
  

 

Abstract—Degradation of Solid Oxide Fuel Cells (SOFCs) 

can be minimized by maintaining reliability parameters during 

load changes. These reliability parameters are critical to 

maintain power generation efficiency over an extended life of 

the SOFC. For SOFCs to be commercially viable, the life must 

exceed 20,000 hours for load following applications. This is not 

yet achieved because transient stresses damage the fuel cell and 

degrade the performance over time. This study relates the 

development of a dynamic model for SOFC systems in order to 

predict optimal manipulated variable moves along a prediction 

horizon. The model consists of hundreds of states and 

parameters that permit tracking of a realistic response. 

Previously, this detailed model was too computationally 

intensive to run in parallel with the SOFC process. The 

contribution of this paper is an application study to enable a 

large-scale simulation model to be used in Model Predictive 

Control (MPC) without simplification. Such a technology 

permits real time calculation of controller moves while loads 

are followed during operation.  The contribution demonstrates 

the assumptions and approach necessary to provide real-time 

calculations for optimal predictive control operations using a 

rigorous model of the SOFC process. Large-scale process 

models are rarely employed in real-time control because of the 

prohibitive computational expense necessary to complete the 

calculations within the specified cycle time. An efficient model 

based predictive controller reduces operational fluctuations 

related to the startup and shutdown conditions, without 

exceeding reliability limits in the cells. 

I. INTRODUCTION 

A Solid Oxide Fuel Cell (SOFC) is an electrochemical 
conversion device that produces electricity directly from 
oxidizing a fuel and uses an oxide or ceramic electrolyte 
material. Advantages of this class of fuel cells include high 
efficiency, long-term stability, fuel flexibility, low emissions, 
and relatively low cost. A remaining challenge is the 
reliability of the SOFC over a long period of time for 
applications that may include thermal cycling. The thermal 
cycling is caused by changes including start-up, shut-down, 
and load following.  Cell damage is avoided by constraining 
minimum cell temperature and radial temperature gradients. 
The commercial requirement for reliability of stationary 
SOFC applications is in excess of 40,000 hours while the 
requirement for transient SOFC operations is in excess of 
20,000 hours [1] [2].  These targets have not been achieved 
on a commercial scale. Several approaches are currently 
being researched to address the reliability limitations of 
SOFCs to extend the life and minimize the damage caused by 
load changes. One approach is to use model-based methods 
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to better predict and identify reliability parameters that lead 
to degradation. If the models can be computed in parallel to 
the process, this gives a real-time view of the internal stresses 
and temperature gradients that are causing this loss of 
efficiency. Some of the most sophisticated and accurate 
models have not been applied to real-time simulation or 
control because of the computational burden required to 
complete the calculations within a specified cycle time. One 
method of simplification is to linearize or reduce the model 
complexity. 

Model Predictive Control (MPC) with linear models is 
the most prevalent approach used for advanced multivariable 
control of industrial systems. In many cases, fundamental 
principles are not used in the development of these linear 
empirical models. Basic science such as material or energy 
balances or reaction kinetic pathways have the potential to 
greatly improve the performance of the controller over a 
wider range of operating conditions. However, relatively few 
of these controllers have been applied in practice because of 
the difficulty of constructing and solving an accurate model. 
The focus of this paper is on ways to apply more 
sophisticated and detailed models in real-time applications. In 
particular, this is demonstrated with an application to a well-
known energy systems topic of SOFCs. Although this paper 
is specific to this application, the principles of obtaining and 
solving a rigorous model in real-time control applications are 
discussed for applications to other systems as well. 

II. SOFC BACKGROUND AND LITERATURE REVIEW 

A. SOFC Background  

The cross-section of a tubular solid oxide fuel cell 
consists of an inner cathode layer, a middle electrolyte layer, 
and an outer anode layer known as the Electrode-Electrolyte 
Assembly (EEA).  Cells are connected in series with an 
interconnect to build voltage in the system.  This series of 
connected fuel cells is called a fuel cell stack. The 
interconnect joins the anode of one cell to the cathode of 
another.  In the inner tube, oxygen is ionized at the cathode 
and oxygen ions migrate through the electrolyte where they 
oxidize hydrogen at the anode-electrolyte interface.  This 
reaction releases two electrons that flow through a load back 
to the cathode as well as generates heat and forms water.  It is 
necessary for SOFC’s to operate at temperatures in excess of 
500⁰C in order for the cathode to be ion conductive.  In 
addition, high temperature is required to achieve the 
necessary ion transport through the electrolyte for efficient 
SOFC operation.    

Heat is generated by the oxidation of the hydrogen 
reaction occurring at the anode electrolyte interface.   The 
outer fuel side of the cell is a mixture of processed fuel and 
fresh fuel.  Fuel sources are categorized into two types, 
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primary and secondary fuel.  The primary fuel comes from 
larger hydrocarbons that have been reformed by a 
prereformer into carbon monoxide, hydrogen, and carbon 
dioxide.  The secondary fuel comes from fuel that has already 
been processed and is then recycled back to the ejector to be 
mixed with the primary fuel and reintroduced to the fuel cell.  
Further reformation reactions at the surface of the anode 
remove the hydrogen atoms from methane to form additional 
hydrogen gas.  The hydrogen is then oxidized to water in the 
fuel cell.  A ten volume discretization over 1.5 meters was 
used to model the tubular SOFC [3]. 

 

Figure 1.  Simplified diagram of a solid oxide fuel cell based power system.  

Primary and recycled gases (secondary fuel) are mixed in the ejector.  
Methane and other hydrocarbons are reformed into hydrogen and carbon 

dioxide in the prereformer.  Hydrogen is oxidized to water at the anode of 

the solid oxide fuel cell releasing two electrons per reaction which are 

directed through a load. 
 

Controlling key reliability parameters is necessary for 
increased fuel cell lifetimes.  Minimum cell temperature, 
maximum radial temperature gradient, steam to carbon ratio, 
and fuel utilization are key reliability parameters that this 
work seeks to constrain in a non-linear model based 
controller.   

The minimum cell temperature occurs at the fuel cell inlet. 
This is where primary fresh fuel first encounters the fuel cell.   
If frequent temperature cycling occurs below the designated 
minimum fuel cell temperature 1000 K, micro cracking 
occurs and shortens the fuel cell lifespan. Maintaining cell 
temperatures above the 1000 K minimum cell temperature 
constraint will improve fuel cell reliability. 

Another reliability parameter is the maximum radial 
temperature gradient.  This is caused by the temperature 
difference between the lower temperature of the anode side 
gas-fuel mixture and the hotter temperature on the cathode 
side gases.  The axial location for maximum radial 
temperature gradient to occur on the fuel cell is on the inlet 
where the lower temperature fresh fuel has been combined 
with recycled fuel. Spivey’s model used a nominal radial 
gradient of 2250 K/m [3] which is the temperature difference 
between the electrolyte and the anode.  The highest radial 
gradient occurs between the electrolyte and the anode and 
places these two layers in tension because of expansion of the 
cathode.  This makes the thin electrolyte layer susceptible to 
micro cracking and delamination inhibiting the oxygen ion 

transport pathway.  Damaged electrolyte decreases the 
performance and lifespan of the fuel cell.  This work seeks to 
constrain maximum radial gradients below 3000 K/m in 
SOFC control scenarios. 

The ratio of steam to carbon must also be maintained to 
prevent carbon deposition from occurring.  If enough steam is 
present, hydrogen production is the more favorable reforming 
reaction.  Lack of steam can lead to coking reactions which 
can deposit carbon on the anode.  Carbon deposition can 
prevent further reformation of methane into hydrogen on the 
anode surface.  This work seeks to constrain steam to carbon 
ratio on a mole basis above 2:1 in control scenarios. 

In addition, fuel utilization is an economic parameter but 
also has an indirect impact on reliability.  From an economic 
perspective, increased fuel utilization lowers fuel pressure 
which leads to a lower fresh fuel requirement.  This is due to 
the increased fuel cell temperature at the anode where further 
reformation reactions occur more favorably and more fuel is 
utilized. This also impacts reliability.  If lower fuel utilization 
is acceptable, increased power generation can occur because 
increased fuel rates can be used, but the minimum cell 
temperature will drop due to lower fuel temperature caused 
by the additional fresh fuel. This decreases hydrogen 
production because of less reformation reactions taking place 
at the anode. Fuel and air utilization can indicate fuel or air 
starvation.  If too much fuel is used and not enough oxygen 
ions are at the reaction site, air starvation can occur and vice 
versa.  This can lead to oxidation occurring within the 
electrodes and cause cell degradation [3].  This work seeks to 
constrain fuel utilization above 80% in control scenarios. As 
indicated by the above reliability parameters, this type of 
control is highly non linear and interrelated.  The purpose of 
this study is to control and optimize these non-linear 
relationships by solving a rigorous model in real-time fast 
enough to enable acceptable control for actual operation. 

B. Model Predictive Control of SOFC Systems 

Previous research on advanced control of SOFC systems 
commonly involves control of power output, voltage, 
temperature, steam-to-carbon ratio, or fuel/air utilization [4] 
[5] [6]. Often, power and temperature control are not 
included in the same control objective but may be in separate 
Single Input Single Output (SISO) loops [7] [8] [9]. Urata 
developed a Multiple Input Single Output (MISO) 
temperature controller to minimize 1D channel cell 
temperature variation along a planar cell; the controller 
adjusts fuel and air temperatures and air flow [10].  In 2009, 
Mueller demonstrated improved control of voltage and cell 
temperature variation along with faster load following using a 
Multiple Input Multiple Output (MIMO) Linear Quadratic 
Regulator (LQR) controller compared to a multi-loop SISO 
controller; results showed further work was needed to control 
mean temperature [11].  In 2011, Spivey developed a 
dynamic, first-principles tubular SOFC model and 
implemented linear MIMO Model Predictive Control (MPC) 
to control power output, fuel utilization, steam-to-carbon 
ratio, minimum cell temperature, and maximum radial 
thermal gradient [12]. The absolute and delta temperatures 
which are critical for extending SOFC lifetime along with 
steam to carbon ratio, fuel utilization, air utilization were held 
within tight constraints while power loads were met. Control 

 



  

objectives involved load setpoint tracking and load regulatory 
control subject to fuel quality disturbances. 

The present work utilizes the first-principles SOFC 
simulator from Spivey to develop a Nonlinear Model 
Predictive Controller (NMPC) capable of solving in real-
time. The rigorous model is composed of Partial Differential 
and Algebraic Equations (PDAE) that include detailed sub-
models of electrochemistry, heat transfer, reaction kinetics, 
and recycle dynamics. A general form of the model equations 
is shown in Equation 1 where x represents the differential 
model states that are discretized in time (t) and space (r and 
z). Additionally, y represents the algebraic model states, and 
u the fixed inputs or adjustable parameters. These variables 
are posed in open-equation format as PDAEs (f), algebraic 
constraints (g), or inequality constraints (h). 
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No simplification or model reduction is used in 
calculating the model response in the NMPC. In addition, the 
combination of electrochemistry, reaction kinetics, and heat 
transfer creates a stiff system of equations due to the 
separation of time-scales. While the approach of utilizing 
large-scale and rigorous models in real-time control is not 
new, the application to SOFCs is an innovation because of 
the nature of the stiff equations, spatial discretization in 2 
dimensions, and modeling of multiple physical phenomena.  

III. NOVEL APPROACH  

The contribution of this paper is to apply a rigorous 
mathematical model of a SOFC in real-time control and 
optimization. This extends the former study by using the full 
nonlinear and dynamic model instead of the linearized 
dynamic version [3]. A number of challenges were addressed 
to make the real-time application possible including 
algorithmic modifications to allow the large-scale and 
nonlinear system to solve reliably in a deterministic time-
frame. 

Simultaneous solution of the model equations and 
objective function improves the solution time over a shooting 
or sequential approach. The simultaneous method requires 
discretization in time as well as in spatial dimensions. Instead 
of forward time-stepping to calculate the model states, the 
model equations in Equation 1 are converted to a Nonlinear 
Programming (NLP) problem shown in Equation 2 and 
solved with a sparse interior point (e.g. IPOPT) or active set 
solver (e.g. APOPT). 
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The reformulation of the model equations is 
accomplished by posing additional equations that relate the 
differentials to the state variables. Orthogonal collocation on 
finite elements is used in this study to convert the differential 
system into a purely algebraic set of equations. The model at 
each time step has 349 variables (x, y) and 4 manipulated 

variables (u). When discretized over time, the number of 
variables is multiplied by the number of time steps projected 
into the future. For example, with a horizon of 100 time steps 
the problem has a total of 34,900 variables and 400 degrees 
of freedom. 

IV. NON-LINEAR MODEL BASED CONTROLLER  

Spivey’s modified model was solved for steady-state, 
dynamic, and closed loop control solutions. Dynamic and 
steady state solutions were validated using steady state and 
dynamic solutions generated by Spivey in his work. Steady 
state temperature profiles of the anode, cathode, electrolyte, 
and fuel in the axial direction of the fuel cell were evaluated.  
Total power response to fuel pressure moves were the basis 
for dynamic validation.  A controller based on this model was 
then implemented to simulate load following scenarios.  The 
SOFC model was then solved using the techniques 
mentioned in the previous section with a 10 step predictive 
horizon of 500 secs.   A time basis of 1000 secs was used to 
compare responses to setpoint changes. The controller 
achieved power level setpoints by moving all designated 
manipulated variables.  In addition, this model achieved 
desired setpoints while constraining key reliability 
parameters for tubular SOFCs and minimizing any 
deviations. These are the key reliability parameters that were 
identified and constrained:  minimum cell temperature, 
maximum radial temperature gradient, steam to carbon ratio, 
and fuel utilization.   

A. Steady State and Dynamic Model Validation 

Figure 2 shows the steady state temperature profile 
solutions to the model.  These results were obtained at 
simulated operating conditions of 0.63 V per cell, fuel 
pressure of 8.5 bar, fuel temperature of 373 K, and a system 
pressure of 3.5 bar. Power achieved for a single cell was 
158.6 watts and a cell mass flow rate of 0.071 kg/s. 

 

Figure 2. EEA steady-state temperature profile showing the spatial 
discretization along one of the tubes. The maximum temperatures occur 

near 120 cm as the reaction rates begin to decrease and less heat is 

generated. Both minimum temperatures and temperature gradients are 
critical to maintain SOFC reliability. 

 

 Dynamics validation was carried out by performing 

staircase steps with manipulated variables and observing the 

responses of the control variables.  Figure 3 shows the total 

power response of the entire system to a set of staircase 

changes in fuel pressure. Table 1 shows the fuel pressure 

moves associated with the staircase test.  



  

The simultaneous solving environment offers significant 

advantages in model development and testing, one of which 

is the speed at which solutions were obtained.  Spivey’s 

model solved in the Simulink environment required 

approximately 2.5 days (3600 min) of CPU time to solve 

dynamic open loop solutions to manipulated variable 

changes whereas the results found in Figure 3 using 

simultaneous solution techniques required less than 2 

minutes of CPU time. 
 

 

Figure 3. Total power response to step changes in the fuel pressure. Note 

that fast and slow responses are evident in the trend indicating a large 
separation in time-scales of reaction kinetics (fast) and heat transfer (slow). 

 

TABLE I.  TABLE OF MANIPULATED VARIABLE SETPOINTS 

 

B. Model Based Controller Results 

Load following is a necessary attribute of a transient 
SOFC powered system.  Practical applications of SOFC 
systems require the ability to change loads quickly with 
minimal effect on reliability. Real-time non-linear 
fundamental model-based control allows for larger ranges of 
operation within reliability parameter constraints.  These 
model based controllers can also be tuned to minimize time 
to setpoint. 

Figure 4 shows the total power response to a change from 
260 kW high setpoint dead band to a 273 kW high setpoint 
dead band.  The controller was able to achieve operation 
within the setpoint dead band in approximately four solution 
cycles.  

 

Figure 4. Load change from 260 kW to 272 kW. The time is shifted to align 
with the current time horizon (0 to 500 sec) while also displaying the 

controller history (-1100 to 0 sec) and the prior setpoint dead band. 

 

Figure 5 shows the minimum cell temperature response to 

the change in total power setpoint.  The controller is able to 

constrain the minimum cell temperature as additional fresh 

fuel is added to achieve the new setpoint.  Additional fresh 

fuel lowers the temperature of the fuel cell at the inlet. 

 
 

 
Figure 5. Closed loop minimum cell temperature control.  The minimum 
cell temperature begins to decrease at the -900 sec mark which is consistent 

with the total power setpoint change. Additional fresh fuel decreases the 

overall temperature of the fuel entering the inlet of the fuel cell. The lowest 
temperature on the fuel cell occurs at this location. 

 

Figure 6 shows the maximum radial gradient.  As 

indicated, the initial setpoint change increases the fuel 

pressure and subsequently, the amount of fresh fuel added.  

This causes the temperature at the anode to decrease and 

drives up the radial temperature gradient at the inlet.  The 

controller recognizes this and seeks to minimize the 

deviation.  The controller is able to bring the maximum 

radial gradient under the constraint in 1-2 solution cycles.  

Further tuning of the controller can decrease deviation time 

and potentially eliminate the deviation altogether.  As the 

fuel cell increases in temperature, the gradient decreases.  As 

more time passes, the controller is able to maintain 

Staircase Test: Manipulated Variable Setpoints 

Time (s) 
Cell 

Voltage (V) 

Fuel 

Pressure 

(bar) 

Fuel 

Temperatu

re (K) 

System 

Pressure 

(bar) 

0-99 0.63 8 373 3.5 

100-449 0.63 9 373 3.5 

450-750 0.63 10 373 3.5 

751-999 0.63 9 373 3.5 

1000-1249 0.63 8 373 3.5 

1250-1599 0.63 7 373 3.5 

1600-1799 0.63 6 373 3.5 

1800-2200 0.63 7 373 3.5 

2201-2500 0.63 8 373 3.5 



  

maximum radial gradient well below the designated 

constraint.   

 

 
Figure 6. Closed loop maximum radial temperature gradient control. The 
negative 900 sec mark indicates the total power setpoint change.  The max 

radial gradient does break the 3000 K/m constraint for  approximately 1-2 

solution cycles, but then brings it down under the constraint, protecting the 
fuel cell.  Figure 6 also shows maintained radial gradient control under the 

constraint. 

 

The steam to carbon ratio in Figure 7 shows a large swing 

in response to the total power setpoint change.  A deviation 

is shown occurring near the -900 sec mark for 3-4 solution 

cycles which is consistent with that change.  The controller 

is able to recognize this deviation and bring the steam to 

carbon ratio back to 2:1 within 3-4 solution cycles.   Further 

tuning would also be beneficial in reducing and eliminating 

deviation times. 

 

 
Figure 7. Closed loop steam to carbon ratio control.  Control of steam to 

carbon ratio above 2:1 is necessary to keep carbon deposition from 
occurring on the anode of the fuel cell.  A deviation occurs near the -900 sec 

point which is during the total power setpoint change.  The deviation lasts 

for 3-4 solution cycles and the controller is able to bring the ratio above the 
constraint. 

 

Figure 8 shows the fuel utilization response to a change in 

setpoint.  The -1100 sec point is representative of the fuel 

utilization at 260 kW of power generation.  Total power 

setpoint is increased at the -900 sec mark.  As stated 

previously, additional fresh fuel is added and drives down 

the temperature of the fuel cell.  The amount of reformation 

reactions decrease and fuel utilization decreases (see Figure 

8).  The controller is able to maintain fuel utilization above 

80%.  

 

 
 

Figure 8. Closed loop fuel utilization control.  Fuel utilization is maintained 
above 0.8.  Although this parameter has an indirect impact on reliability, the 

predicative horizon shows that fuel utilization can be maintained above the 

constraint. 
 

Figure 9 shows CPU calculation time for each control 
cycle.  Each cycle calculates a 10 time step predictive horizon 
of 500 secs.  Typical CPU calculation time varied between 
15-45 secs per cycle.  A real-time application would set the 
cycle time longer than the anticipated controller time.  
Setpoint changes require longer solution times as observed at 
cycle 30. There is an additional spike in solution time at cycle 
75.  The reason remains unclear and could involve fuel 
utilization approaching the low limit at that point.  

 

Figure 9. CPU times for each of the controller cycles. A rise in the CPU 

time is evident at cycle 30 when a setpoint adjustment was made. The 
controller recalculated optimal horizon moves every 10 secs yet the CPU 

time was typically between 15-45 secs. In an actual application, the cycle 

time of the controller would be set longer than the anticipated controller 
calculation time. 

V. DISCUSSION  

The plots above show the primary reliability parameters 

utilized in a nonlinear first principles based model controller 

that is solved in under one minute. Predictive horizons 

solved real-time in parallel with the actual system can 

provide insight to operators in understanding how the system 

will behave in response to a setpoint change long into the 



  

future.  This knowledge can enable operators to take 

proactive action on those predictions to prevent undesirable 

operating conditions.   

In addition, rigorous models placed in this simultaneous 

solving environment can be used for operator and technician 

training to simulate real-time scenarios.  Using linear models 

for training scenarios such as start-up, shut-down, and unit 

upsets is not adequate due to the shortened range of accuracy 

on these types of models.  Rigorous non-linear fundamental 

models contain much more information and can provide the 

dynamics necessary for a realistic simulation.  In particular, 

the simultaneous solving techniques do not simplify and 

reduce the accuracy of the model in any way, but give the 

added advantage of significantly shortened solution times. 

Maintaining the known system reliability parameters within 

constraints would enable potential discovery of unknown 

contributing factors that also lead to degradation. The time 

required to achieve desired power levels due to load changes 

can now be optimized and pushed to constraint limits with 

reduced risk of affecting reliability i.e. minimal or no time 

spent in the region where SOFC degradation occurs.  

The simultaneous solution generating techniques are not 

limited to SOFC models alone.  Models from other areas can 

also use the same techniques to find dynamic solutions to 

manipulated variable changes as well as be used for model 

predictive control and real-time optimization.  This 

simultaneous solution generating environment is designed to 

handle multiple sets of PDAEs and can generally solve 

systems of up to 10000 variables in one minute or less. 

VI. CONCLUSION 

The main contributions of this study are: 

 

1.  The demonstration of a non-linear, rigorous, 

fundamental principles based solid oxide fuel cell 

model solved in under 1 minute per cycle. 

2. The demonstration of NMPC that constrains critical 

SOFC reliability parameters and still achieves power 

level setpoints.   

3. The demonstration of a large-scale model containing 

multiple PDAE equations that can be successfully 

and reliably manipulated and solved with a 

simultaneous approach. 

 

Real-time non-linear model predictive control can 

significantly improve the reliability of current SOFCs by 

effectively constraining key reliability parameters while 

optimizing an SOFC process to produce the desired power 

level output. A wider range of control can be utilized to 

extend the safe operating limits of an SOFC system and 

enable additional optimization by using simultaneous 

solving techniques on a rigorous non-linear fundamental 

principles based model. 
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