Improved Load Following of a Boiler with Advanced Process Control

Energy Future

* "Of one thing we can be sure: energy will be more challenging and more important in the future. Will you, and your business, be ready?"

> --Peter Schwartz Chairman Global Business Network

- DOE 25 yr. Energy Forecast

 - US Electricity demand ↑40%
- Effects of Increased Energy Costs
 - Reduced profits
 - Decline of sales of energy-intensive products.
 - Loss of competitiveness

Load Following

- Why Load Follow?
 - Accommodate Alt.Energy
 - Increased Demand
 - Future Cost is Unsure
 - Increased Regulation
 - Climate Change
 - Ex: Australia
 - Peak Energy Costs

Diagram Courtesy NREL http://www.nrel.gov/docs/fy11osti/51579.pdf

Peak Time

- Time of Day Energy Costs
 - Produce own electricity for peak time
 - Peak energy: Up to 2x cost

Application for Petrochemicals

- Compensate cost with production during peak hours
 - Increase for non-peak hours
 - Decrease for peak hours
 - Make money by decrease production?
 - Possibly decrease capital cost

Control System Developments

- Typically based on:
 - Operator Knowledge
 - Safe
 - Meet Requirements
 - Successful
 - Perceived Limitations
 - Challenge assumptions
 - Optimize everything

Special Controls

- Most processes have unique operating conditions and requirements
- Ex: Boiler for steam/energy production
 - Load change at specified rate
 - Wear and tear
 - Emissions

Model

- Model Source
 - Operational knowledge from
 - Literature values
 - Heat transfer equations
 - Material and energy balances
- Model Form
 - Differential and Algebraic Equations (DAEs)
 - Combined Empirical and First Principles forms

Nonlinear Model Predictive Control

- Trajectory tracking
- Other constraints can be specified
 - Rate of TemperatureChange
 - Emissions, Costs,Process unit life, etc.

Nonlinear Model Predictive Control

- Effective over entire range of interest
 - Load Following
 - Large Disturbances
 - Steady State
 - Transient
- Large-scale problems
 - Sparse NLP solvers
 - SimultaneousSolution Approach

$$\min_{u} J(x, u, \Delta u)$$

$$s.t. 0 = f(\dot{x}, x, u)$$

$$0 = g(x, u)$$

$$0 < h(x, u)$$

PID Controller

- SIMPLE
 - Easy to Use
- Effective for:
 - Steady state
 - Small Disturbances
- Ineffective
 - Load Cycling
 - Frequently Saturated
 - Violated Rate Constraints

PID Start-Up

PID Set Point Change

PID Disturbance

NLC Start Up

NLC Disturbance

NLC Set Point Change

Comparison of Set Point Changes

PID Control

Nonlinear Control

Model-Based Controller

- Challenges restrictions by driving to actual process constraints
 - Optimized load changes
 - i.e. Faster/slower, boiler life
- Explicitly Targeted Constraints

Future Work

- Forecasting:
 - Energy availability
 - Time of day pricing
 - Peak power demands
- Energy storage
 - Optimize design and operation
 - Meet peak demand with lower base-load