at steady-state. The details of this algorithm are now presented.53

2. Steady-State Detection (SDD) Algorithm54

Our fundamental assumption about the behavior of the underlying system for any55

single process signal is to assume that it may be operating with a non-zero slope mul-56

tiplied by its relative time within the window defined by the following equation forxt57

as:58

xt = mt + µ + at (1)

wherem t is the deterministic drift component,µ is the mean of the hypothetical59

stationary process that will also equal the sample mean or arithmetic average over60

the time window with zero slope, andat is the i.i.d. random error series or white-61

noise sequence with zero mean and standard-deviationσa. Subscriptt is an index62

that indicates the cycle at which the sample is collected while m t refers to the slope63

multiplied by cycle countt. This is well-known as the “random walk with drift” non-64

stationary time-series found in Box and Jenkins [9] which isclearer to see when the65

differencext is first lagged or time-shifted in the immediate pastxt−1 as:66

xt − xt−1 = m+ at −at−1 (2)

whereat −at−1 by definition has an expected value of zero with a standard-deviation67

of 2 σa. This is the simplest type of a non-stationary process and can be used to68

model any process with non-constant accumulation or rate-of-change of material, en-69

ergy and/or momentum. An example would be a process vessel with a holdup or in-70

ventory of material wherem would be non-zero with a net flow in or out of the vessel71

or even an unexpected leak either at the input, output or inside the vessel itself due72

to a loss of integrity in the system. If it is assumed that any process signal (usually a73

dependent variable such as a temperature, pressure or concentration) included in the74

steady-state detection can accumulate over time, and if this is found to be significant,75

then the process variable can be declared to be unsteady or non-stationary. A similar76

approach was taken by Kelly [10] to model the non-stationarydisturbances caused77

by either the input or output flow, depending on if the output or input flows are the78

manipulated variables, of a surge vessel. A pure random walktime-series was chosen79

to aid in the tuning of PI controllers for improved level control known as level-flow80

smoothing. However, in this case the random walk with drift is used to hypothetically81

model potentially sustained accumulation or rate-of-change of holdup or level of the82

vessel over the window. This can be equally applied to any process variable which can83

accumulate other phenomenon such as energy or momentum withrespect to time.84

1Unbiased if the noise is i.i.d. else if there are stationary auto-regressive (AR) components (Box and
Jenkins [9]) then a biased estimate will result.
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By first differencingxt it is possible to unbiasedly1estimate the slopem of the drift85

componentmt as the arithmetic average ofxt − xt−1 with n sampled values ofxt in86

the window which are equally spaced in time i.e., given a uniform sampling period or87

cycle. Slope in the linear regression can also be obtained byminimizing the sum of88

squared errors of the difference between the measured and model values, but this was89

not applied here. The slope calculation is the arithmetic mean of the first difference in90

xt and is essentially a discrete-time or first-difference calculation of the first-derivative91

or rate-of-change ofxt with respect to time
(

∂x
∂ t

)

and as suchm is the direct calculation92

or estimate of this accumulation. Obviously if there is detectable accumulation then the93

signal is by definition unsteady given that
(

∂x
∂ t

)

is found to be non-zero. The intercept94

µ is obtained by subtracting the termm t from xt when Equation 1 is rearranged to95

xt −mt = µ + at:96

µ =
1
n

(

n

∑
t=1

xt −m
n

∑
i=1

t

)

(3)

Now that there is an estimate of the drift slopem and the meanµ of xt , the standard-97

deviation of the white-noise shocks can be estimated as:98

σa =

√

1
n−2

n

∑
t=1

(xt −mt− µ)2 (4)

At this point along with a specified Student-t critical or threshold value at a particu-99

lar significance levelα and degrees-of-freedomn, all of the necessary information is100

available to test the null-hypothesis that the process signal is steady or is stationary101

aboutµ :102

i f |xt − µ | ≤ tcrit σa then yt = 1 else yt = 0 (5)

The sum ofyt divided byn is a fraction related to the likelihood that the null hypothesis103

is false. This is the fraction of time within the window that the process or plant is104

deemed to be at steady-state. A fraction of 0.95 or 95% would indicate that 5% of the105

points are not at steady-state for example. A suitable cut-off determination of whether106

the process is deemed to be at steady-state depends on the application. A Student-t test107

could also be applied on the estimated slopem of the drift component used in previous108

work (see point (a) above) but this was not found to be as accurate as computing the109

probability over the window i.e., performingn drift-corrected residual Student-t tests110

and taking the arithmetic average ofyt .111

Before proceeding to the results and discussion section, there are two issues that112

need to be addressed and they are the window-length or size and how to manage mul-113

tivariate processes. The guideline for the window-length is to set it at some number114

of samples equivalent to greater than say three (3) to five (5)times the time-constant115

of the process variable divided by the sampling time-period. This implies that some116

prior knowledge of the process is necessary but it is more qualitative than quantitative.117

For example, if the time-constant is circa 30-minutes (the time to reach around 63%118

or
(

1− e−1
)

of its steady-state gain value for a first-order process) andthe sampling119

takes place every 2-minutes then the window-size should be between 3x30
2 = 45 to120
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5x30
2 = 75 number of samples in the window. This is a typical approachused in indus-121

try for two-step2on-line optimization installations. The window-length should not be122

too short because the process will not have time to reach somelevel of stability and the123

steady-state probability will always be low precluding theuse of steady-state models124

to help improve the profitability and performance of the plant. Too long, and multi-125

ple intervals of unsteady-state behavior within the longerwindow may conclude that126

the signal is steady when in fact it is not. These are well-known effects referred to as127

low/high frequency aliasing and under/over-sampling. Another possible short-coming128

of this approach is that false indications of steady-state may occur at the peak or valley129

of an oscillating process. With the horizon window centeredover the peak, a slope130

of m = 0 and points within the confidence interval of Equation 5 willresult. In these131

cases, the SSD will indicate periodic acceptance proportional to the frequency of the132

oscillation.133

To manage multiple process signals where collectively theydetermine whether a134

system is steady, the same approach is used as found in the gross-error detection liter-135

ature (Narasimhan and Jordache [11]) which was also equivalently presented in Man-136

sour and Ellis [6] to handle multivariate systems. Essentially, the individual signifi-137

cance levelα ′ is reduced or corrected from the overall significance levelalpha derived138

from the well-known Sidak inequality as:139

α ′ = 1− (1−α)
1
k (6)

wherek is the number of key process variables selected to be included in determining140

if the process or plant is steady or exhibits some level of stationarity where a number141

between three (3) and thirty (30) is reasonable. This means that α ′ will be smaller142

compared toα if k is greater than 1.0 and will result in a larger Student-t critical value143

for the same number of degrees-of-freedomn for an individual signal. The types of144

process signals included in the set of key variables should be some mix of manipulated145

(independent) and controlled (dependent) variables. Although strictly speaking, the146

k variables should be independent from each other for Equation 6 to be valid, it is a147

fair correction for these purposes to at least address multivariate systems in some way.148

Using several key process signals is also useful to identifyindividual signals which if149

always steady when the rest are unsteady, can be an indication that its window-length150

is too long. Or, if it is always unsteady when the rest are steady, may imply that its151

window-length is too short.152

For this study, the algorithm is applied to the data in offlinebatch segments as153

demonstrated in the example applications. In these examples, there is no overlap of the154

analyzed time horizons. When the null hypothesis is not rejected, all of the points in the155

time window are deemed to be at steady-state. An alternativeapplication for real-time156

systems is to process the data online as new measurements arrive. This moving horizon157

approach would enable real-time monitoring of the process steadiness. Additionally,158

multiple horizons could be processed at each sampling interval to determine the degree159

of steadiness over multiple time periods.160

2Two-step meaning that there is first an estimation run which performs parameterization and reconcili-
ation before the optimization run similar to “bias-updating” in on-line model-based control applications.
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3. Results and Discussion161

The testing of this SSD algorithm entails simulating a process signal with a mean162

of zero(µ = 0) and superimposed white-noise(at) generated from the code found in163

Ahrens et. al. [12] with a standard-deviation specified as 1.0 (σa = 1) for simplicity.164

A window-size of 120 samples or time-periods is used where the sampling instant165

is assumed to be one-minute in duration simulating two-hours of real-time. Three166

disturbance model structures were used to generate the datasequences or time-series167

which are a stationary periodic cycle withm sin(t) 6= 0, a non-stationary drift with168

mt 6= 0 and a stationary stochastic process withARMA(p = 1,q = 1). For the first two169

disturbance models involvingm the value value is varied from 0.001, 0.01, 0.1, 1.0170

and 10.0 in order to assess the sensitivity to the signal-to-noise ratio which also varies171

from 0.001 to 10.0 given the fixed choice ofσa = 1. For the auto-regressive part of the172

model found below in Equation 7, theφ1 parameter is varied within the set of 0, -0.7,173

0.9, -0.95 and -0.99 and for the moving-average part theθ1 parameter is fixed at either174

0 or -0.5.175

xt = mt + µ +
1+ θ1z−1

1+ φ1z−1 at (7)

wherez−1 represents the lagging of one sampling instant in the past. Asφ1 approaches176

1.0 then this becomes the most basic form of a non-stationaryprocess (random walk)177

and when bothφ1 andθ1 are zero then it reduces again to Equation 1. In order to178

confirm the standard-deviation estimate of the white-noise(σa = 1) with m = 0, and179

θ1 = 0, the window-lengths are varied to 120, 1200, 12000 and 24000 yielding 1.208,180

1.034, 1.010 and 0.999 respectively. Since these estimatesare close to 1.0, this con-181

firms that the driving force for the simulation is sufficiently distributed as random error.182

It also verifies that the calculation of white-noise standard-deviation found in Equation183

4 is acceptable as well. Tables 1 and 2 show the simulated probabilities in parentheses184

at two different Student-t critical values of 2.0 and 3.0. The value 2.0 typically repre-185

sents a 5% significance level and 3.0 is typical of a 0.5% significance. Table 1 using186

m sin(t) is purposely chosen to be a stationary but cyclic deterministic type of process187

to show that the SSD algorithm has no reason to reject the null-hypothesis that the sys-188

tem is at steady-state although the signal is oscillating within the window but it is not189

static. All of the cells of Table 1 are sufficiently close to 95% and 99% confirming that190

the process signal is statistically stationary.191

Using the same random seed as for Table 1, Table 2 exhibits thesame results for the192

first row as in Table 1. The non-stationary disturbance is detected to be unsteady when193

m is greater than 0.01 with only white-noise (second column) and as colored-noise194

(ARMA(1,1)) is added unsteady-state operation is detected form as low as 0.001 when195

the colored-noise also tends to approach non-stationarity(fifth and sixth columns).196

The sensitivity of the SSD to identify unsteady-state activity when a drift is injected197

into the signal response has been demonstrated at least for the white and colored-noise198

series considered here. As the drift component magnitude increases it gets easier for199

the technique to declare the system unsteady (low probability of being steady) espe-200

cially whenmt is consistently near or above the standard-deviation of thewhite-noise201

driving force. This is easily seen in Figure 1 where bothm = 1 (solid line) andm = 0.1202

(dotted line) are plotted with only white-noise. The largerm exhibits an obvious drift203
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Figure 1: Plot of 1.0sin(t), 0.01t, and 0.1t over the window withn = 120.

Table 1: Simulated probability (%) results withm sin(t) using two Student-t critical values.

m θ1 = 0.0
φ1 = 0.0

θ1 = −0.5
φ1 = −0.7

θ1 = −0.5
φ1 = −0.9

θ1 = −0.5
φ1 = −0.95

θ1 = −0.5
φ1 = −0.99

0.0 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (97.5,100)
0.001 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (97.5,100)
0.01 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (97.5,100)
0.1 (96.7,100) (96.7,100) (95.8,100) (95.0,100) (96.7,100)
1.0 (97.5,100) (97.5,100) (95.8,100) (97.5,100) (96.7,100)
10.0 (100,100) (100,100) (100,100) (99.2,100) (99.2,100)
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Table 2: Simulated probability (%) results withmt using two Student-t critical values.

m θ1 = 0.0
φ1 = 0.0

θ1 = −0.5
φ1 = −0.7

θ1 = −0.5
φ1 = −0.9

θ1 = −0.5
φ1 = −0.95

θ1 = −0.5
φ1 = −0.99

0.0 (95.8,100) (95.8,100) (95.8,100) (95.0,100) (97.5,100)
0.001 (95.8,100) (95.8,100.0) (95.0,99.2) (87.5,97.5) (77.5,89.2)
0.01 (92.5,98.3) (58.3,81.7) (38.5,52.5) (31.7,40.8) (23.3,36.7)
0.1 (20.0,26.7) (0.1,10.8) (0.0,10.0) (0.0,10.8) (0.0,19.2)
1.0 (0.0,0.0) (0.0,0.1) (0.0,0.1) (0.0,0.1) (0.0,17.5)
10.0 (0.1,0.1) (0.0,0.0) (0.0,0.0) (0.0,0.1) (0.0,16.3)

up whereas the smallerm has a more subtle trend up and cannot be declared as unsteady204

although it does have a lower probability thanm = 0.001 in column two indicating an205

increased residual violation of the stationarity assumption. The term 1.0sin(t) (second206

dotted line) is also plotted to not only show it is stationaryas confirmed in Table 1207

but also to highlight the slight but noticeable drift up of the solid line as the sample208

number increases. And expectantly, when the window-lengthis increased from 120 to209

480 samples probabilities of (49.0,70.0) are obtained confirming that the signal is non-210

stationary though requiring more time to statistically detect that it is unsteady. This211

is not an unusual observation given that it is well-acceptedthat subtle perturbations212

require more sample or data points.213

3.1. Multivariate Case Study214

A simple model of a jacketed continuously stirred tank reactor (CSTR) is used to215

demonstrate the SSD algorithm. The problem has been used extensively in the litera-216

ture to benchmark new techniques because of some unique characteristics that pose a217

variety of desirable challenges [13]. One challenge is the nonlinearity of the system218

due to the exothermic first-order reaction. The exponentialdependency on tempera-219

ture causes order of magnitude differences in reaction rates depending on the reactor220

temperature. Above a jacket temperature of approximately 305 K, the CSTR enters a221

sustained oscillation of temperature run-away followed byreaction quenching and con-222

centration build-up ofA. Once the concentrationCA reaches a sufficiently high level223

the temperature runs away, leading to the next cycle. For this case study, the CSTR is224

perturbed by adjusting the jacket temperatureTc but does not become unstable as men-225

tioned above. The nonlinear model demonstrates that the SSDalgorithm is applicable226

to multivariate processes with strong nonlinearities.227

The CSTR model consists of a feed stream of pureA at concentrationCA,i and inlet228

temperatureTi. The reactor is well mixed and produces productB with an exothermic229

first-order reaction. The reactor temperature and extent ofreaction are controlled by230

manipulating the cooling jacket temperatureTc with negligible dynamics for the speed231

of cooling jacket temperature response. The variables for this CSTR model are shown232

in Table 3 and the equations are shown in Table 4.233
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Table 3: CSTR Parameters and Variables

Manipulated variable

Symbol Description Nominal
Value

Units

Tc Jacket Temperature 300 K

State variables

Symbol Description Nominal
Value

Units

CA Concentration of A in the reactor 0.877 mol
m3

T Temperature of the reactor 324.48 K

Other parameters

Symbol Description Value Units

CA,i Concentration ofA in the feed 1.0 mol
m3

Cp Heat capacity of the liquid 0.239 J
kg K

Ea Activation energy 7.28e4 J
mol

∆Hr Energy of reaction 5x104 J
mol

k0 Pre-exponential factor 7.2e10 mol
m3 min

R Universal gas constant 8.31451 J
mol K

ρ Mixture density 1000.0 kg
m3

Ti Feed temperature 350.0 K
q Feed flow rate 100.0 mol

min
V Volume of the reactor 100.0 m3

Table 4: CSTR Model Equations

Component balance onA
V ∂CA

∂ t = qCA,i −qCA − k0CAV exp
(

− E
RT

)

Energy balance
ρCpV ∂T

∂ t = ρCpq(Ti −T )+ ∆Hrk0CAV exp
(

− E
RT

)

+UA(Tc −T )
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Figure 2: Diagram of the exothermic CSTR with first-order reaction kinetics.

The process simulation records data every 1-second over a total time of 40-minutes234

for a total of 2400 samples. A step test determined that the time constant is ap-235

proximately 1-minute forCA and 45-seconds forT . According to the guidance pro-236

vided earlier, a window of 3 to 5 time constants (using the dominant time constant)237

is selected for analyzing the probability that the process is at steady-state. In this238

case, a time window of 5 time constants or 5-minutes is selected. Each time win-239

dow includes 300 samples for bothCA andT . In the prior examples, the Student-t240

critical values of 2.0 and 3.0 were used to determine the steady-state probabilities.241

Because this system involves more than one variable, the Sidak inequality suggests242

Student-t values of 2.25 and 3.04 for the 5% and 0.5% significance levels, respec-243

tively. The cooling temperature is initially lowered from 300K to 290K for a period244

of 10-minutes followed by a step back to 300K for another period of 10-minutes. Fol-245

lowing these step changes,Tc begins oscillating with a period of 3-seconds for 7-246

minutes before returning to the constant value of 300K for the remainder of the total247

40-minutes. Random state(σ (ωCA) = 0.005,σ (ωT ) = 0.05) and measurement noise248

(σ (νCA) = 0.02,σ (νT ) = 0.2) are added at each sample point after the equations in249

Table 4 are integrated forward in time as shown in Equation 8.250

x[t +1] = f (x[t],u[t])+ ω (8a)
251

y[t] = g(x[t],u[t])+ ν (8b)

with x[t] andy[t] being the state and measurement vectors, respectively, forbothCA and252

T . The vectoru[t] includes all exogenous inputs andt is the cycle index. Functionsf253

andg are the nonlinear state and measurement functions withg simplifying to(CA T )T
254

for this example problem.255

Windows 2, 7, and 8 have the highest probability(> 90%) of being at steady-state256

for bothCA andT above the minimum probability limit. Windows 4, 5, and 6 have257

eitherCA or T greater than a 90% probability to a 5% significance level (first number258
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Figure 3: Simulated operational data for the CSTR. Periods of unsteady behavior in reactor concentration
and temperature are observed due to steps and sinusoidal fluctuations in the jacket cooling temperature.

Table 5: Simulated probability (%) results with two Student-t critical values. The first probability represents
a 5% significance level while the second represents a 0.5% significance.

Index Time Period Probability ofCA

at Steady-State
Probability ofT
at Steady-State

1 0 to 5-minutes (56.7,80.0) (17.7,100.0)
2 5 to 10-minutes (99.3,100.0) (100.0,100,0)
3 10 to 15-minutes (28.3,39.7) (37.3,100.0)
4 15 to 20-minutes (86.7,96.3) (100,0,100.0)
5 20 to 25-minutes (97.7,100.0) (61.3,100.0)
6 25 to 30-minutes (54.3,78.3) (100.0,100,0)
7 30 to 35-minutes (99.3,100.0) (100.0,100.0)
8 35 to 40-minutes (97.7,100.0) (100.0,100.0)
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in the parenthesis). The other two time windows (1 and 3 bolded) are deemed to not be259

at steady-state because bothCA andT fail to meet a minimum probability of steadiness260

(≤ 90%). These results are also visually consistent with Figure 3 asthe two largest261

step changes occur in time windows 1 and 3.262

3.2. Scale-up to Large-Scale and Complex Systems263

One concern with any data analysis technique is the scale-upto large-scale sys-264

tems. In this regard, the CPU time requirements for this SSD algorithm are negligible265

because it only involves calculation of a mean, slope, and standard deviation for each266

measurement. For practical purposes, it may be reasonable to select an appropriate267

cut-off probability value such as 90% for instance and/or totake an average of the two268

low and high probability estimates (corresponding to the low and high Student-t critical269

values) and apply the cut-off to this average. This is left asan implementation issue270

where it can be used to assist in the tuning or aligning of the quantitative results with271

the qualitative expectations. Although the details cannotbe released, an application us-272

ing this SSD technique been implemented in a fully integrated oil-refinery where SSD273

was considered to be a key plant, process or performance indicator (KPI) and was used274

to help isolate temporal root causes to process incidents.275

An additional application of this technique is in identification of historical data276

windows that are at steady-state. This identification is useful to select data sets for pa-277

rameter identification with steady-state mathematical models. When processing large278

amounts of data, this identification typically yields many data windows that are deemed279

acceptable for parameter estimation. Taking similar data sets for the parameter fit gen-280

erally leads to poor results because there is not enough datadiversity to fit parameters281

in nonlinear relationships. One example of this is that lackof temperature variabil-282

ity in a reactor data does not allow activation energies to beidentified because of the283

co-linear relationship with the pre-exponential factor asshown in Table 4. If the tem-284

perature data varies, a tighter confidence interval can be obtained for bothEa andk0.285

The steady-state identification procedure shown in this work can be applied to an op-286

timization problem with an objective to obtain the best limited number of diverse data287

sets from a potential candidate pool.288

Even though this technique is applied in time blocks, it can also be applied in a time289

shifted approach to signal plant steadiness or unsteadiness on a continual and real-time290

basis. For example, if a new sample is obtained every second,the past 3 to 5 time291

constants could be used to determine the probability that the process is currently at292

steady-state.293

4. Conclusion294

Presented in this work is a straightforward technique to effectively detect inter-295

vals or windows of steady-state operation within continuous processes subject to noise.296

This detection is critical in applications that rely on steady-state models for data rec-297

onciliation, drift detection, and fault detection. The algorithm has minimal computing298

requirements involving statistical estimates and has onlytwo settings to specify i.e.,299

the window-length and the Student-t critical value. Multivariate systems can be easily300
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handled by including several key process signals and adjusting the critical Student-t301

statistic accordingly. Finally, the benefit of detecting windows of steady-state behavior302

in a plant with multiple interacting major processing unitsfor example can be useful303

even by itself without executing on-line steady-state models for monitoring or opti-304

mization.305
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