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Outline

» Description of SOFC Power Generation

» Spivey Model of SOFC
o Ability to model:
* Thermal stress indicators
* Full Plant (prereformer, ejector, SOFC stack)
» Constrained Nonlinear 1%t Principles Model Predictive
Control
o Uses full Spivey model
o Sufficiently fast solution times to be used for control

» Conclusion




Objective

Perform load-following with tubular solid oxide fuel cells
while operating within thermal stress indicator constraints
using the full nonlinear model.

- The rigorous fuel cell model accounts for the dynamic
effects of load following /start ups/ shut downs on fuel cell
reliability.

- Model predictive control based on this model is used to
control operating conditions within the key thermal stress
indicator limits

- Successful constraint of thermal stress indicator would
reduce or eliminate microcracking in the EEA, improving
reliability




Description of SOFC Technology
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Tubular SOFC Operation
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Electricity is primarily produced through H, oxidation. CO oxidation also occurs.
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Methane is internally reformed giving
operating temperatures from 600-1000°C.



SOFC MODEL
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SOFC Model
» Based on Spivey’s Model

o Spivey’s model was based on Campanari’s model
* Improvements over Campanari
 Radial gradient calculation of the EEA versus lumped temperature
* Entire plant - prereformer, ejector, and SOFC stack
o This research uses the entire model for real time nonlinear
model predictive control
- APMonitor Software
* Solved simultaneously and dynamically
* Fast solution times




SOFC Performance and Operation
Variables




SOFC Discretization- 2D Axial and Radial

Solid Element States:
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Temperatures, Molar Flows, Current, and Intermediate Variables calculated for each
radial element for both dynamic and steady state operation.




SOFC 1°T Principles Equations

Electrochemical Model
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Model solved simultaneously and
dynamically using APMonitor software

Energy Conservation Model
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Nonlinear Model Predictive Control with
Full Spivey Model
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Model Predictive Control

» Solution Method
o APMonitor

o Solved Simultaneously and Dynamically (vs sequentially)

* Orthogonal collocation on finite elements technique converts partial
differential equations to algebraic equations

* Model is not only discretized axially and radially, but also by time

4 Manipulated Variables (fuel temperature & pressure, voltage, and system
pressure)

349 State Variables

 Study used a 10 time step predictive horizon (500 second horizon)
3490 state variables
40 DOF

* This method solves much more efficiently bringing solution times for each
cycle to less than 1 minute, typically 30 seconds or less
Dynamic open loop simulations required 2.5 days of CPU time in a MATLAB simulink

environment vs. less than 2 minutes of CPU time for the same simulation solved
simultaneously in APMonitor




Model Predictive Control Structure
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Measurements or estimates of the thermal stress indicators are used
directly as controlled variables.




Practical Implementation

e Using a rigorous 15t principles model to control
an SOFC has been unrealistic previously due
computing limitations. Solution times for a 45 . T . ‘
complex model was too long for useful real time
model predictive control.
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e This research has been able to reach solutions
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e Because arigorous model is used, thermal
stress indicators can be predicted much more
accurately and quickly to allow control steps to
be taken to ensure operation below the thermal s . ‘ . - .
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Full Rigorous Model Predictive Control
Load Following Study
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* Power set point tracking during load change
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e Constrained control of Max Radial Gradient
below 3000 K/m |
e Operation does occur briefly above 3000 o k Aras
K/m for a few seconds, but then settles out “ .
below the constraint, protecting the SOFC
e Radial gradient temperatures only possible £
with rigorous model e
* Further tuning would prevent deviation N
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Full Rigorous Model Predictive Control
Load Following Study
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e Constrained control of minimum cell +os0|
temperature 1020

e Fresh fuel is what is driving the minimum cell
temperature (temperature at inlet) lower

e Figure shows successful constraint at 1000 K 80|
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e Constrained control of steam to carbon ratio
e Literature shows that a minimum of 2:1 steam to
carbon is necessary to prevent carbon deposition
During the load change, the ratio drops slightly
below 2 for 1-2 solution cycles but then
successfully constrains the ratio above 2 I
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Full Rigorous Model Predictive Control

Load Following Study

e Constrained control of fuel utilization 0.05}

e Successfully maintained above 0.8 -
* Relates to minimum cell temperatureas :
it pertains to the amount of fuel at the : 085
inlet 2
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Conclusion

o Real time model predictive control can improve the reliability of
SOFCs

o Qperators can understand the impact of a setpoint changes long into
the future on thermal stress indicators and take proactive action

o The full nonlinear model is more accurate at predicting the dynamic
effects of a setpoint change on thermal stress indicators, such as
during a start up or a shut down

o Efficient solution times of the full nonlinear model can enable
realistic training situations for new operators

o Optimization can now take place where operation at constraint can
now occur without sacrificing reliability

o Future Work: Application to an in service SOFC and improved tuning
of the controller.

* This approach to efficient solutions to complex models for MPC can also
be applied to other fields
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