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REAL-TIME ESTIMATION AND CONTROL OFLARGE-SCALE NONLINEAR DAE SYSTEMSPubli
ation No.John David Hedengren, Ph.D.The University of Texas at Austin, 2005Supervisor: Thomas F. EdgarModel-based 
ontrol in
orporates fundamental pro
ess knowledge toa
hieve improved monitoring and 
ontrol performan
e. However, on-line model-based 
ontrol is generally limited to linear models or nonlinear models oflow-dimension. Rigorous models of dynami
 pro
ess are often des
ribed bydi�erential algebrai
 equations (DAEs). Many rigorous DAE models requiretoo mu
h 
omputational e�ort to be implemented in real-time 
ontrol appli-
ations, where 
ontrol 
al
ulations must be performed on-line (i.e. in a fewse
onds). The prin
ipal fo
us of this dissertation is to redu
e the 
omputa-tional requirements for large-s
ale model-based estimation and 
ontrol. Thisobje
tive is a

omplished with a variety of strategies that are 
ombined in ane�e
tive way to meet real-time 
onstraints with limited 
omputing resour
es.The prin
ipal strategies are adaptive storage and retrieval o�-line to enableeÆ
ient on-line 
ontrol, nonlinear DAE model redu
tion, and development ofvi



an expli
it solution to moving horizon estimation (MHE). Both MHE and re-
eeding horizon 
ontrol (RHC) are developed to meet real-time 
onstraints. Insitu adaptive tabulation (ISAT) is used to store and retrieve 
ontrol solutions.In addition to the adaptation for 
ontrol appli
ations, ISAT is developed asa general nonlinear fun
tion approximator and is shown to outperform neuralnetworks in both interpolation and extrapolation. In addition, ISAT is de-signed to handle nonlinear fun
tions with dis
ontinuities or regions that arenot 
ontinuously di�erentiable. With DAE model redu
tion, storage and re-trieval of 
ontrol solutions with ISAT, and the expli
it solution to movinghorizon estimation, real-time nonlinear model predi
tive 
ontrol (NMPC) isfeasible with large-s
ale DAE models.
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Chapter 1Introdu
tion
The dynami
 modeling of 
hemi
al and biologi
al pro
esses, using �rstprin
iples, usually leads to mathemati
al models that are systems of di�eren-tial and algebrai
 equations. Two main 
lasses exist: lumped parameter anddistributed parameter models. The lumped parameter models are mostly sys-tems of di�erential and algebrai
 equations. The di�erential equations stemfrom material and energy balan
es over di�erent �nite 
ontrol volumes, whilethe algebrai
 equations usually des
ribe the physi
al, 
hemi
al, and thermo-dynami
 properties of the system. Often the algebrai
 relations representdynami
 me
hanisms that o

ur in�nitely fast. This time s
ale di�eren
e isused in model redu
tion of rea
tion networks, hen
e redu
ed models for thekineti
s are sometimes DAEs. Fundamental models for distributed parame-ter systems 
onsist of sets of partial, di�erential, and algebrai
 equations. Inthese models, the 
onservation laws are expressed around in�nitesimal 
ontrolvolumes, leading to partial di�erential equations. Using di�erent te
hniques,e.g., the method of lines, these models are approximated as DAEs so they 
anbe numeri
ally solved.The quandary of an engineer who must develop a dynami
 physi
o-1




hemi
al or biologi
al model to use in pro
ess 
ontrol is that there is a verylarge range of possible models that 
an be used, from simple to 
omplex. Ev-ery model in
orporates assumptions that must be made by the modeler, whousually does not know a priori the impa
t of the assumptions on model a

u-ra
y or 
ontrol quality. If the model is too 
omplex (e.g., over 20 states), thenthe 
omputation time for 
ontrol 
al
ulations may be prohibitive, in the rangeof several hours, for a pro
ess that responds with time 
onstants on the orderof several minutes. What is needed is a methodology that allows the mod-eler to use a rigorous model, and imbeds model redu
tion and 
omputationredu
tion into the CAD approa
h, so that time redu
tions by a fa
tor of 100
an be a
hieved, permitting real-time 
al
ulations. Using rigorous models hasbeen a re
ent trend in related �elds, e.g., in pro
ess simulators su
h as HYSYSand in 
omputational 
uid dynami
s software su
h as Fluent. Developing amethodology to use su
h models for pro
ess 
ontrol is the main thrust of thisresear
h.The proposed approa
h 
onsists of unifying four steps in order to 
arryout model-based 
ontrol of DAE systems in real-time (order of several minutesbetween 
ontrol 
hanges):1. di�erential and algebrai
 equation redu
tion (new adaptive approa
h)2. shift 
ontrol 
al
ulations o�ine for eÆ
ient online retrieval, using in situadaptive tabulation (new appli
ations for estimation and 
ontrol)3. expli
it solution to moving horizon state and parameter estimation2



4. expli
it solution to re
eeding horizon 
ontrolThe 
hallenge is to make this approa
h work for DAE systems with hundredsof variables, whi
h has not been done su

essfully before.1.1 DAE Model Redu
tionLarge s
ale �rst prin
iples models 
an 
onsist of hundreds of di�erentialequations and thousands of algebrai
 equations. Solving the di�erential alge-brai
 equations (DAEs) simultaneously in simulation and 
ontrol appli
ations
an pose a numeri
al 
hallenge. Other motivations for model redu
tion arefor storage and retrieval of optimal 
ontrol traje
tories, insight into the modelstru
ture, and analysis of dynami
 degrees of freedom.Nonlinear model redu
tion approa
hes su
h as balan
ed 
ovarian
e ma-tri
es (BCM) and proper orthogonal de
omposition (POD) have been devel-oped to optimally redu
e the number of di�erential states. However, thesemodel redu
tion approa
hes 
annot redu
e the number of algebrai
 equations.Be
ause the algebrai
 equations often greatly outnumber the di�erential states,signi�
ant order redu
tion of the overall model is not a
hieved by POD andBCM, whi
h 
onstru
t a redu
ed model from a linear 
ombination of the orig-inal states. During this transformation, physi
al signi�
an
e of the variablesis lost. In appli
ations it is often desirable or required for a redu
ed model toretain physi
al signi�
an
e of the original variables.Other approa
hes have been suggested for DAE model redu
tion, but3



they generally su�er from poor s
aling to large s
ale problems or extensivemodel 
on�guration [20℄. The proposed te
hnique in this work has the advan-tage of good s
aling for large s
ale problems and no spe
ial model manipu-lation. An added advantage is that the physi
al signi�
an
e of the algebrai
equations is retained. A major fo
us of this work is also in making the modelredu
tion approa
h adaptive in order to a
hieve a spe
i�ed level of a

ura
y
ompared to the orginal model. Being adaptive, the DAE model is redu
edautomati
ally with no prior training simulations.1.2 Storage and RetrievalIn 
ontrol, a group of inputs are used to determine a 
ertain number ofoutputs. If the model is deterministi
, the same set of independent variables(inputs) will always produ
e the same set of dependent variables (outputs).In blo
k diagram form, the inputs (s) enter the system and leave as a set ofout
omes (f) . Sensitivity information may also be optionally available from
Figure 1.1: Blo
k diagram of a deterministi
 
al
ulation of f based on inde-pendent variables s. The blo
k diagram may represent open loop simulationor a simpli�
ation of 
losed loop 
ontrol.the fun
tion evaluation. The sensitivity matrix (A) reveals the amount that f

4




hanges with a small perturbation in s.A = �f�s (1.1)In some appli
ations, it is desirable to store previously 
omputed values of fin order to estimate future values of f without redoing the usual 
al
ulations.In this pro
ess of storage and retrieval it is desirable for the estimated valuesof f to be within some error toleran
e (�tol) of the a
tual f .jf � festj � �tol (1.2)Costs asso
iated with a storage and retrieval method in
lude 
on�guration
osts, CPU time 
osts, and storage 
osts. Con�guration 
osts are largely afun
tion of the degree to whi
h the method is generalized and automated.CPU time 
osts in
lude the 
onstru
tion of a database and the retrieval time.Storage 
osts 
an be a fa
tor if the dimension of s or f is large. Overall,storage and retrieval may be desirable if the following 
onditions exist.1. Retrieval time is mu
h faster than the original 
al
ulation2. The same 
al
ulations are performed repeatedly but with di�erent values3. Real time 
onstraints make the original 
al
ulation infeasible4. The CPU time to generate the database is small 
ompared with retrievalsavings5. Storage 
osts are small 5



Storing and retrieving solutions to sets of nonlinear algebrai
 equations 
anbe a

omplished in many ways. General 
riteria to ben
hmark storage andretrieval methods were given by Pope [66℄.1. The CPU time required to 
reate the store2. The memory required for the store3. Ina

ura
ies in the retrieved mapping (e.g., interpolation errors)4. The CPU time required to retrieve from the store5. The degree to whi
h the te
hnique is generally appli
able and 
an beautomatedAn exhaustive review of all possible storage and retrieval te
hniques is beyondthe s
ope of this work. However, one algorithm, the arti�
ial neural network,has be
ome a popular te
hnique for nonlinear fun
tion approximation. In situadaptive tabulation (ISAT) is then introdu
ed as a new approa
h for storageand retrieval. Ea
h of the algorithms is judged by the ben
hmark 
riteria.Neural nets are networks of adaptable nodes whi
h, through a pro
essof learning from task examples, store knowledge about system behavior andmake it available for later use [5℄. The 
exibility and general appli
ability ofneural nets have been demonstrated by diverse appli
ations a
ross many �eldsof study. Neural nets are an e�e
tive tool to in
orporate histori
al data foruse in state estimation and 
ontrol, although �ltering and pre
onditioning the6



plant data are often time-
onsuming tasks [67℄. One limitation of neural netsis the inability to extrapolate outside the training domain.1.2.1 In Situ Adaptive TabulationIn situ adaptive tabulation (ISAT) is a storage and retrieval methoddeveloped for dire
t numeri
al simulation (DNS) of turbulent 
ombustion
ames [66℄. ISAT dire
tly 
ontrols the approximation error by adding multi-dimensional linear regions to 
hart unmapped state spa
e. In this way, ex-trapolation error is kept within spe
i�ed error toleran
es. Another desirableproperty of ISAT is that the store is 
onstru
ted in situ, without previoustraining simulations or optimizations. For DNS, ISAT repla
es the 
hemi
alrea
tion integrations to greatly enhan
e the speed of the 
al
ulation. As abla
k-box fun
tion approximator, ISAT gradually repla
es the original fun
-tion 
al
ulation by storing and retrieving previous 
omputations (see Figure1.2).
Figure 1.2: ISAT stores solutions and sensitivities (A) to approximate f withmultidimensional pie
ewise linear regions.

7



1.3 Resear
h Obje
tivesThe main obje
tive of this resear
h is to develop te
hniques to applylarge s
ale �rst prin
iples models in real-time 
ontrol. Detailed models of
hemi
al manufa
turing pro
esses often 
onsist of many thousands of DAEs.Solving large s
ale models in 
ontrol appli
ations 
an be 
omputationally in-feasible in real-time. Several strategies have been developed to make optimalapproximations and simpli
ations. Other obje
tives of this resear
h in
lude:1. Optimally redu
e the real-time 
omputational requirements of nonlinearmodel predi
tive 
ontrol (NMPC) for large s
ale models. Many te
h-niques have been proposed to redu
e the on-line requirements of NMPC[22℄ [23℄ [43℄, but are generally limited to single pro
ess units and smallmodels with short 
ontrol horizons.2. Develop adaptive model redu
tion of DAE models to optimally redu
ethe model order. This optimal redu
tion of model order retains the mostimportant dynami
 degrees of freedom of the original model. Developingan adaptive approa
h means that training and appli
ation o

ur simul-taneously in an iterative pro
ess.3. Redu
e the real-time 
omputational requirements of dynami
 state es-timation while retaining the a

ura
y of large s
ale model based stateestimation. Re
eeding horizon state estimation 
an be nearly as 
ompu-tationally demanding as the re
eeding horizon 
ontrol problem. Be
auseboth are solved on-line, both must meet real-time 
y
le requirements.8



4. Propose ISAT as a repla
ement for neural networks as a general nonlinearfun
tion approximator. One of ISAT's limitations was that a sensitivity
al
ulation is required to add a new re
ord to the database. Be
ausemany nonlinear fun
tion 
al
ulations do not in
lude this feature, a mod-i�
ation to the algorithm is ne
essary.1.4 Overview of this DissertationIn this introdu
tory 
hapter, storage and retrieval of open loop simu-lations and 
losed loop 
ontrol is proposed with ISAT. ISAT eÆ
iently storesmultiple linear approximations of a nonlinear solution. It is a generi
 approa
hthat is applied for storage and retrieval for real-time 
ontrol. A brief overviewof neural networks as a 
omparison, a history of ISAT development, and dis-
ussion of DAE model redu
tion provide some ba
kground for this resear
h.Ea
h of the resear
h obje
tives is addressed in following 
hapters.Chapter 2 gives details of the ISAT algorithm modi�ed to adaptivelyapproximate any nonlinear fun
tion. An approximation to the lo
al sensitiv-ity is developed with multivariable linear regression. Unlike neural networks,the ISAT mapping of the nonlinear surfa
e is performed sequentially, therebyavoiding large global optimizations. ISAT and neural networks are dire
tly
ompared in an illustrative example.Chapter 3 introdu
es DAE model redu
tion. Be
ause ISAT storageand retrieval is more eÆ
ient for smaller problems, signi�
ant e�ort has beendevoted to extra
ting optimally redu
ed small and medium s
ale models from9



large s
ale models. In pra
ti
e, many large s
ale models 
an be redu
ed withvery little redu
tion in model a

ura
y. An adaptive DAE model redu
tionapproa
h is proposed with the only tuning parameters being the required vari-able a

ura
y. The adaptive strategy simultaneously re�nes the redu
ed modelstru
ture and model order with an iterative approa
h.Chapter 4 outlines the appli
ation of a 
ombined model redu
tion andstorage and retrieval for real-time NMPC. DAE simulations are stored andretrieved to redu
e real-time 
ontrol requirements by 85 times for the regulator.Appli
ation to state estimation is also outlined. In sequential or hybrid NMPCformulations, the same store 
an be a

essed for state estimation and theregulator, leading to faster training of the ISAT database.Chapter 5 proposes another way to dynami
ally store NMPC solutions.By parameterizing 
ontrol solutions as a fun
tion of 
urrent states, NMPCsolutions 
an be stored and retrieved for sequential, hyrbid, or simultaneoussolution strategies. The proposed storage of optimal 
ontrol is potentially moreeÆ
ient than that of Chapter 4 and requires no 
ustomization of the nonlinearprogramming (NLP) sub-problems. A 
ontrol study involving a 
ontinuouslystirred tank rea
tor (CSTR) model demonstrates an appli
ation of ISAT in
ontrol.Chapter 6 is the estimation 
ounterpart to Chapter 5 on 
ontrol. Chap-ter 5 reveals an expli
it solution pro
edure for 
ontrol to redu
e the 
omputa-tional demands. However, the estimation problem must also be solved at everytime horizon step with a 
omputational load similar to the 
ontrol problem.10



An expli
it solution to the un
onstrained moving horizon estimation problemis proposed. This expli
it solution is able to estimate the 
urrent states, pa-rameters, and input or output disturban
es. For 
onstrained problems, aniterative solution te
hnique is proposed to guarantee 
onvergen
e in solutiontimes that are 
lose to the expli
it solution. By 
ombining the te
hniques of
hapters 5 and 6, model predi
tive estimation and 
ontrol 
an be implementedwithout 
omputational hardware restri
tions.

11



Chapter 2The ISAT Algorithm
Model size, nonlinearity, sparsity, and other fa
tors 
ontribute to theease or diÆ
ulty of obtaining a numeri
al solution in simulation and 
ontrol
al
ulations. Generally, small nonlinear models in the range of 100 states orless are amenable to real-time (�10 se
onds or less 
y
le time) MPC imple-mentation. By redu
ing the model size, larger models 
an be eÆ
iently appliedin real-time 
ontrol appli
ations.Another real-time feasible MPC strategy involves shifting the 
ompu-tational burden o�-line for eÆ
ient on-line retrieval. Storage and retrieval of
ontrol traje
tories 
an eliminate the on-line 
omputational burden of modelpredi
tive 
ontrol. By redu
ing the 
ontrol 
al
ulations to a simple lookup ofpre
omputed solutions, advan
ed 
ontrol 
an be applied to appli
ations thatdo not merit large 
omputational resour
es. The purpose of this 
hapter isto demonstrate the appli
ation of a storage and retrieval algorithm, ISAT,that 
ompa
tly stores the pre
omputed 
ontrol solutions, eÆ
iently a

essesthe values to meet fast sampling 
onstraints, and adaptively builds the storewhen new information is a

essible. In applying ISAT to 
ontrol 
al
ulations,some of the spe
ially tailored features designed for the original appli
ation in12



simulation of rea
ting turbulent 
ows [66℄ had to be modi�ed. However, this
hapter does not a
tually dis
uss the spe
i�
 tailoring to 
ontrol. Instead,the ISAT algorithm is made generi
 to store and retrieve any deterministi
nonlinear fun
tion. Subsequent 
hapters then take this generi
 framework toshow 
ontrol appli
ations. By starting general and be
oming spe
i�
, all ap-pli
ations of ISAT 
an be seen in one 
ontext. Also, this will aide appli
ationto other areas outside of 
ontrol or 
ombustion modeling.Besides generalizing ISAT for a range of appli
ations, a new develop-ment in this 
hapter is a more thorough explanation of the algorithm on astep-by-step basis. This is intended to expose all of the details to fa
ilitatefuture development. One of the biggest limitations to widespread use of ISATas a general nonlinear fun
tion approximator is the requirement of sensitiv-ities. As a new development, sensitivities are estimated from a database ofprevious input-output data using linear regression. A �ltering strategy is ableto determine when suÆ
ient data exist to form a lo
ally a

urate linear ap-proximation.In storage and retrieval, the goal is to retain the a

ura
y of the original
al
ulations while substantially lowering the 
omputational 
osts. Analogies tothe ISAT method exist in many di�erent industries and produ
ts. For example,
omputer systems are built with multi-layers of 
a
hing. One of the reasonsthat Pentium r
 pro
essors are 
onsidered superior to Celeron r
 pro
essors isthe larger amount of 
a
he. This 
a
he stores and a

esses frequently 
om-puted instru
tions and data and thereby improves the pro
essor performan
e.13



As another example, the 
omputer 
an speed-up the e�e
tive download speedfor internet 
onne
tions by storing web pages on the hard disk. When a website is visited again, the page 
an be loaded from the mu
h faster hard disk.The 
ommon 
hara
teristi
s of these speed-up te
hnologies are:1. The �rst time through there is no speed-up. In fa
t, there may be someslow-down asso
iated with building and storing the database.2. Sear
h time is generally fast 
ompared to repeating the operation.3. Storage 
osts for the database are low 
ompared to the 
ost of repeatingthe operations.4. There is a suÆ
ient probability that the operation will be repeated,otherwise the database would serve mainly as an ar
hive.5. The system performan
e in
reases as the database matures and moreoperations are repeated.ISAT is storage and retrieval algorithm for nonlinear fun
tions. Thesenonlinear fun
tions may be time intensive 
omputer simulations, 
al
ulationsthat require real-time results, or for appli
ations that do not merit substantial
ompuational power. As a data-based appli
ation, there is a phase of trainingasso
iated with every appli
ation. As the database matures and retrievalso

ur, ISAT uses a binary tree ar
hite
ture to ensure fast sear
h time. Witha parallel in
rease in data storage 
apa
ity and pro
essor speed in modern
omputers, storage 
osts rarely be
ome a fa
tor in ISAT appli
ations [21℄.14



2.1 Review of ISAT for Turbulent Combustion Simula-tionsDetailed 
ombustion models typi
ally in
lude rea
tants, produ
ts, andrea
tion intermediates that result from hundreds of rea
tions. These rea
tiontimes
ales 
an range from 10�9 to 1 se
ond. Models with a large range oftimes
ales produ
e a sti� system that is diÆ
ult to integrate.Analyti
al and numeri
al tools have been developed to optimally redu
ethe kineti
 models. Some of these tools in
lude sensitivity analysis, prin
ipal
omponent analysis, and spe
ies lumping pro
edures [85℄. Another tool is
omputational singular perturbation (CSP) as a formal way to apply partial-equilibrium approximations on an a priori basis [46℄.Many of the methods for 
reating redu
ed me
hanisms rely on steady-state or partial-equilibrium approximations. However, the redu
ed me
ha-nisms are generally limited to a range of temperature, pressure, and/or spe
ies'
on
entrations, known as the thermo
hemi
al spa
e. Outside of this de�nedspa
e, large errors 
an o

ur. To over
ome this de�
ien
y, Mass and Popeproposed a new method for redu
ing the simulation burden of detailed 
hem-i
al kineti
s based on intrinsi
 low-dimensional manifolds (ILDM) [50℄ [51℄.However, the ILDM method also had the following short
omings [93℄.1. Storage requirements in
rease dramati
ally as the manifold dimensionin
reases.2. The entire thermo
hemi
al spa
e must be 
al
ulated for a �xed dimen-15



sional manifold that 
annot be easily adapted when a higher dimensionalmanifold is required.3. For higher dimensional manifolds, the work to retrieve information is nottrivial.4. There is a la
k of dynami
 error 
ontrol.5. Existen
e, uniqueness, and 
ontinuity of the lower dimensional manifoldare not guaranteed.ILDM was 
reated as a dimension redu
tion te
hnique that gave modestimprovements in 
omputational performan
e. Later, Pope developed in situadaptive tabulation (ISAT) to dire
tly redu
e the 
omputational requirementwithout dimension redu
tion [66℄. The ISAT method 
al
ulates and storesthe data in situ rather than as a prepro
essing step. Thus, only areas of thethermo
hemi
al spa
e that are a

essed are in
luded in the database. Anotherbene�t of ISAT is the addition of error 
ontrol that seeks to limit the retrieveddata is within a spe
i�ed error toleran
e [49℄. In a turbulent 
ame simulation,a redu
tion by a fa
tor of 1000 in the 
omputational e�ort was demonstrated[66℄. Consider how ISAT redu
es 
omputational time of simulating the 
om-plex 
hemistry in turbulent 
ames. Often tens of 
hemi
al spe
ies are linkedtogether by thousands of possible 
hemi
al rea
tion pathways. Coupling the
hemistry, 
onve
tion, and di�usion in a simultateous simulation is often too16




omputationally demanding. As a �rst step, the 
hemistry integration is iso-lated from other physi
al simulations, su
h as mixing, by one of many splittings
hemes. During the 
ourse of the rea
ting 
ow simulation, integration queries
onsisting of initial states (�0), an integration time (�t), and an error toler-an
e (�tol) are sent to ISAT many times. ISAT returns the �nal states (�f) ofthe 
hemistry integration within the spe
i�ed error toleran
e. Sin
e Pope �rst
Figure 2.1: Blo
k diagram of ISAT intera
tion with the rea
ting 
ow simu-lation. ISAT stores and retrieves the thermo
hemi
al properties involved in
hemi
al rea
tions. Be
ause the 
hemistry is de
oupled from the other aspe
tsof the simulation, the �nal 
hemi
al 
ompositions are a unique fun
tion of theinitial 
on
entrations and time.published the ISAT method, there have been numerous appli
ations of ISATin 
ombustion to simulations that were previously quite formidable. Saxenaand Pope [74℄ [75℄ simulated a piloted jet di�usion 
ame of CH4�air with 16spe
ies and 41 rea
tions. A signi�
ant speedup was not reported be
ause the
hemistry 
al
ulations took only 60% of the total CPU time. Other simulationshave shown that up to 99.9% of the CPU 
al
ulation are 
hemistry related,making possible an overall redu
tion of 1000 times [66℄. Shah and Fox [78℄performed 
omputational 
uid dynami
 (CFD) simulations of methane ther-mo
hlorination rea
tors involving 38 spe
ies with a speedup of 138 over dire
t17



integration. They also mentioned that ISAT has been su

essfully applied toa me
hanism with 116 spe
ies and 447 rea
tions, although no further detailswere given. Xu and Pope [92℄ performed another simulation of piloted jet
ames of methane with a parallel implementation of ISAT with an estimatedspeedup of 40.There has been some interest in redu
ing the storage requirements forISAT. Tang and Pope developed an extension that 
ombines ISAT and modelredu
tion through rate-
ontrolled 
onstrained equilibrium, abbreviated ISAT-RCCE [81℄. ISAT-RCCE as applied to a me
hanism with 32 spe
ies and 175 re-a
tions shows a speedup fa
tor of 500 over dire
t integration. Another methodto redu
e storage was proposed by Chen et al. [21℄. The ISAT database isrepla
ed by a neural net, thereby redu
ing the storage requirement from �100MB to �1 MB. Even though there is a savings in memory, there is a loss oferror 
ontrol. The authors mention that by using a neural net, extrapolationwould produ
e unpredi
table results and that ISAT should be used for pointsoutside the training domain.2.2 Details of the ISAT AlgorithmThe ISAT algorithm was originally developed for storage and retrievalof initial value problems (IVPs) involving ordinary di�erential equation (ODE)models (see Figure 2.2). ISAT was originally developed to store and retrieveODE numeri
al integrations. Given the initial states, the �nal states are ap-proximated by a linear extrapolation from a neighboring solution. ISAT at-18



Figure 2.2: ISAT was originally designed to store and retrieve numeri
al inte-grations of 
hemistry evolution in turbulent 
ombustion simulations.tempts to 
ontrol the approximation error by de�ning a region of a

ura
yaround the initial state.A generalized development of the algorithm is ne
essary for the broaderappli
ation as a nonlinear fun
tion approximation tool for 
ases in whi
h gra-dient information is not available. As a nonlinear fun
tion approximator, thepotential appli
ations of ISAT are greatly expanded. In subsequent 
hapters,the ISAT algorithm is applied to IVPs involving di�erential-algebrai
 equa-tions (DAEs) and regulator solutions for nonlinear model predi
tive 
ontrol(NMPC). A generalized form of the ISAT algorithm follows.2.2.1 The ISAT Re
ordThe basi
 unit of the ISAT database is the re
ord. An ISAT re
ord
onsists of the initial states and inputs, the �nal states, a sensitivity matrix,and an ellipsoid of a

ura
y (EOA). The sensitivity 
an be estimated whenit is not expli
itly available from the fun
tion 
al
ulation. The EOA is a19



matrix used to 
ontrol the retrieval error. A distinguishing feature of ISATover other storage and retrieval methods is the automati
 error 
ontrol. ForTable 2.1: Elements of the ISAT re
ord, along with the ve
tor and matrixdimensions ISAT Re
ord Element Symbol and DimensionIndependent variables s 2 RmDependent variables f 2 RnSensitivity A 2 RnxmEllipsoid of a

ura
y M 2 Rmxmoptimal 
ontrol, s is a set of parameters and initial states, f is a set of inputsto the system, A is a sensitivity of the inputs to s, and M is an ellipsoidalregion about s that de�nes the linear approximation limit in order to a
hievea desired a

ura
y.2.2.2 Sear
hing the Re
ords with Binary TreesWhen a

essing the database, the only pie
e of information that isknown is a query ve
tor of initial 
onditions. Ideally, a stored re
ord is re-trieved that minimizes the approximation error. However, the approximationerror 
annot be veri�ed without performing the 
al
ulation of interest, therebynegating the utility of storage and retrieval. Generally, 
loser re
ords produ
elower approximation errors be
ause the linear approximation is lo
ally a

u-rate. The approximation error is sub-optimally minimized by sele
ting a re
ordthat minimizes a measure of 
loseness. In this 
ase the measure of 
loseness is
20



the di�eren
e between the query ve
tor (sq) and stored ve
tor (ss) .x = jsq � ssj (2.1)Sear
hing the ISAT re
ords sequentially would require O(N) operations to
ompletely sear
h the database and �nd the 
losest re
ord. A more eÆ
ientsear
h stru
ture is the binary tree. A balan
ed binary tree requires O(log2(N))operations for lo
ating a re
ord. One of the drawba
ks to binary tree sear
hing
Figure 2.3: Ea
h node of a binary tree 
an either be a leaf or bran
h. Theleaves of the binary tree are individual re
ords of the ISAT database. A bran
h,on the other hand, points to two other nodes. All bran
hes divide until a leafterminates the line.is that the 
losest re
ord is not always sele
ted. To over
ome this de�
ien
y,multiple binary trees are used to in
rease the probability of �nding the 
losestre
ord. The re
ords are equally divided among the binary trees to maintain abalan
e in sear
h times. On
e all of the binary trees are sear
hed, a sequentialsear
h is performed to determine the 
losest re
ord among the ones the binarytrees sele
ted. By adjusting the number of binary trees, an e�e
tive 
ompro-mise is rea
hed between the a

ura
y of the sequential sear
h and the speedof the binary tree sear
h. 21



On
e a 
lose re
ord is lo
ated, ISAT performs one of three s
enarios.These s
enarios in
lude retrieval, growth, and addition. Ea
h of these is de-s
ribed in more detail below.2.2.3 Re
ord RetrievalThe automati
 error 
ontrol de
ides if retrieval is appropriate. Theerror 
ontrol is a

omplished with the ellipsoid of a

ura
y (EOA) with a 
enterbeing the stored start. Another point, sq is within the EOA if xTMxx � �2tol .If the query point is within the EOA then f is estimated (fest) with a linearapproximation using the sensitivity (A).fest = fs + Ax (2.2)
If xTMxx > �2tol then the point sq is outside of the EOA and a retrieval
annot be performed. Even though the query point is not inside the EOA, thelinear approximation may still be within the error toleran
e for fest. The nextstep of the algorithm is to 
he
k the a
tual error.2.2.4 Re
ord GrowthWhen retrieval is not possible, the approximation error is 
omputed. Inorder to 
he
k the a
tual error, an original fun
tion evaluation must determinethe 
orre
t value of f (f = fun
tion(sq)). If jf � festj > �tol, the EOA shouldnot be expanded. Instead a new re
ord should be added to the ISAT database.22



The growth step should be skipped and the algorithm jumps ahead to the ISATaddition phase (see se
tion 2.2.5).If jf � festj � �tol, the EOA 
an be expanded to in
lude sq. This newregion is a minimum volume ellipsoid that in
ludes the new point, sq, and theoriginal EOA. The growth algorithm involves six steps. Ea
h of the steps isdes
ribed �rst in mathemati
al terms and subsequently with a two dimensionalgraphi
al example.2.2.4.1 De�nition of the EOA and growth pointAfter repla
ing �tol with 
 to simplify the notation, the EOA is de�nedby all possible query points that satisfy Equation 2.3.xTMxx � 
2 (2.3)In the two-dimensional example shown in Figure 2.4, an ellipse is 
enteredabout the origin as an estimate to the region of a

ura
y. This ellipse 
angrow as the region of a

ura
y is revealed with further query points.2.2.4.2 Transform the 
oordinates to map the EOA to a unit hy-persphereIn this step a matrix Tyx is 
omputed to map the original x-
oordinatesonto a new y-
oordinate system that transforms the EOA into a unit hyper-sphere. A unit hypersphere is simply a higher-dimensional generalization ofthe three-dimensional sphere with radius of one. The matrix Tyx maps allpoints in x into the y 
oordinates with the relation y = Tyxx. Likewise, the23



Figure 2.4: The 
enter point of the ellipse is the origin. The growth point sqbe
omes xq after the translation and the EOA is de�ned in terms of x.inverse of Tyx (or Txy) maps y into the x 
oordinates with x = T�1yx y = Txyy.The �rst subs
ript letter of T refers to the transformed 
oordinate systemwhile the se
ond subs
ript letter refers to the original 
oordinates.A S
hur de
omposition gives Mx = Qx�xQTx with Qx being a unitarymatrix (QTx = Q�1x ). The square root of the diagonal matrix �x is 
omputedby taking the square root of the individual elements along the diagonal. Thetransformation matrix be
omes Tyx = 
�1�1=2x QTx .It will now be shown that the 
oordinate transform does, in fa
t, trans-form the EOA to a unit hypersphere in the new 
oordinate system. First, theinverse of Tyx is found to beT�1yx = Txy = 
Qx��1=2x (2.4)
24



Making the substitution Txyy = x in the EOA equation gives(
Qx��1=2x y)TMx(
Qx��1=2x y) = 
2 (2.5)Rearranging and substituting Mx = Qx�xQTx gives
2(yT��1=2x QTx )Qx�xQTx (Qx��1=2x y) = 
2 (2.6)The 
2 term 
an
els and QTxQx = I be
ause Qx is a unitary matrix. Thisleaves yT��1=2x �x��1=2x y = 1 (2.7)Finally, be
ause ��1=2x �x��1=2x = I the EOA in transformed spa
e be
omes aunit hypersphere. yT Iy = 1 (2.8)
2.2.4.3 Map the growth point to the transformed 
oordinatesThe same transformation matrix Tyx is used to transform the growthpoint to the new 
oordinates. yq = Tyxxq (2.9)The magnitude and normalized dire
tion of yq are important for subsequent
al
ulations. The magnitude is the Eu
lidean norm of yq.mag (yq) = kyqk2 (2.10)25



Figure 2.5: In a two dimensional example, the y-axes are shown relative tothe x-axes. In the y-axes referen
e frame, the ellipse be
omes a unit 
ir
le
entered at the origin.The normalized dire
tion is simply the ve
tor divided by the magnitude.yn = yqkyqk2 (2.11)
2.2.4.4 Align one of the y-axes with the dire
tion of the growthpointOne of the y-axes must be aligned with the dire
tion of the growthpoint. This is a

omplished by 
omputing an orthonormal basis to yn. Anorthonormal basis is produ
ed by �rst subtra
ting the outer produ
t of ynfrom the identity matrix of appropriate dimension.R = I � ynyTn (2.12)

26



Figure 2.6: The growth point is translated to the new y referen
e frame. Themagnitude is the distan
e between yq and the origin. The normalized ve
toryn has a unit length and points in the dire
tion of yq.A S
hur de
omposition of R givesR = QR�RQTR (2.13)The diagonal matrix �R is equal to the identity matrix ex
ept that one of thediagonal elements is zero. This diagonal element 
orresponds to the axis thatis aligned with yq in the z 
oordinate system. The transformation matrix isthe transpose of the unitary matrix from the S
hur de
omposition (or obtainedmore eÆ
iently by a Householder transformation).Tzy = QTR (2.14)A new 
oordinate system is de�ned by z = Tzyy. Transforming the y 
oordi-nates to the z 
oordinates the EOA be
omes(Tyzz)T I(Tyzz) = 1 (2.15)27



Rearranging gives zTT TyzTyzz = 1 (2.16)Be
ause Tyz has the spe
ial property of a unitary matrix that T TyzTyz = I, theEOA is also a unit hypersphere in the z 
oordinates.zT Iz = 1 (2.17)

Figure 2.7: The axes are rotated so that one axis aligns with the growth point.This rotation is important so that the ellipse 
an be expanded along the alignedaxis.
2.2.4.5 Grow the hypersphere into an ellipsoid that rea
hes thegrowth pointThe half length of the axis, aligned with yq, is expanded by modifyingthe appropriate element of the identity matrix. This is the same element that
orresponds to the zero diagonal element of �R. In this 
ase, the �rst diagonal28



element is shown as the appropriate sele
tion. The semi-axis of the ith axis ofan ellipsoid zTMzz = 
2 is (
2=�i)1=2 where �i is the ith eigenvalue of Mz. Inorder to stret
h the hypersphere into a minimum volume ellipsoid that in
ludeszq and the original EOA, the half length is lengthened to the magnitude of zq.Be
ause the magnitude of zq is equal to that of yq, the matrix element is setto kyqk�22 . Mz = 26664 kyqk�22 0 � � � 00 1 . . . 0... . . . . . . 00 � � � 0 1
37775 (2.18)The grown EOA is zTMzz = 1.

Figure 2.8: The 
ir
le is expanded into an ellipse that rea
hes the growthpoint. This is a minimum area expansion of a symmetri
 ellipse.
29



2.2.4.6 Transform the expanded ellipsoid ba
k to the original 
o-ordinate systemThe grown EOA is transformed ba
k to the original 
oordinate systemwith inverse transformation matri
es. The z 
oordinates are a fun
tion of thex 
oordinates a

ording to z = Tzyy = TzyTyxx (2.19)Substituting for z in the EOA equation and multiplying both sides of theequation by 
2 reverts ba
k to the x 
oordinates and re
overs the form of theoriginal EOA. This is the minimum volume ellipsoid that in
ludes the originalellipsoid and the growth point. xTM exx = 
2 (2.20)with the expanded volume determined byM ex = 
2(T TyxT TzyMzTzyTyx) (2.21)
2.2.5 Re
ord AdditionWhen jf � festj > �tol the EOA should not be expanded. Instead anew re
ord should be added to the ISAT database. The 
ore elements of anISAT re
ord are s, f , A, and Mx. Ea
h of these elements is dis
ussed in thesubsequent se
tions. 30



Figure 2.9: When the ellipse is transformed ba
k to the original 
oordinates,xq is on the ellipse perimeter. In addition, the ellipse is a symmetri
 minimumarea expansion that in
ludes the growth point and the original ellipse.2.2.5.1 Initial states and inputsThe ve
tor s is the query point that is not eligible for retrieval orgrowth. This point be
omes the 
enter of the new EOA.s = sq (2.22)2.2.5.2 Final statesThe ve
tor f 
omes from an original fun
tion 
al
ulation. There isno 
omputational advantage with growth or addition be
ause a 
omplete 
al-
ulation is required. Re
ord growths and additions are part of the databasebuilding phase. The real advantage of ISAT o

urs when retrievals greatlyoutnumber growths and additions. 31



2.2.5.3 SensitivitySensitivity information may also be optionally available from the fun
-tion evaluation. For dynami
 systems, the intial state sensitivities 
an besolved simultaneously with the state equations. Automati
 di�erentiation 
animprove the a

ura
y and redu
e the 
omputational burden that is requiredto obtain sensitivities. The sensitivity matrix A reveals the amount that f
hanges with a small perturbation in s.A = �f�s (2.23)When the sensitivity is not available from the fun
tion evaluation a statisti
alapproximation 
an be made. At least m, where m is the dimension of theve
tor s, fun
tion evaluations are required to 
al
ulate an a

urate sensitivity.The fun
tion evaluations 
an be obtained by sorting through a database ofprevious results or by generating new results.When sorting through a database of previous results, 
are should betaken to sele
t re
ords that are 
lose to sq otherwise the sensitivity may notbe lo
ally a

urate. The data �ltering routine in this se
tion may be modi�edbased on the known 
hara
teristi
s of the fun
tion that is approximated. The�lter suggested here is designed for fun
tions that exhibit dis
ontinuities, re-gions that are not 
ontinuously di�erentiable, or strong nonlinearities. When asensitivity is requested, a multiple binary tree sear
h is 
ondu
ted to gather aset of 4m re
ords that are 
lose to sq (sq 2 Rm). Multivariate linear regressionis used to obtain a sensitivity about sq. If the residuals from the regression32



are less than the requested ISAT toleran
e, the sensitivity is a

epted as alo
al approximation. In the event that the requested ISAT toleran
e is notmet, data are �ltered from the set by two alternate means. The �rst �ltereliminates the re
ord with the highest regression residual. The se
ond �lterremoves the re
ord that is furthest from sq in the 1-norm sense. These �ltersremove re
ords until the regression toleran
es are met or until fewer than mlinearly independent re
ords remain. Linear independen
e of the re
ords is ex-amined with a singular value de
omposition of the raw data set. Independen
eis maintained if m non-zero singular values exist.When generating new results,m linearly independent ve
tors of s shouldbe generated around sq. These linearly independent ve
tors 
an be 
reated byde�ning an orthonormal basis as R = I � yyT , where y is any unit ve
tor.Performing a fun
tion evaluation m times for all of the s ve
tors 
an be a 
putime intensive step.On
e the m fun
tion evaluations are 
ompleted, the sensitivity 
an beestimated through multivariate linear regression. Ea
h of the s and 
orre-sponding f ve
tors are �rst subtra
ted from sq and fq.�s = sq � s (2.24)�f = f(sq)� f = fq � f (2.25)The linear regression model in
ludes a residual ve
tor, �resid , as an indi
ationof how mu
h ea
h lo
al result deviates from the linear model. A large residualindi
ates that a perturbation of s does not �t in with the linear model. This33




ould indi
ate that the perturbation of s should be redu
ed to generate lo
allylinear solutions to f . �f = A�s+ �resid (2.26)The ve
tors are assembled into matri
es X and Y .X = 264 �s1...�sm 375T (2.27)Y = 264 �f1...�fm 375T (2.28)An estimate of the sensitivity is 
al
ulated by simple matrix multipli
ations.A = Y XT (XXT )�1 (2.29)The regression approximation to the sensitivity 
an be poor if data are notin the lo
al linear area. However, an ina

urate sensitivity approximationwill not degrade the error 
ontrol, but will likely de
rease the eÆ
ien
y ofISAT. Without an a

urate �rst order approximation, the EOA size is limitedto smaller lo
al region. It is preferable to use integrated sensitivity analy-sis when available. For example, popular ODE and DAE integrators su
h asODESSA, DASAC, and DASPK in
lude the 
apability to 
ompute the sensi-tivity simultaneously with the integration. This sensitivity information is usedin the �rst order approximation of fest.
34



2.2.5.4 Initial estimate of the EOAAn initial estimate of the EOA should be 
onservative for good error
ontrol. ISAT employs a �rst-order approximation for estimating f . Se
ondorder and higher terms have been trun
ated from this approximation.fest = fs + Ax (2.30)By assuming a zero-order fun
tion estimation, the �rst-order term be
omes anapproximation to the trun
ation error.fest = fs (2.31)�trun
 � Ax (2.32)Substituting �trun
 for the error term in the EOA equation gives an approxi-mation for the zero-order EOA.xTMxx = �2 = �Ttrun
�trun
 = (Ax)T (Ax) = xT (ATA)x (2.33)M zero�orderx = ATA (2.34)Sometimes the zero-order approximation produ
es an EOA with a large prin-
iple axis be
ause of a low sensitivity in a parti
ular dire
tion or be
ause thedimension of f is less than s. To remedy this problem, the singular valuesof A are adjusted to be at least �2tol=2. To a

omplish this, a singular valuede
omposition of A is performed to give U�V T . Any diagonal elements below�2tol=2 are raised to the minimum value. The 
orre
ted matrix is re
onstru
tedfrom the new diagonal matrix of singular values.~A = U ~� V T (2.35)35



The 
orre
ted zero-order approximation of the EOA ensures that large prin
i-ple axes are 
onservatively redu
ed.~M zero�orderx = ~AT ~A (2.36)
2.2.5.5 Binary Tree AdditionOn
e all of the ISAT re
ord elements are 
omputed, the re
ord is addedto the binary tree. The growth of the binary tree involves the 
reation of anew node. In this 
ase, the re
ord added to the tree is re
ord3. Supposingthat re
ord3 is 
loser to re
ord2, the tree is grown on the right bran
h with the
reation of node2. The new node2 is de�ned by �2 and a2 whi
h are obtained
Figure 2.10: The binary tree is grown to in
lude a new re
ord. The growth
reates a new node where the next 
losest re
ord previously appeared.from the following equations, where s2 and s3 belong to the new re
ord andnext 
losest re
ord, respe
tively. �2 = s3 � s2 (2.37)a2 = �T2 �s3 + s22 � (2.38)36



As a �nal step, the node2 pointers are linked to re
ord2 and re
ord3, and node1points to node2.2.3 S
aling to Large S
ale ProblemsOne of the limitations of the ISAT method is that the storage require-ments are proportional to n2, where n is the total number of states [21℄. There-fore, smaller models are better suited to 
omputational redu
tion throughISAT. A pra
ti
al limit may be on the order of 100 states (see examples inChapter 4).2.4 Example: Comparison of ISAT and Neural Net-worksISAT and neural networks are 
ompared in this example. Neural net-works were sele
ted as a 
ompetitive alternative due to their su

ess in 
ontrolappli
ations. For this example, all retrievals are purposely kept within thetraining domain. ISAT dire
tly 
ontrols the most intuitive tuning parameterfor nonlinear fun
tion approximation: The amount of error between the a
-tual fun
tion and its approximation. Neural networks tuning parameters are
entered on the network stru
ture and optimization toleran
e for 
onvergen
e.These tuning parameters are less intuitive and lead to an indire
t error 
ontrols
heme. The �rst eigenfun
tion of an L-shaped membrane is sele
ted as a testproblem for the 
omparison (see Figure 2.11). One quadrant of the eigenfun
-tion is linear while the three quadrants are a 
ontinuous nonlinear fun
tion.37



Figure 2.11: The �rst eigenfun
tion of an L-shaped membrane used to 
ompareISAT and neural networks. The se
ond and third eigenfun
tions have also beenshown in MathWorks' publi
ations.The eigenfun
tion is a good test of nonlinear fun
tion approximation algo-rithms be
ause it exhibits both linear and nonlinear regions with parts thatare not di�erentiable. The horizontal axes x and y are the independent set.The verti
al axis z is the dependent set. Data were generated by sele
ting
oordinates of x and y at 31 equally spa
ed intervals for a total of 961 (= 312)fun
tion evaluations. On the graph, the interse
tion of two lines indi
ates apoint where a fun
tion evaluation o

urred.Be
ause the sensitivities are not available from the 
al
ulation, ISATused a statisti
al approximation for the slope at ea
h point. ISAT's prin
i-pal tuning variable is the absolute toleran
e for fun
tion approximation error(�tol). As the error toleran
e is lowered, the number of linear regions in theISAT approximation in
reases. To illustrate, the error toleran
e was initially38



set at �tol = 0.5. Be
ause the z values range from -0.3 to 1.0, an error toleran
eof 0.5 is extremely 
oarse. ISAT 
omputed 12 linear regions to approximatethe nonlinear fun
tion (see Figure 2.12). The shape of the nonlinear fun
tion

Figure 2.12: ISAT approximation with an error toleran
e of 0.5. Due to thehigh error toleran
e, the approximation is very 
oarse with 12 linear regions.is barely re
ognizable be
ause the nonlinear region is approximated with onlya handful of linear fun
tions. One good aspe
t of the approximation is that theleft quadrant is exa
tly represented by ISAT's linear approximation. De
reas-ing the error toleran
e to �tol = 0.1 produ
es 
onsiderably better results with atotal of 48 linear regions. However, there are still regions of the approximationthat approa
h the maximum error toleran
e (see Figure 2.13). Finally, with anerror toleran
e of �tol = 0.01 and 206 linear regions, the ISAT approximationresembles the original fun
tion (see Figure 2.14). For this example problem,the number of linear regions in
reases proportional to the re
ipro
al of �tol.With other appli
ations of ISAT, �tol should be 
hosen to balan
e the 
osts of39



Figure 2.13: ISAT approximation with an error toleran
e of 0.1. The approx-imation is more re�ned with 48 linear regions.fun
tion approximation error and storage requirements. For 
omparison, thesame fun
tion approximation was made with an arti�
ial neural network. Theneural network has two layers with a linear output layer of 1 neuron and atangent fun
tion layer with 4 neurons. The neural network was generated andoptimized using MATLAB's neural network toolbox. The neural network wastrained with the same data that produ
ed the ISAT database (see Figure 2.15).The approximation deviates signi�
antly from the original fun
tion shown inFigure 2.11. Some of the key missing features are the non-
ontinuously dif-ferentiable points, a quadrant that is exa
tly linear, and shape of the peak.A neural network is basi
ally a nonlinear fun
tion with parameters that areoptimized to �t a desired fun
tion. The neural network 
an approximate awide range of nonlinear fun
tions. However, some expertise is required to de-termine the number of layers, number of neurons in ea
h layer, training data40



Figure 2.14: ISAT approximation with an error toleran
e of 0.01. The approx-imation in
ludes 206 linear regions and ISAT 
losely approximates the originaleigenfun
tion.

Figure 2.15: Neural network approximation to the eigenfun
tion.
41



set, and optimization to �t the nonlinear fun
tion. In addition, there is noerror 
ontrol to limit the amount of approximation error. The approximationerror is determined by the stru
ture and training of the neural network.ISAT, as opposed to neural networks, uses linear regions to �t a desiredfun
tion. Also, ISAT has dire
t 
ontrol over the error toleran
e, whi
h isthe most important tuning parameter for nonlinear fun
tion approximationalgorithms. Other advantages of ISAT over neural networks are that no globaloptimization step is required to build the database. When ISAT en
ountersdata outside of the training set, it either expands an existing linear region oradds a new linear region. The 
reation of new linear regions is determined bythe error toleran
e 
ontrol. Also, ISAT 
an approximate fun
tions that arenot 
ontinuous or 
ontinuously di�erentiable.2.5 Summary and Con
lusionsThis 
hapter outlines a new storage and retrieval algorithm for non-linear fun
tions. Although originally developed to redu
e the 
omputationalburden of DNS in turbulent 
ombustion, the algorithm shows promise as ageneral nonlinear fun
tion approximator. In this 
hapter, a des
ription of thealgorithm has been developed in a way that does not restri
t the appli
ationof ISAT to one parti
ular area. Although many of the details of the ISATalgorithm are presented in other papers, a more thorough explanation of thealgorithm is given to 
larify some of the details. In addition to reporting thedetails of ISAT, new features have been developed. Many fun
tions do not42



produ
e an exa
t sensitivity. In the 
ase when the sensitivity is not avail-able, a statisti
al approximation is attempted. The statisti
al approximationis determined by 
olle
ting previous 
al
ulations 
lose to the point of interest.This feature also identi�es when insuÆ
ient data exist to provide an a

uratesensitivity. With a sensitivity approximation, any nonlinear fun
tion 
an bestored and retrieved with ISAT.The eigenfu
tion of an L-shaped membrane was used as a test problemto demonstrate ISAT's 
apabilities 
ompared to neural networks. In subse-quent 
hapters, it will be shown how ISAT applies in storage and retrieval ofopen-loop and 
losed-loop simulations. Open-loop simulations refer to simu-lations without optimization of parti
ular model paramters. Closed-loop 
al-
ulations seek to optimize de
ision variables to meet an obje
tive. Theseappli
ations in pro
ess 
ontrol are further examples of ISAT's 
apability as ageneral storage and retrieval te
hnique.One of ISAT's limitations is that storage 
osts s
ale with the square ofthe system size. To over
ome this de�
ien
y, model redu
tion is in
orporatedto de
rease the model order. The next 
hapter is devoted to model redu
-tion be
ause the eÆ
ien
y of storage and retrieval 
an be poor for large s
aleproblems. Be
ause large s
ale systems are typi
ally ne
essary to a

uratelymodel real-world phenomena, model redu
tion is used to redu
e the model sizewithin an a

eptable range for storage and retrieval.
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Chapter 3DAE Model Redu
tion
A major obsta
le to more NMPC appli
ations is the rapid and reliablesolution of the optimization problem in real-time [68℄. To over
ome this ob-sta
le, several approa
hes have been suggested to redu
e the 
omputationaloverhead. In Chapter 4, the 
omputational load is redu
ed by storing andretrieving solutions of DAE integrations of the model equations. In Chapter5 the 
omputation is shifted o�-line by storing and retrieving optimal 
ontrolsolutions. Both te
hniques are mu
h more eÆ
ient for lower dimensional prob-lems. Model redu
tion generally does not signi�
antly lower the 
omputational
ost of simulation and 
ontrol. However, model redu
tion 
an enable o�-linestorage and retrieval for eÆ
ient on-line implementation. The model redu
tionstrategies in this 
hapter are an important step in a
hieving 
omputationallyfeasible model based 
ontrol solutions.DAE model redu
tion has traditionally been an a posteriori approa
h.Training simulations determine an a

eptable redu
ed order model that mayor may not be valid over the entire set of desired simulations. This 
hapteroutlines a new in situ approa
h to adaptively determine the redu
ed modelorder during the desired simulations. One bene�t of this new approa
h is more44



dire
t 
ontrol over redu
ed model error. The model error, not the model order,be
omes the prin
ipal tuning parameter. This 
hange of tuning parameters ismore intuitive be
ause the te
hnique automati
ally adjusts the model order tomeet variable error toleran
es.3.1 Previous WorkDAEs 
onsist of di�erential equations and algebrai
 equations. In thegeneral form, the DAE problem is as followsfDAE( _z;z;t) = 0 (3.1)where z is a ve
tor of variables and t is a s
alar. The DAE is nonlinear whenthe ve
tor f is a nonlinear fun
tion of the _z, z, or t. In order for the problem tobe a DAE, at least one of the 
oeÆ
ients of _z must be zero. The DAE 
an begrouped into di�erential equations (fODE) and algebrai
 equations (fAE). Thevariables are also divided into di�erential variables (x) and algebrai
 variables(y). fODE( _x;x;y;t) = 0 (3.2)fAE(x;y;t) = 0 (3.3)Typi
ally, the DAE equation residuals are time invariant and t 
an be elimi-nated from the general equation form. However, it is in
luded in subsequentderivations for the sake of generality.
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3.1.1 Redu
tion of Di�erential EquationsThe main types of model redu
tion for nonlinear ODE models are pro-je
tion methods, proper orthogonal de
omposition (POD), balan
ed 
ovari-an
e matri
es (BCM), perturbation methods, and model simpli�
ation [52℄.Perturbation methods are useful for models where there is a large separationof time s
ales allowing the fast dynami
s to be eliminated [89℄. Even thoughthere are many types of model redu
tion te
hniques, few are optimal in somesense. Two optimal nonlinear model redu
tion approa
hes are balan
ed em-piri
al gramians [34℄ and POD [94℄. Balan
ed empiri
al gramians were laterfound to be a spe
ial 
ase of BCM [33℄. The two step pro
ess, in POD andBCM, �rst 
omputes a similarity transform from step or impulse simulations ofthe original model. Next, a Galerkin proje
tion 
onstru
ts the redu
ed statesfrom a linear 
ombination of the original states. The redu
ed set of statesfrom BCM is optimal in 
apturing input to output dynami
s of the originalnonlinear system. POD is optimal in 
apturing input to state dynami
s. Dur-ing the Galerkin proje
tion step, the physi
al meaning of the variables is lostbut 
an be re
overed by an inverse transform.A Galerkin proje
tion maps a full set of variables onto a redu
ed set ofvariables that make up the redu
ed model. For BCM, the Galerkin proje
tionis a set of ve
tors that optimally 
aptures the highest degree of input-outputdynami
s. For POD, the Galerkin proje
tion is a set of orthogonal ve
tors but
aptures the highest degree of input-state dynami
s. Ea
h su

essive ve
tor isthe dire
tion that maximizes the amount of varian
e in the model states while46



maintaining orthogonality to the previous dire
tions. For the semi-expli
itODE model form _x(t) = f(x(t)) (3.4)the Galerkin proje
tion ( ~P ) is applied by de�ning a redu
ed set of variablesx(t) = ~P T �x(t) + r(t) (3.5)where r(t) is a state residual to a

ount for the ina

ura
y of the redu
edmodel. The redu
ed model exa
tly represents the original model when theresidual is retained. _�x(t) = ~Pf( ~P T �x(t) + r(t)) + ~P _r(t) (3.6)At this point the residual and its derivative are typi
ally set to zero and someof the system dynami
s are ne
essarily lost due to the redu
ed order of themodel. _�x(t) = ~Pf( ~P T �x(t)) (3.7)Two te
hniques for obtaining a Galerkin proje
tion are des
ribed in se
tions3.1.1.1 and 3.1.1.2. POD is optimal in 
apturing input-state e�e
ts while BCMis optimal for input-output e�e
ts.3.1.1.1 Proper Orthogonal De
ompositionPOD is performed by analyzing the varian
e among the system states.This is a

omplished by de
omposing the 
ovarian
e matrix of the states intoeigenve
tors and eigenvalues. The eigenve
tors asso
iated with the m largest47



eigenvalues be
ome the pri
ipal dire
tions in the redu
ed model. Here m isthe order of the redu
ed model and n is the order of the original model. TheGalerkin proje
tion 
onsists of the similarity transform (T ) and a proje
tionmatrix (P ). The proje
tion matrix 
onsists of the top m rows of an iden-tity matrix. For POD, the similarity transform (T ) is the transpose of theeigenve
tor matrix. ~P = PT (3.8)The Galerkin proje
tion takes a linear 
ombination of states to form a redu
edset. The model 
an either be redu
ed through trun
ation or residualization[34℄. Trun
ation assumes that the transformed states 
orresponding to thelowest (n � m) eigenvalues are 
onstant (see Equation 3.9). Trun
ated re-du
ed models perform better than residualized models with high frequen
yperturbations. One disadvantage is that there is usually some steady stateo�set. 266666664
_�x1..._�xm_�xm+1..._�xn

377777775 = 266666664
�f1(�x; u)...�fm(�x; u)0...0

377777775 (3.9)
Residualization assumes that the derivates of the transformed states 
orre-sponding to the lowest (n�m) eigenvalues are 
onstant (see Equation 3.10).Residualized redu
ed models have no steady state o�set, but perform worsethan trun
ation for higher frequen
y responses. Residualization is often notdesireable be
ause the redu
ed model is a DAE of the same order as the orig-48



inal ODE. 266666664
_�x1..._�xm0...0
377777775 = 266666664

�f1(�x; u)...�fm(�x; u)�fm+1(�x; u)...�fn(�x; u)
377777775 (3.10)

These de�nitions of trun
ation and residualization are 
onsistent with thosegiven for linear systems. For linear system trun
ation, the redu
ed statesare set to zero be
ause the variables are in deviation form. For linear sys-tem residualization, an expli
it transformation of the redu
ed variables 
an beobtained.3.1.1.2 Balan
ed Covarian
e Matri
esNonlinear model redu
tion using balan
ing of 
ovarian
e matri
es hasproven e�e
tive for sets of ODEs [33℄. This method redu
es the nonlinearmodel to a variable subspa
e that 
aptures the most important dynami
s ofinput-output behavior. One system studied by Hahn and Edgar [?℄ is a binarydistillation 
olumn with the re
ux ratio (u) as the manipulated variable anddistillate 
omposition (x1) as the 
ontrolled variable. The simulated 
olumn
ontains 30 trays, a reboiler, and 
ondenser. The 32 states are the 
ompositionsof the liquid at ea
h stage. The ODE model is pla
ed in the general nonlinearform. _x = f(x; u) (3.11)y = h(x) (3.12)49



A similarity transform (T ) is 
omputed from the balan
ing of empiri
al grami-ans. The transformed variables are in order from most important to the leastimportant for input/output behavior. The transformed system is shown inEquation 3.13. The Galerkin proje
tion ( ~P ) is a 
ombination of the similaritytransform (T ) and a proje
tion matrix (P ). The proje
tion matrix 
onsistsof the top m rows of an identity matrix, where m is the order of the redu
edmodel. _�x = PTf(T�1P T �x; u) (3.13)y = h(T�1P T �x) (3.14)The redu
ed model is often written in a more 
on
ise form in terms of theredu
ed variables ( _�x) _�x = �f(�x; u) (3.15)y = �h(�x; u) (3.16)Hahn and Edgar [33℄ showed that a redu
ed system with 3 transformed vari-ables shows ex
ellent agreement with the full 32 state model on step tests. Forexample, the �rst transformed state is shown as a linear 
ombination of theoriginal 32 states.
�x1 = � 9:7 4:0 3:4 � � � 0:08 0:07 0:24 �26666666664

x1x2x3...x30x31x32
37777777775 (3.17)
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As a physi
al interpretation, the relative importan
e of the 1st-3rd states(re
ux drum 
omposition and top re
ti�
ation stages 
omposition) on in-put/output behavior is mu
h greater than the 30th-32nd states (lowest bot-toms stages and reboiler 
omposition). The relative weighting of stages 1-31monotoni
ally de
reases until stage 32 where there is a slight in
rease from0.07 to 0.24. This in
rease from stage 31 (sump) to stage 32 (the reboiler) 
anbe attributed to the reboiler vapor that drives the separation. The similar-ity transform from the balan
ing of empiri
al gramians 
on�rms that most ofthe important dynami
s for 
ontrol are found in the states at the top of the
olumn. With the transformation, the nonlinear system 
an be redu
ed bytrun
ation or residualization. By redu
ing the number of dynami
 variablesthrough trun
ation, the 
omputational requirements are redu
ed by � 40%.Equation 3.18 shows the form of the 3 state model by trun
ation.266666664
_�x1_�x2_�x3_�x4..._�x32
377777775 = 266666664

�f1(�x; u)�f2(�x; u)�f3(�x; u)0...0
377777775 (3.18)

The dyanami
 response of this redu
ed system is shown in the subsequentse
tion. It is also 
ompared to a trun
ated model by POD and linearization.3.1.1.3 Example Comparison of POD, BCM, and LinearizationPOD, BCM, and linearization are 
ompared for the 32 state binarydistillation 
olumn model. In the �rst 
omparison, tru
ated models generated51



with POD and BCM are 
ompared in an open-loop step test. The step testis generated by simulating a de
rease in the re
ux ratio, thereby lowering thepurity of A in the distillate (see Figure 3.1). The response of the distillate

Figure 3.1: A step de
rease in re
ux ratio produ
es a 
orresponding de
reasein the distillate 
omposition. A nonlinear 32 state model, a 3 state BCMredu
ed model, and a 3 state POD model are shown.
on
entration is tra
ed for 120 minutes. BCM and POD perform equivalentlyfor the 3 state redu
ed model. Be
ause trun
ation was performed, instead ofresidualization, there is a slight steady state o�set.Model simpli
ation may in
lude linearization. However, depending onthe degree of nonlinearity and the state deviation from the original linearizedvalues, a linear model may not 
apture the true dynami
s. To illustrate thispoint, the 1 state trun
ated POD and BCM models are 
ompared with a52



linearized model of 32 states (see Figure 3.2). Interestingly, both 1 state

Figure 3.2: The same dynami
 response as Figure 3.1 is shown in this plot.Here a nonlinear 32 state model, 1 state BCM and POD models, and 32 statelinearized model are 
ompared.redu
ed models outperform the 32 state linearized model in dynami
 responseand steady state o�set. This demonstrates the e�e
tiveness of nonlinear modelredu
tion 
ompared to another model simpli
ation strategy. Be
ause PODand BCM are optimal in two unique ways, they will always outperform, withrespe
t to their obje
tives, all other redu
ed or simpli�ed models with thesame or lower order.
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3.1.2 Redu
tion of Algebrai
 EquationsNone of the previously mentioned model redu
tion te
hniques 
an re-du
e the number of algebrai
 equations in DAE models. Be
ause algebrai
equations usually greatly outnumber the di�erential equations, redu
tion ofthe di�erential equations often does little to redu
e the overall order (andalso 
omputational time) of a DAE model. Some attempts have been madeto redu
e the algebrai
 equations in a DAE model. These approa
hes sear
hfor an optimal pre
eden
e order and partitioning of the algebrai
 equationsand variables. Obtaining a pre
eden
e order and partitioning 
an be done us-ing a manual dire
ted graph (digraph) as a graphi
al approa
h, using matrixmethods to produ
e a blo
k diagonal lower matrix [82℄, or through tearing[18℄. These te
hniques attempt to maximize the number of algebrai
 variablesthat 
an be solved expli
itly. However, this problem is NP 
omplete, meaningthat all possible 
ombinations of variables must be attempted to �nd a max-imum set of expli
it equations [20℄. Another te
hnique for order redu
tion isthrough relaxation of the algebrai
 states [58℄. Relaxation dire
tly generates aGaussian elimination s
heme when the algebrai
 equations are linear or madelinear.3.1.2.1 Pairing Variables to EquationsVariables and equations are paired by rearranging the sparsity matrixto a maximum transversal. All variables are paired to equations when problemis 
ompletely spe
i�ed (no degrees of freedom) and the maximum transversal is54



a zero-free diagonal [25℄. The sparsity matrix (J), also known as the in
iden
ematrix, is generated by identifying the variables that are 
ontained in ea
hequation. The di�erential states are generally spe
i�ed for an initial valueproblem (IVP). The remaining variables are the di�erential state derivativesand the algebrai
 variables.Jij = � 1 if yj or _xj appears in fi0 otherwise (3.19)Computing a zero-free diagonal involves 
hanging the equation or variableorders. The order of the row and 
olumn are then mat
hed to give a vari-able/equation pairing.3.1.2.2 Appli
ation to Large S
ale ProblemsAnother 
onsideration relevant to large s
ale DAE systems is the 
om-putational time that is required for the analysis. In this paper, n and � arethe order of the matrix and the number of non-zeros, respe
tively. The maxi-mum transversal algorithm has a worst 
ase bound of O(n�) although typi
alexamples are more like O(n) + O(�) [25℄. The lower blo
k triangular algo-rithm also exhibits ex
ellent s
aling for large problems with an upper boundof O(n) +O(�) [26℄.3.1.2.3 Example: Flowsheet Model Redu
tionFlowsheet models typi
ally 
onsist of many individual models linkedtogether by streams. If the model will be used in plant-wide 
ontrol, modelredu
tion is desirable to redu
e the size of the model. In this example, there55



is a tank 
ontaining equal molar proportions of �ve liquid hydro
arbons. Thestream exiting the tank is split into two with a splitter valve. The �rst streamis mixed with another feed stream of hydro
arbons, and the se
ond streampasses through a heat ex
hanger. Overall the model in
ludes 12 di�erentialequations and 217 algebrai
 equations (see Figure 3.3). In this example, an

Figure 3.3: Flowsheet model involving equal molar feed streams of butane,pentane, hexane, heptane, and o
tane at 300 K and 1 ATM. The model has229 variables with 12 ODEs and 217 AEs.analysis of the algebrai
 equations was performed to determine independentsets of variables and equations and the solution order. The algebrai
 equationsde
omposed into 202 independent sets. There was one impli
it set of 16 alge-brai
 equations from the 
ash 
olumn. With the ex
eption of this set, ea
hof the algebrai
 variables 
an be solved independently with a paired algebrai
equation by following the pre
eden
e ordering. Expli
itly transforming thealgebrai
 equations manually or with ISAT redu
es the model order from 22956



to 28. Details of the de
omposition are given in Appendix C.3.1.2.4 Expli
it Transformation of Impli
it SetsOn
e the su

essive independent sets are identi�ed, a storage and re-trieval te
hnique 
an be used to store and retrieve solutions to the groups ofalgebrai
 variables and equations. ISAT is a storage and retrieval algorithmthat builds pie
ewise linear regions of the solution. ISAT 
ontrols the pre-di
tion error by de�ning an ellipsoid of a

ura
y (EOA) that spe
i�es a lo
alregion about whi
h the linear approximation is valid. If a query point is a
-
essed outside of the EOA, the linear predi
tion error is exa
tly 
al
ulated.When the predi
tion error is above a spe
i�ed toleran
e, a new linear region isadded to the database. Adding linear regions involves a sensitivity 
al
ulationand a 
onservative estimate of the new EOA. ISAT is used here to store andretrieve solutions to impli
it blo
ks of variables and equations. An externalstatisti
al approximation of the sensitivity through linear regression is givenas an alternative when an internal sensitivity 
al
ulation is not available.3.2 Adaptive Redu
tion of DAEsThe total degrees of freedom (DOF) are equal to the order of the DAEmodel. The dynami
 degrees of freedom (DDOF) are de�ned as the minimumorder of a redu
ed model that shows good agreement with the full model. TheDDOF are the underlying 
ombination of variables that 
ontrol the dynami
sof the pro
ess. A more pre
ise de�nition of the DDOF is the minimum order57



of a redu
ed order model (ROM) that meets a

ura
y 
riteria.jxROM � xj � �tol (3.20)The proposed adaptive redu
tion of DAEs iteratively adjusts the order of theROM to meet the a

ura
y 
riteria. The adaptive approa
h 
onsists of 3su

essive steps appli
able to any DAE of index-1 or index-2. The approa
hmay also be appli
able to higher index DAEs, although this idea has not beenexplored. With a few ex
eptions, many of the models en
ountered in pra
ti
eare index-1 DAEs. In addition, a variety of te
hniques have been developedto transform higher index DAEs to lower index form, but that work is beyondthe s
ope of this 
hapter.1. Redu
tion of the di�erential equations2. Partitioning and pre
eden
e ordering of the algebrai
 equations3. Expli
it transformation of algebrai
/di�erential equationsAs an index-1 DAE, the equations 
an be divided into di�erential and algebrai
sets of equations and variables. Any variable that is present in di�erentialform is 
lassi�ed a di�erential variable. Likewise, equations that are paired todi�erential variables in step 2 are 
lassi�ed as di�erential equations. Underthis de�nition algebrai
 equations may 
ontain di�erential variables. Ea
hstep is an extension of existing approa
hes, modi�ed to automati
ally 
ontrolthe ROM error. 58



3.2.1 Step 1: Redu
tion of ODEsTo adaptively redu
e the order of the di�erential equations, a measureof the redu
ed model a

ura
y must be introdu
ed. When performing non-adaptive model redu
tion, the training simulations are performed, similaritytransforms are generated, and singular values 
an be investigated to determinean a

eptable number of states for the redu
ed model. However, when thetraining data set does not 
over the entire nonlinear region of interest, thesingular values may be a poor indi
ation of redu
ed model a

ura
y outside ofthe training domain. One possible solution is to dire
tly solve the full modeland redu
ed model at various 
he
kpoints to determine the a

ura
y of theredu
ed model. Another option that avoids the periodi
 solution of the fullmodel is to 
ontrol the equation residuals. For linear systems at steady state,the equation residuals and variable residuals are exa
tly related. A linearizedmodel is used to predi
t the variable residuals from the equation residuals.3.2.1.1 Predi
ting Variable ErrorIdeally, one would like to adjust the order of the redu
ed model to 
on-trol the variable errors dire
tly. Barring simultaneous solution of the redu
edand full order model, the variable error 
annot be dire
tly 
al
ulated for non-linear systems. A new approa
h is to estimate the variable residual (r(t)) fromthe equation residual (R(t))._�x(t) = ~Pf( ~P T �x(t)) +R(t) (3.21)59



When the system is linear, the equation residuals are related to the variableresiduals by the state matrix (A)._x(t) = Ax(t) (3.22)with x(t) = ~P T �x(t) + r(t) (3.23)_x(t) = ~P T _�x(t) + _r(t) (3.24)the linear redu
ed model be
omes~P T _�x(t) = A� ~P T �x(t)� + Ar(t)� _r(t) (3.25)The equation residual and variable residual are related to ea
h other by thestate matrix and the variable residual derivative.R(t) = Ar(t)� _r(t) (3.26)By assuming that the variable residual is lo
ally 
onstant, the variable residualderivative term 
an be ignored and an estimate of the variable residual 
an beobtained. r̂(t) = A�1 (R(t)) (3.27)By linearizing the nonlinear model, an estimate of the variable residuals 
an beobtained from the equation residuals. The predi
tive 
apability of this relationfor nonlinear models depends on the severity of nonlinearity and 
loseness tothe point of linearization. 60



3.2.1.2 Corre
ting Variable ErrorA semi-expli
it ODE model is a restri
ted form of the more generalopen equation format. f( _x; x) = 0 (3.28)Applying the Galerkin proje
tion to the open equation format 
hanges thesolution pro
edure. By redu
ing the number of variables and maintainingthe same number of equations, extra degrees of freedom arise. Physi
ally,this is the result of giving up some of the least important dynami
 degreesof freedom. The redu
ed order model is solved by minimizing the residualsinstead of �nding equation roots.R = f( ~P T _�x; ~P T �x) (3.29)On
e a minimized residual solution is found, a variable 
orre
tion 
an be ap-plied from the predi
ted variable error (see Equation 3.27). The 
orre
tionrelies on a linearized version of the ODE portion of the DAE model. The
orre
ted ROM is the sum of the ROM and the linear 
orre
tion term.x
ROM = xROM + A�1R(t) (3.30)The 
orre
tion is derived under the assumption that the linear model is lo
allya

urate and that the fast dynami
s have de
ayed. The 
orre
tion may notperform well when either of these assumptions is not valid.
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3.2.1.3 Controlling Variable ErrorThe minimized equation residuals will generally be small for a goodROM. As the order of the ROM is de
reased, the equation residuals will gen-erally in
rease. The di�erential equation model redu
tion approa
h is madeadaptive by in
reasing or de
reasing the number of states of the ROM to meetthe required variable toleran
es. This approa
h also involves a periodi
 updateof the Galerkin proje
tion. The rank of the proje
tion matrix (P ) is adjustedto meet the desired order of the ROM. The similarity transform (T ) is pe-riodi
ally re
omputed as more training simulations be
ome available. Beforesimulations are added to the training set, the order of the ROM is equal tofull order model. As the simulations pro
eed, the ROM order is iterativelyde
reased until the training set is mature and the true number of DDOF aredetermined.3.2.2 Step 2: Partitioning and Pre
eden
e OrderingThe method proposed in this work di�ers from previous work by ana-lyzing a dependen
y matrixMD instead of the in
iden
e matrix J [26℄. It willbe shown that MD 
an reveal more information about variable dependen
ies.The dependen
y matrix MD is derived by �rst linearizing the DAE.A _x0 +Bx0 + Cy0 + �t0 = 0 (3.31)Dx0 + Ey0 + �t0 = 0 (3.32)
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The prime indi
ates deviation from referen
e values. A, B, C, D, and E are
oeÆ
ient matri
es and � and � are 
oeÆ
ient ve
tors. The referen
e valuesare sele
ted to give non-zero 
oeÆ
ients for the deviation variables. Be
ausethe sele
tion of referen
e values is arbitrary, the 
oeÆ
ients 
an be arbitrarilysele
ted to be 1 if the equation 
ontains the variable and 0 otherwise. Inthis 
ase the matrix E is equivalent to the in
iden
e matrix J . Rearrangingand 
ombining the linear di�erential and algebrai
 equations results in thefollowing matrix form:� A C0 E � � _x0y0 � = � � B �D � � � x0t0 � (3.33)The dependen
y matrix MD reveals the solution dependen
ies among the lin-earized equations. MD = � A C0 E ��1 (3.34)The variable dependen
y information in MD 
an be illustrated by a linearsystem of Ax = b. When A is invertible, the solution to x is A�1b. Ea
helement of the ve
tor x is 
omputed from the 
orresponding row of A�1ij andthe ve
tor b. xi =Xj A�1ij bj (3.35)However, the solution to xi is independent of bj if A�1ij = 0 8 j 6= i. If xi isindependent of bj then it is also independent of equation j. The dependen-
ies in the linear system also apply to the 
orresponding nonlinear system.Therefore, linearizing the DAE reveals the stru
ture of the nonlinear systemdependen
ies. 63



The matrix MD 
an be 
onverted to lower triangular blo
k diagonalform with Tarjan's algorithm [82℄. Ea
h blo
k along the diagonal is a setof algebrai
 equations that require a simultaneous solution. The redu
tionof algebrai
 equations o

urs by expli
itly solving for independent groups ofequations. Test 
ases with moderate sized DAE systems (< 300 states) showthat many of the equations in
luded in the impli
it set 
an be transformed forexpli
it 
al
ulation. On
e an algebrai
 variable is expli
itly 
al
ulated, it 
anbe removed from the model as a variable that the solver must 
al
ulate. Ex-pli
it approximations to impli
it solutions 
an be attempted to further redu
ethe DAE order as Bosley did for bat
h distillation [19℄.3.2.2.1 Example: Binary DistillationA binary distillation 
olumn model, des
ribed in Appendix A, is em-ployed to show a pra
ti
al appli
ation of DAE model redu
tion. In this 
asethe model is redu
ed to a set of ODEs, although the 
omplete removal of allalgebrai
 equations is not always possible. The DAE model has 52 di�erentialequations and 233 algebrai
 equations. The independent variables are shownin Table 3.1. During the linearization step, the referen
e values are sele
tedto give non-zero 
oeÆ
ients for the deviation variables. Sin
e the referen
evalues are arbitrary, the non-zero 
oeÆ
ients are shown by X if the equation
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Table 3.1: Variables at ea
h stage of the distillation 
olumnDi�erential variablesSymbol Des
ription Units_xA Liquid mole fra
tion none_h Spe
i�
 enthalpy JmolAlgebrai
 variablesSymbol Des
ription UnitsyA Vapor mole fra
tion nonexL Liquid mole fra
tion noneT Temperature K_nV Vapor molar 
ow rate molse
_nL Liquid molar 
ow rate molse
hV Spe
i�
 vapor enthalpy JmolhL Spe
i�
 liquid enthalpy JmolP sati Saturation pressure of 
ompound j Pa
ontains the variable and 0 otherwise.
M � _xy �!

2666666666666664
X 0 X 0 0 X 0 0 0 00 X 0 0 0 X X X 0 00 0 X 0 0 0 0 0 X 00 0 0 X 0 0 X X 0 00 0 0 0 0 0 0 0 X X0 0 0 X 0 X 0 0 0 00 0 X 0 X 0 X 0 0 00 0 0 0 X 0 0 X 0 00 0 0 0 X 0 0 0 X 00 0 0 0 X 0 0 0 0 X

3777777777777775
2666666666666664

_xA_hyAxLT_nV or _nLhVhLP satAP satB
3777777777777775(3.36)The non-zero values of MD show the dependen
ies between the variables andequations. The non-zero values of MD in lower triangular blo
k diagonal form
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are shown below with the 
orresponding variable order.
MD =

2666666666666664
X X X 0 0 0 0 0 0 0X X X 0 0 0 0 0 0 0X X X 0 0 0 0 0 0 0X X X X 0 0 0 0 0 0X X X 0 X 0 0 0 0 0X X X 0 X X 0 0 0 0X X X X X X X 0 0 0X X X X X X X X 0 0X X X X X X X X X 0X X X X X X X X 0 X

3777777777777775 (3.37)
� y_x � =

2666666666666664
TP satAP satBhLyAhVxL_nV or _nL_xA_h

3777777777777775 (3.38)
The �rst three rows indi
ate that T , P satA , and P satB must be solved simulta-neously sin
e the 
orresponding equations form one blo
k. The equations forP satA and P satB 
an be expli
itly substituted into the bubble point temperatureequation. P = xAP satA (T ) + (1� xA)P satB (T ) (3.39)For the 
y
lohexane / heptane binary mixtures, an expli
it temperature solu-tion is approximated by a se
ond order polynomial in 
omposition.T = 
1 + 
2xA + 
3x2A (3.40)66



The ve
tor 
 was 
al
ulated with a least squares �t with data from the setsxA 2 � 0 1 � to be 
 = � 385.42 - 21.57 3.736 �T . The polynomial �t hasa mean sample error of 0.012 K and a maximum sample error of 0.04 K.The molar 
ow rates form the last blo
k along the diagonal. Sin
e themolar 
ow rate equations are linear, they 
an be solved expli
itly. After solvingthe 
ow rates the dependen
y matrix indi
ates that the di�erential equationvariables 
an now be solved expli
itly. If extraneous algebrai
 equations werepresent in the model, they 
ould be identi�ed at this point sin
e the equationsfor _xA and _h have no further dependen
ies. By expli
itly solving all of thealgebrai
 equations, the model is in an ODE form. In this form, nonlinearmodel redu
tion te
hniques 
an be applied to further redu
e the number ofdi�erential states.As an ODE, the distillation 
olumn model is available for further modelredu
tion through BCM or POD. POD was 
hosen for this example and thenumber of di�erential states was redu
ed to 26. Figure 3.4 shows the bottoms
omposition after a 5% in
rease in reboiler duty. The ODE model with 52states approximates the 285 state DAE very well. The ODE model with 26states also approximates the DAE model well but with a larger o�set in thesteady-state value of 
omposition. ODE models with fewer than 20 statesperformed poorly, indi
ating that there are at least 20 dynami
 degrees offreedom in the binary distillation 
olumn model.
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Figure 3.4: 5% Step Change in Reboiler Duty3.2.3 Step 3: Expli
it Transformation of Algebrai
/Di�erential Equa-tionsBe
ause the impli
it solution of a large number of algebrai
 equations is
omputationally expensive, variables that 
an be solved expli
itly are removedfrom the set y [37℄. However, some algebrai
 variables 
annot be expli
itlysolved or solved independently of other variables. The following te
hniques 
anbe used to automati
ally identify independent sets of variables and equations.The sets that require an impli
it solution are expli
itly approximated withISAT. The pro
ess is 
alled adaptive be
ause the ISAT database adaptivelyadds re
ords to the database to 
ontrol the approximation error.Chapter 4 introdu
es the storage and retrieval of di�erential equationswith ISAT. On
e the ISAT database is mature, meaning that mostly retrievals68



o

ur, the di�erential equations are rarely solved. Expli
it transformation ofthe di�erential equations refers to a mature database, not a mathemati
alreformulation of the equations.3.3 PDE Example: Unsteady Heat Condu
tionA simple partial di�erential equation (PDE) example demonstrates theredu
tion approa
h with the number of redu
ed states 
ontrolled by the equa-tion residuals. The example is an unsteady 1-D heat 
ondu
tion problem usingphysi
al properties of aluminum (see Figure 3.5). The heat transfer dynami
s
Figure 3.5: Graphi
al representation of a 1-D simulation of heat transfer in a1.0 m thi
h aluminum slab. The PDE is spatially dis
retized to a set of ODEs,one for every interior node.are modeled with one PDE. �
�T�t = ��x �k�T�x� (3.41)The PDE is spatially dis
retized with the �nite element approa
h to give a setof ODEs. The total slab thi
kness is 1.0 m and node points were pla
ed every�4.8 
m for a total of 20 equally spa
ed interior nodes. The temperature of
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the nodes on the boundaries are spe
i�ed by the boundary 
onditions.�(Ti)
(Ti)�Ti�t = 1�x2 �khmi (Ti+1 � Ti)� khmi�1 (Ti � Ti�1)� (3.42)khmi = � 2k(Ti+1)k(Ti)k(Ti+1) + k(Ti)� (3.43)An estimate of the thermal 
ondu
tivity at ea
h �nite element interfa
e (khmiis obtained by the harmoni
 mean of the thermal 
ondu
tivities at the nodetemperatures. The slab of aluminum is initially at an ambient temperatureof 25ÆC. At the initial time the temperature on the left side of the slab isin
reased to 100ÆC. After 100 minutes the temperature pro�le is nearly equalto the steady state linear temperature pro�le. Figure 3.6 shows the variousredu
ed order models in 
omparison with the full state model. Any redu
ed

Figure 3.6: Full 20 state model 
ompared with redu
ed order models of 3, 2,and 1 states using POD.order model above 3 states �ts the 
orre
t solution well. The 2 state model70



deviates from the 
orre
t solution as does the 1 state model, but more sig-ni�
antly. Singular values from POD, the 1-norm of the variable residuals,and 1-norm of the equation residuals are shown in Figure 3.7 on a semi-logplot. Singular values are generally used to determine the order of the redu
ed

Figure 3.7: Equation residuals have a strong 
orrelation to the variable resid-uals. The singular values also de
rease with an in
rease in model order, buthave limited ability to predi
t variable error.model for POD in the a posteriori approa
h. However, singular values havelittle predi
tive 
apability as to the absolute a

ura
y of the model states.Equation residuals are more dire
tly tied to variable error between the fullorder model states and redu
ed order model states. The variable residuals 
anbe predi
ted by linearizing the model about the a
tual solution (see Figure3.8). In this example, the �nite element dis
retized di�erential equations arenearly linear. The model nonlinearities are in the temperature dependen
e of71



Figure 3.8: The predi
ted and a
tual variable errors are shown. The predi
tionis ex
ellent for this example be
ause the model is near steady state and nearlylinear.the aluminum thermal 
ondu
tivity, heat 
apa
ity, and density. These prop-erties do not 
hange signi�
antly in the temperature range of the simulation(25ÆC to 100ÆC). Be
ause of near-linearity and proximity to steady-state, theequation residuals are ex
ellent predi
tors of the variable residuals (see Figure3.9). Further work needs to be done to validate the variable residual predi
tionwith models of varying degrees of nonlinearity and for simulations with fastdynami
s that are not 
aptured by the redu
ed model.3.4 Index-2 DAE Example: Large-S
ale Distillation ModelThe PDE example of Se
tion 3.3 is a simple example to demonstratethe proposed model redu
tion approa
h. A more 
omplex example is given in72



Figure 3.9: Using the equation residuals to predi
t variable error, the redu
edmodels show improved a

ura
y. In this 
ase, the 1 state redu
ed order modelis suÆ
iently a

urate. Without the 
orre
tion, a 3 state model is required forsimilar a

ura
y (see Figure 3.6).
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this se
tion to demonstrate model redu
tion of a large-s
ale DAE. The modeldeveloped for this example is more indi
ative of the 
omplexity of a real sim-ulation and 
ontrol problem for distillation. A diagram of the model is shownin Figure 3.10. The model is developed for a 
olumn of 22 trays, a 
ondenser,

Figure 3.10: The multi-
omponent distillation 
olumn model 
onsists of 22trays, multiple sidedraws, a 
ondenser, a reboiler, and a sump at the 
olumnbase.a sump and reboiler, 2 sidedraws, and 1 feed stream. A linear paraÆn mixturebetween C7H16 and C22H46 is modeled by lumping su

essive sets of 3 hy-dro
arbons into 5 pseudo-
omponents. The lumping pro
edure substantiallyredu
es the model size by 
onsidering only 5 spe
ies (C8H18, C11H24, C14H30,C17H36, C21H44) that approximate the thermo-physi
al properties of the entirerange. The simulated mixture is preheated and fed into the 
olumn at tray12. Sidedraws are taken from trays 5 and 16. The spe
ies of interest for this74



study is C11H24 (approximates the C10H22 to C12H26 range), found in high
on
entration (>90% purity) in the sidedraw from tray 5 (Sidedraw 1).Constru
ting a distillation 
olumn model from �rst prin
iples is ane�ort intensive task that 
an require months of work. Models 
an also be
onstru
ted from pro
ess simulators, su
h as HYSYS, but the model equa-tions are not exposed. The approa
h taken in this example was to develop anobje
t-oriented simulator that automati
ally 
onstru
ts the distillation modelvariables and equations from a subset of simpler models. This obje
t-orientedapproa
h is shown as a pyramid in Figure 3.11 with su

essive obje
t layers.Moving up the pyramid indi
ates su

essively more 
omplex models, formed

Figure 3.11: The distillation 
olumn model is 
onstru
ted from an obje
t-oriented simulator. More advan
ed models are simply 
ombinations of baselevel models 
onne
ted by streams.
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by 
ombining the basi
 models (vessels, splitters, mixers, 
ash 
olumns, distil-lation stages, et
.). The obje
t-oriented modeling approa
h ne
essitates modelequations in the open equation format (0 = f( _x; x; u)). For the distillation
olumn in this study, the model is an index-2 DAE with 3250 states. Theindex of a DAE refers to the number of times the algebrai
 equations mustbe di�erentiated to transform the model into an ODE. Only a small subset ofequations are index-2 with the majority being index-1. The index-2 equationsare the 22 bubble point temperature equations, with 1 in ea
h of the distil-lation stage sub-models. The model is redu
ed in three steps. The �rst stepinvolves model redu
tion at the most basi
 modular level. Ea
h stream (ora

umulation) in
ludes pressure, temperature, mole fra
tions, mass fra
tions,
on
entrations, molar 
ow rate (or moles), mass 
ow rate (or mass), volu-metri
 
ow rate (or volume), density, and enthalpy. Pressure, temperature,mole fra
tions, and molar 
ow rate (or moles) are used to uniquely spe
ify thestate of the mixture. All other variables are solved expli
itly as a fun
tion ofthese variables and 
an be removed from the impli
it set. Another redu
tionin variables is gained from the obje
t-oriented framework. Instead of de�ning
onne
tion equations, two 
onne
ting streams 
an be merged into one streamobje
t. The expli
it transformation and stream merging redu
es the modelsize from 3250 to 353 variables. The 353 variable model 
onsists of 107 di�er-ential variables and 246 algebrai
 variables. The index-2 DAE is 
onverted toindex-1 form by di�erentiating the index-2 algebrai
 equations. The di�erenti-ated bubble point temperature equations are used to remove the temperature76



derivative in the energy balan
e. By removing the temperature derivatives,the index-2 equations be
ome index-1 equations. In index-1 form, the alge-brai
 equations are expli
itly solved at ea
h fun
tion 
all, thereby removingthe 246 algebrai
 variables from the impli
it set. The remaining di�erentialvariables are redu
ed with POD to 2, 5, or 8 ODEs. The reboiler heating rateis stepped by 25% from 2.0e7 Jmin to 2.5e7 Jmin at 10 minutes. The index-2DAE of 353 variables is numeri
ally integrated with DASPK and 
omparedwith the redu
ed order models (see Figure 3.12). The 2 state model shows

Figure 3.12: The redu
ed models are 
ompared with the 353 state distillationmodel.signi�
ant steady state o�set, 
ompared with the other redu
ed models. The5 state model performs better in eliminating the o�set, but the dynami
 re-sponse deviates signi�
antly. The 8 state model has ex
ellent agreement withthe full 353 state model in both dynami
 response and gain. For this example,an 8 state model is re
ommended to approximate the full order model.77



Even though the model is drasti
ally redu
ed in size, no 
omputationaladvantage is a
hieved. The 353 state model step test simulation required 41CPU se
onds on a 2 GHz Celeron pro
essor, running FORTRAN. Based onLINPACK ben
hmarks for pro
essor MFLOPS (million 
oating point opera-tions per se
ond), the step test required approximately 30 billion 
oating pointoperations. Ea
h redu
ed model step response was generated in MATLAB, re-quiring approximately 31 billion 
oating point operations.There are several reasons that the redu
ed model does not substan-tially redu
e the 
omputational burden. The primary reason is that all theequation residuals must still be 
omputed to form the redu
ed order modelequation residuals. The 
al
ulation of equation residuals requires 22 billion
oating point operations for both the full and redu
ed models. This is an ir-redu
ible overhead, regardless of model size. With eÆ
ient DAE solvers, su
has DASPK, no 
omputational advantage is gained by solving the algebrai
equations expli
itly at ea
h residual evaluation. An amount of 
omputationaloverhead is also added in the index-2 to index-1 transformation.Clearly, model redu
tion is not 
omputationally advantageous for thisexample. Fortunately, there are a variety of other justi�
ations for modelredu
tion. One reason is the insight that model redu
tion provides. Eventhough the original model has thousands of variables, there are only 8 de-grees of freedom that 
ontrol the dynami
 response. Another reason is foro�-line storage and retrieval of 
ontrol solutions for eÆ
ient on-line implemen-tation. O�-line storage and retrieval presented in Chapters 4 and 5 is more78



eÆ
ient for smaller models, with an upper limit of about 100 states. Expli
itmoving horizon estimation of Chapter 6 s
ales quadrati
ally with states sosmaller models are more eÆ
ient, although typi
al examples have negligible
omputational expense. The model redu
tion strategies in this 
hapter arean important enabling step in a
hieving 
omputationally feasible large-s
alemodel-based 
ontrol solutions.3.5 Summary and Con
lusionsBe
ause many large s
ale DAE models 
onsist mostly of algebrai
 equa-tions, ODE model redu
tion te
hniques applied to DAE models are ine�e
tiveat signi�
antly redu
ing the overall order of the model. An adaptive DAEmodel redu
tion te
hnique is outlined in this 
hapter with spe
ial 
onsidera-tion for large s
ale models. The te
hnique 
onsists of three steps:1. Adaptive POD redu
es the number of di�erential states.2. Algebrai
 states are partitioned into su

essive impli
it sets of variablesand equations by re
onstru
ting the sparsity pattern into a lower trian-gular blo
k form.3. Expli
it transformation of algebrai
 and di�erential equations.Large s
ale models are often expressed in the open equation format. PODis applied to the open equation format by minimizing the equation residualsinstead of �nding roots. On
e a minimized solution is found, the equation79



residuals provide an estimate of the variable a

ura
y. The di�erential vari-able a

ura
y is 
ontrolled by in
reasing or de
reasing the order of the redu
edmodel. In this way, POD is made adaptive while dynami
ally 
onstru
ting thesimilarity transform. The estimate of the variable a

ura
y 
an also be usedto improve the redu
ed model a

ura
y. In the 1-D unsteady heat 
ondu
tionproblem, it was shown that the 
orre
tion redu
ed the DDOF from 3 statesto 1 state. To redu
e the algebrai
 variables, the variables and equationsare restru
tured into su

essively independent sets. These independent setsare expli
itly approximated with ISAT. ISAT dire
tly 
ontrols the approxi-mation error by expanding or adding pie
ewise linear regions. A 
owsheetmodel example showed a redu
tion of algebrai
 variables by a fa
tor of 8. Amulti-
omponent distillation 
olumn model is used todemonstrate redu
tionte
hniques on a large-s
ale index-2 DAE model. The model is redu
ed from3250 states to 8 states with little loss of a

ura
y.The expli
it transformation of di�erential equations 
an be a

om-plished by ISAT by storing and retrieving integration solutions. This topi
is further dis
ussed in Chapter 4 with some numeri
al examples with ISAT.None of the examples in this 
hapter used ISAT although the appli
able meth-ods are dis
ussed.
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Chapter 4Storage and Retrieval in Nonlinear ModelPredi
tive Control
Simulation of physi
al pro
esses des
ribed by di�erential-algebrai
 equa-tions (DAEs) often involves hundreds of di�erential equations and thousandsof algebrai
 equations. Storage and retrieval of these simulations may be de-sireable for a number of reasons. Some of these reasons in
lude real-timeoptimization, real-time dynami
 data re
on
iliation, 
omputational redu
tionof 
omplex simulations with DAE sub-models, and 
omputational redu
tion ofparameter sensitivity studies. Storing the simulations shifts the 
omputationalburden o�-line for a more eÆ
ient on-line implementation.This 
hapter fo
uses on a method to redu
e the 
omputational require-ments of nonlinear model predi
tive 
ontrol (NMPC) in real-time 
ontrol ap-pli
ations. Nonlinear model identi�
ation is generally seen as a major obsta
leto implementing NMPC. However, on
e an a

urate nonlinear model is iden-ti�ed, the 
omputational e�ort is often too great to implement the modelin a real-time appli
ation. The approa
h in this paper is a two step pro-
ess, model redu
tion followed by 
omputational redu
tion. Model redu
tionis a

omplished by 
omputing balan
ed 
ovarian
e matri
es for the dynami
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system. Computational redu
tion is a

omplished by using the method ofin situ adaptive tabulation (ISAT). ISAT was previously developed for 
om-putational redu
tion of turbulent 
ame dire
t numeri
al simulations and isextended to the sequential NMPC framework in this work. A 
ase study isperformed with a binary distillation 
olumn model with 32 states. By 
om-puting balan
ed 
ovarian
e matri
es and using ISAT, the 
omputational speedis 85 times faster than the original NMPC while maintaining the a

ura
y ofthe nonlinear model. Be
ause ISAT is a storage and retrieval method, it is
ompared to arti�
ial neural networks in another 
ase study, a dual CSTRmodel with 6 states. Open loop and 
losed loop step tests are performedto demonstrate the superior quality of ISAT in extrapolating outside of thetraining domain.The three most signi�
ant obsta
les to NMPC appli
ations are non-linear model development, state estimation, and rapid, reliable solution ofthe 
ontrol algorithm in real time [68℄. This 
hapter outlines an attempt toover
ome the last two obsta
les through a 
omputational redu
tion te
hniqueformerly developed for turbulent 
ombustion simulations [66℄. ISAT storesand retrieves open loop simulations and thereby redu
es the 
omputationale�ort of integrating 
ontinuous dynami
 �rst prin
iples models. In dire
t mul-tiple shooting implementations of NMPC [17℄ [83℄ open loop simulations areperformed many times until an optimal traje
tory of manipulated variablesis found. Also, in sequential state estimation (dynami
 data re
on
iliation)many open loop simulations are performed until an approximation to the un-82



measured states is obtained [47℄. Be
ause the open loop simulations o

upya majority of the 
omputational e�ort, ISAT has potential to greatly improvethe speed of state estimation and dynami
 optimization.An important assumption for ISAT is that nearby integrations willlikely be repeated. For storage and retrieval of a single step test or impulseresponse, very few integrations will likely be repeated and ISAT would likelyshow poor performan
e. In 
ontrol appli
ations, similar disturban
es to thesystem 
an o

ur frequently or step 
hanges to swit
h between produ
t grades
an happen regularly. The ISAT method is a framework for the estimator and
ontroller to a

ess data from previous 
al
ulations.4.1 Dire
t Methods for Solving NMPC ProblemsThere are multiple methods for solving equivalent NMPC problems. Se-quential, hybrid, and simultaneous formulations are three popular numeri
alte
hniques [17℄. The sequential approa
h minimizes an obje
tive fun
tion bymanipulating the de
ision variables over a �nite 
ontrol and predi
tion horizon.The simultaneous approa
h a

omplishes the same obje
tive by manipulatingboth the de
ision variables and the state values at 
ollo
ation nodes. Thehybrid approa
h is a 
ompromise between sequential and simultaneous ap-proa
hes by allowing for the use of state of the art DAE solvers to 
ontroldis
retization. A summary of the three approa
hes is given by Binder [17℄in Table 4.1. ISAT 
an be used to redu
e the 
omputational burden of se-quential and hybrid NMPC by storing and retrieving the DAE simulations.83



Table 4.1: Comparison of Dire
t Methods for NMPCSingle Shooting Multiple Shooting Collo
ationSolution approa
h sequential hybrid simultaneousUse of DAE solvers yes yes noSize of NLP small intermediate largeInitial guesses initial states all node values all node valuesSolves highly no yes yesunstable systemsDAE model ful�lled yes partially noin ea
h iteration stepBy expli
itly transforming the DAE model, the integrations of the model areredu
ed. Be
ause integrations of the model are the overwhelming majority of
omputational e�ort, a drasti
 redu
tion in 
al
ulation time 
an be a
hieved.In the se
tions 4.1.2 and 4.1.1 the sequential and hybrid NMPC approa
hesare summarized to reveal the appli
ation of ISAT.4.1.1 Hybrid NMPCHybrid NMPC is a 
ompromise between small NLP problem sizes ofthe sequential approa
h and the in
orporation of state 
onstraints in the si-multaneous approa
h. Hybrid NMPC also permits the use of state of the artDAE solvers to 
ontrol dis
retization error. The state estimation and regulatoralgorithms 
an be formulated as NLP problems.
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4.1.1.1 EstimatorDynami
 data re
on
iliation (�ltering of data, state estimation, et
.) isne
essary for NMPC when modeled states are not dire
tly measured or dataun
ertainty is high due to noise [47℄. ISAT 
an be employed in a sequentialdire
t multiple shooting approa
h to data re
on
iliation. The N -step �nite-horizon problem formulation is given by the following.minx;� �(x; �; y) def= �1Xk=�N [C(xk; yk; �k)℄ + C(x0; y0; �0) (4.1a)subje
t to y given; u given; xk+1 = F (xk; uk); yk = G(xk; uk) (4.1b)where � is the 
ost fun
tion, x is the sequen
e of model states (x = x�N ,x�N+1,. . . ,x0), � is the sequen
e of state 
onstraint violations (� = ��N ,��N+1, . . . ,�0),y is the sequen
e of measurements (y = y�N ,y�N+1, . . . ,y0), u is the sequen
e ofinputs (u = u�N ,u�N+1, . . . ,u�1), and C is the 
ost fun
tion at ea
h samplinginstant. This formulation is similar to the dynami
 optimization problem butinstead of �nding optimal inputs, optimal states are found that agree with themeasured data (y). The terminal 
onstraint was added to allow a di�erent
ost fun
tion for the most 
urrent measurement. With model-plant mismat
h,the most 
urrent measurement is likely to be the most reliable and shouldtherefore re
eive a greater weighting in the optimization.ISAT is used in the dire
t single and multiple shooting solution te
h-niques to state estimation [17℄ by storing and retrieving integrations of the85




ontinuous dynami
 nonlinear model. Data re
on
iliation must o

ur beforedynami
 optimization in order to provide an estimate of the 
urrent states(x0). It is 
riti
al for the 
y
le time of a real-time 
ontroller to operate fasterthan the response time of the pro
ess it is 
ontrolling. Cy
le time sele
tiondepends on many fa
tors in
luding plant/model mismat
h, stability marginsfor large disturban
es, 
onstraint violation toleran
e, and e
onomi
 fa
tors.4.1.1.2 RegulatorThe N -step �nite-horizon NMPC regulator is given by the followingNLP problem. The length of the horizon, N , may be di�erent for the estimatorand regulator. minx;u;��(x; u; �) (4.2a)subje
t tox0 given; xk+1 = F (xk; uk); Duk � d; Gxk � �k � g; �k � 0 (4.2b)In this problem formulation, � (the 
ost fun
tion) is typi
ally quadrati
 in x(states), u (inputs), and � (state 
onstraint violations) and therefore stri
tly
onvex. The symbols x, u, � denote sequen
es of ve
tors with x = (x1,x2,. . . ,xN ), u = (u0,u1, . . . ,uN�1), and � = (�1,�2, . . . ,etaN ). The sour
e ofnonlinearity 
omes from the model fun
tion F (xk; uk) that is solved by inte-grating the DAE model. ISAT �ts into the NMPC s
heme by storing andretrieving integrations of the 
ontinuous dynami
 model. Typi
ally the modelis expressed in the open equation 
ontinuous format F ( _x; x; u) = 0. ISAT86



numeri
ally transforms the nonlinear model into a dis
rete semi-expli
it formxk+1 = F (xk; uk). Details of this transformation are given in Chapter 24.1.2 Sequential NMPCSequential NMPC leads to the smallest NLP problems with the fewestnumber of optimization variables. In this approa
h, only the manipulated vari-ables are optimized while the state variables are expli
itly 
al
ulated at ea
hiteration. In addition to size, sequential NMPC is the simplest to program and
an be used with dense matrix solvers. In addition to hybrid NMPC, sequentialNMPC allows the use of DAE solvers to solve the model on the sub-node level.DAE solvers avoid the dis
retization 
hallenges of 
ollo
ation approa
hes. Theestimator and regulator NLP problem formulations are in
luded in this se
tionto show the appli
ability of ISAT in redu
ing the 
omputational burden.4.1.2.1 EstimatorThe optimization variables for sequential data re
on
iliation are thestates at N time steps ba
k from the 
urrent time (x�N ). The states at x�Nare manipulated to minimize the obje
tive fun
tion.minx�N �(x; y) def= �1Xk=�N [C(xk; yk)℄ + C(x0; y0) (4.3a)subje
t to y given; u given; xk+1 = F (xk; uk) (4.3b)where y and u are sequen
es of ve
tors given by y = (y�N ,y�N+1, . . . ,y0) andu = (u�N ,u�N+1, . . . ,u�1). ISAT is an integral part of the sequential NMPC87



estimator by integrating the nonlinear 
ontinuous dynami
 model, e�e
tivelytransforming the model into a dis
rete form (xk+1 = F (xk; uk)).4.1.2.2 RegulatorThe regulator formulation minimizes an obje
tive fun
tion by manip-ulating the de
ision variables (uk for k = 0; (N � 1)). Only manipulatedvariable 
onstraints are permitted in the sequential regulator. State variable
onstraints 
an be posed as soft 
onstraints in the obje
tive fun
tion. In hybridNMPC the state 
onstraints are softened with the introdu
tion of �, the state
onstraint violations. Without the softening of the state 
onstraints infeasiblesolutions may arise. One advantage of softening the state 
onstraints is thatproritization of the 
onstraints o

urs automati
ally. This may be desireableto meet safety 
onstraints while sa
ri�
ing less important obje
tives su
h ase
onomi
 
onstraints. minu �(x; u; �) (4.4a)subje
t to x0 given; xk+1 = F (xk; uk); Duk � d (4.4b)where x, u, and � represent the sequen
es of ve
tors (x1,x2, . . . ,xN ), (u0,u1,. . . ,uN�1), and (�1,�2, . . . ,�N ). Again, ISAT 
an be applied for 
omputationalredu
tion by storing and retrieving solutions to the initial value problems.Integrating the model for the sequential NMPC regulator requires about 99%of the 
omputational e�ort for the example problem shown in Se
tion 4.2.By redu
ing that 
omputational burden of integrating the model, the total88



NMPC 
y
le time is redu
ed by approximately 100 times. The 
omputationalredu
tion is very problem dependent, but typi
al performan
e on a handful ofproblems tested have been in the range of 20-500 times faster.4.2 Example: Sequential NMPCCombining model redu
tion and 
omputational redu
tion through ISATexploits the strengths of both methods. Generally, the model redu
tion stepde
reases the number of dynami
 variables but does not have suÆ
ient 
om-putational speed-up. Computational redu
tion is more e�e
tive with a lownumber of dynami
 variables and 
an redu
e the 
omputational time signi�-
antly. Figure 4.1 provides an overview of the 
ombined approa
h for the 32state distillation 
olumn model in Hahn and Edgar [34℄. A 
ase study has

Figure 4.1: Model and 
omputational redu
tion 
ow
hart.been performed with the distillation 
olumn model 
omparing NMPC/LMPC89



for the following models.1. Nonlinear redu
ed model with 5 dynami
 states and ISAT2. Nonlinear redu
ed model with 5 dynami
 states3. Nonlinear model with 32 states4. Linear model with 32 statesModels 1 and 2 are from full state model with 32 dynami
 variables, redu
edthrough trun
ation down to 5 dynami
 variables. Using the sequential ap-proa
h to MPC, the distillation 
olumn models are integrated multiple timesin order to �nd optimal 
ontrol moves that minimize a quadrati
 obje
tive
ost fun
tion.Certain operational, safety, or e
onomi
 
onstraints must be 
onsideredwhen developing 
ontrol solutions to real systems. These limitations 
an beimplemented as either hard or soft 
onstraints in the MPC framework. Soft
onstraints are 
osts added to the obje
tive fun
tion. In the author's opinion,soft 
onstraints are the more intuitive method be
ause the solver 
an 
hooseto violate a 
onstraint if the e
onomi
 performan
e of the entire plant willbe improved. In addition, the relative importan
e of ea
h soft 
onstraint isautomati
ally 
onsidered. Hard 
onstraints may be more desirable for somesituations su
h as when safety is a 
on
ern. In this sequential NMPC approa
h,hard 
onstraints 
an be implemented on the manipulated variables.90



The nominal operating point for the re
ux ratio is 3. Soft 
onstraintslimit the operating region to between 2 and 4. The re
ux ratio (manipulatedvariable) is adjusted every 5 minutes. The 
ontrol horizon is 10 minutes (2time steps) and the predi
tion horizon is 15 minutes (3 time steps). Typi
alindustrial MPC 
ontrol horizons are generally longer to approximate the in-�nite horizon solution. The 
oarse dis
retization and short time horizon inthis example are sub-optimal, but still show an instru
tive 
omparison of theredu
ed models in an MPC appli
ation. Longer time horizons should a
tuallyimprove ISAT's performan
e due to more model integrations with ea
h opti-mization. Be
ause ISAT stores and retrieves model integrations, an in
reasein integrations will train the database faster. The main ISAT tuning param-eter, �tol, is set to 10�3 for good a

ura
y. Figure 4.2 shows the 
losed loopresponses. During the �rst 
ontrol move, all MPC results are at the re
uxratio lower bound of 2. Figure 4.3 shows the speed-up fa
tor (
ompared to 32state NMPC) for the 5 optimization steps of Figure 4.2. The 
pu times shownon the graph are from 
omputations on a 2 GHz Celeron r
 pro
essor. Theresults from this simulation use a previously trained ISAT database with 169re
ords. Without a previously trained database ISAT averages 30 times fasterover the �rst 5 optimizations and adds 13 re
ords to the new database. This
ase study shows that ISAT 
an exhibit signi�
ant 
omputational redu
tionwhile preserving the a

ura
y of the nonlinear model.Although applied with a model redu
ed through balan
ed 
ovarian
ematri
es, ISAT for NMPC 
an be used with any model redu
tion te
hnique91



Figure 4.2: Closed loop response 
omparison for nonlinear MPC with ISATwith 5 states, nonlinear MPC with 5 states, nonlinear MPC with 32 states,and linear MPC.

Figure 4.3: Speed-up fa
tor for ea
h of the optimizations shown in Figure 4.2.The number above ea
h 
urve indi
ates the average optimization 
pu time ona 2 GHz pro
essor. 92



that redu
es the number of dynami
 degrees of freedom. In the 
ase wherethe model already has a low number of variables, ISAT 
an be applied dire
tlywithout a model redu
tion step.4.3 Example: ISAT vs. Neural Networks in ControlCal
ulationsAs mentioned previously, a neural net is a type of storage and retrievalmethod. Hen
e it is instru
tive to 
ompare ISAT and a neural net in a 
ontrolappli
ation. The example model is a dual CSTR model (see Figure 11) withone manipulated variable (heat addition to the �rst tank), six states, and one
ontrolled variable (temperature of the se
ond rea
tor). The model was usedby Hahn and Edgar [34℄ as a ben
hmark model for nonlinear model redu
tion(see Figure 4.4). The data were gathered from ISAT training. For the sake

Figure 4.4: Diagram of two CSTRs in series with a �rst order rea
tion. Themanipulated variable is the heating rate to the �rst CSTR.of 
omparison, the neural net used the same 1609 ISAT re
ords for training.The neural net was 
onstru
ted with MATLAB's neural net toolbox as one93



nonlinear hidden layer and a linear output layer (see Figure 4.5). Before the
Figure 4.5: Neural net with one hidden layer and one output layer. The hiddenlayer is a hyperboli
 tangent fun
tion and the output layer is a linear fun
tion.This neural net relates 7 inputs to 6 outputs.training, the data were appropriately s
aled for eÆ
ient implementation inthe neural net. Figure 4.6 shows a large open loop step test, one that isoutside those found in the training data. In this step test, the 
ooling isin
reased to the point that the irreversible rea
tion is extinguished and a largetemperature step results. Up to about 5 minutes of simulated time, the neuralnet and ISAT perform similarly. To this point both a

essed data that werewithin the training domain. Beyond 5 minutes ISAT is superior in agreementwith the non-redu
ed model due to a built in error 
he
king strategy. Before5 minutes, the ISAT method performs mostly retrievals. On
e ISAT dete
tslarge errors from retrievals, it starts adding re
ords to the database. Whenthe temperature rea
hes steady state, the ISAT algorithm performs retrievalsagain. ISAT and the neural net were 
ompared in a 
losed loop simulationwith a small set point 
hange inside the training domain (see Figure 4.7). All94



Figure 4.6: Open loop step test for the dual CSTR model. The error 
ontrol ofISAT adds re
ords to the database when extrapolating outside of the trainingdomain.

Figure 4.7: Small 
losed loop set point 
hange within the training domain.
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three show ex
ellent agreement as they rea
h the new set point along the sametraje
tory. Next, a large set point 
hange was performed to a

ess a regionof state spa
e outside of the training domain (see Figure 4.8). For this step

Figure 4.8: Large 
losed loop set point 
hange outside of the training domain.
hange, the neural net 
ontroller eventually be
omes unstable. This is be
ausethe neural net does not have the 
apability to extrapolate outside of the datathat was used to train it. In this respe
t, the ISAT method is superior be
auseit dete
ts when it has gone outside of the training domain and integrates themodel to generate and add new data to the training set.ISAT outperforms neural nets be
ause of the internal error 
ontrol thatmanages the amount of error. The only tuning parameter for ISAT is theamount of permissible error, �tol. On the other hand, neural nets have multipletuning parameters su
h as number and type of layers, number of nodes in ea
h96



layer, and a training optimization toleran
e. ISAT requires no optimizationstep and 
an begin working in situ with no prior training set.4.4 Parameter Sensitivity StudiesThe dynami
s of a 
ontrolled pro
ess 
an 
hange due to fouling, distur-ban
es, unusual operating states, ambient variations, and 
hanges in produ
tspe
i�
ations [76℄. When the pro
ess dynami
s 
hange signi�
antly, an adap-tive model is automati
ally tuned to provide satisfa
tory 
losed loop perfor-man
e. Adaptive 
ontrol 
an be a
hieved in the NMPC framework with theaddition of adjustable parameters (�) in the nonlinear model.dxdt = f(x(t); u(t); �) (4.5)0 = g(x(t); u(t); �) (4.6)The adjustable parameters 
an be obtained from a �rst prin
iples model of thedisturban
e or a least squares optimization of the model using plant histori
aldata. The addition of adjustable parameters poses an interesting 
hallengefor ISAT's error 
ontrol strategy. Be
ause ISAT is a storage and retrievalmethod, drasti
ally 
hanging the parameters 
an invalidate the stored data.Therefore, a strategy will be devised to gradually 
hange the parameters andsimultaneously �lter out the una

essed data. By 
ontrolling the parametertransition, ISAT will still show signi�
ant 
omputational redu
tion over theoriginal NMPC. Another advantage of gradual parameter transition is thatit avoids possible instabilities that 
an o

ur by swit
hing 
ontrollers on-line.97



Gradual parameter transition is a natural expression of the pro
ess dynam-i
s when the system dynami
s 
hange slowly, su
h as for fouling or 
atalystdea
tivation.There may be some situations where the parameter transition shouldo

ur qui
kly (i.e. grade 
hanges, large disturban
es). In these situations, agradual parameter transition is not appropriate. For a large 
hange in theparameters, the ISAT database provides a �rst order approximation to thenonlinear model integration while new sensitivities are 
omputed. In this waythe real-time 
ontroller requirements are automati
ally met with a simpli�edmodel. On
e the ISAT database is rebuilt, the 
ontroller will improve a

ord-ing to the predi
tive 
apabilities of the full nonlinear model.4.5 Summary and Con
lusionsThis 
hapter outlines a new te
hnique for 
omputational redu
tion forNMPC. In this approa
h, model redu
tion through balan
ed 
ovarian
e matri-
es is followed by 
omputational redu
tion through ISAT. Although previouslydeveloped for turbulent 
ame simulations, ISAT 
an be dire
tly applied be-
ause many open loop simulations are performed to �nd optimal inputs to the
ontrol problem. A 
ase study with a binary distillation 
olumn model showeda speedup of 85 over the original NMPC. Like neural nets, ISAT redu
es the
omputational 
ost through storage and retrieval. Another 
ase study with adual CSTR showed the advantage of using ISAT over neural nets when thesimulation a

essed data outside the training domain.98



Chapter 5Nonlinear Model Predi
tive Control - TheExpli
it Solution
Model predi
tive 
ontrol (MPC) has traditionally been an expensivete
hnology, 
on�ned to appli
ations that justify substantial modeling e�ort,implementation 
osts, and 
omputational resour
es (fast 
omputers). Theappli
ation of MPC has also been limited to pro
esses with slow 
y
le times(slow pro
esses) be
ause it requires the solution to a 
onstrained �nite-horizonlinear programming (LP) or quadrati
 programming (QP) problem at ea
hsampling instant. The su

ess (or failure) of MPC is due to the a

ura
y of theunderlying model. This model is used to predi
t unmeasured or noisy states,
oordinate multiple de
ision variables for optimal 
ontrol, and meet safetyand operational 
onstraints. MPC is a type of optimal 
ontrol be
ause theoptimization minimizes a 
ost fun
tion subje
t to 
onstraints. At the solutionof the minimized obje
tive fun
tion the only way to get better performan
eis to in
rease the a

ura
y of the model, relax 
ontraints, or modify the 
ostfun
tion to re
e
t more realisti
 pri
e stru
tures.For some appli
ations linear models are not suÆ
iently a

urate. Whenmodels or 
onstraints are nonlinear, a nonlinear programming (NLP) opti-99



mization must be solved at ea
h 
y
le. Nonlinear MPC (NMPC) problems areoften signi�
antly more diÆ
ult to solve than QP problems solved in MPC.One diÆ
ulty that non-
onvex problems 
an lead to multiple lo
al minima.Global minimum solvers are still the subje
t of a
tive resear
h. The in
reasein problem diÆ
ulty further restri
ts NMPC appli
ations to those with slowerpro
esses and faster 
omputers.PID 
ontrol, 
ompared to MPC, is a relatively 
heap te
hnology that
an be applied with slow 
omputers to fast pro
esses. However, PID 
ontrolis not formulated to provide optimal model-based 
ontrol, e�e
tive handlingof 
onstraints, or 
oordination of multiple de
ision variables.5.1 Expli
it MPC (Linear Models)MPC is now suggested as a 
andidate to repla
e PID 
ontrol thanksto re
ent developments in 
omputational redu
tion of the MPC algorithm [56℄[61℄ [65℄. By 
omputing all possible LP solutions o�-line, the on-line portionis redu
ed to some 
onditional 
he
king and simple matrix multipli
ations.This modi�
ation extends the potential of MPC to fast pro
esses and simple
omputers (e.g. integrated 
ir
uit 
hips).The linear quadrati
 regulator (LQR) with a linear model and quadrati
obje
tive fun
tion is a spe
ial 
ase of MPC without 
onstraints. Without
onstraints the linear solution of the Ri

ati equation is optimal for all possibleinitial states. An on-line implementation of LQR would 
onsist of simplymultiplying the state ve
tor by the gain matrix to obtain the optimal 
ontrol100



ve
tor. With 
onstraints, the optimal solution is a pie
ewise aÆne (PWA)linear fun
tion of the initial states. The linear regions are often refered to as
hara
teristi
 or 
riti
al regions (CRs). Ea
h region is bounded by a set of
onstraints. When the 
onstraint boundary is 
rossed, the linear solution mayno longer be exa
t. On-line retrieval of expli
it MPC with 
onstraints in
ludesone extra step: lo
ation of the region with the 
orre
t a
tive set of 
onstraints.On
e this region is lo
ated (via the 
he
king of several 
onditions), the rest ofthe 
omputation is identi
al to the LQR implementation.5.1.1 Parameterization of Initial StatesThe development of multi-parametri
 linear programs (mp-LPs) startedwith the formulation of Gal and Nedoma [29℄ [28℄. A
evedo and Pistikopoulosextended sensitivity analysis to mixed-integer linear programming (MILP) bysolving mp-LP problems [2℄ [1℄. Dua and Pistikopoulos generalized the modelform by developing multiparametri
 analysis of mixed-integer nonlinear pro-gramming (MINLP) [24℄. Bemporad et al. applied the mp-LP work to MPCappli
ations with linear obje
tive fun
tions [10℄ [15℄ and mixed-integer models[11℄. Pistikopoulos et al. extended the theory of mp-LPs to in
lude multi-parametri
 quadrati
 programs (mp-QPs) [64℄. This extension made possiblethe expli
it LQR solution subje
t to 
onstraints or in other words, expli
itMPC [14℄ [12℄.Even though an exa
t expli
it solution is possible in theory for 
onvexproblems, there were some serious implementational issues that limited appli-101




ations of expli
it MPC to small systems, few 
onstraints, and short 
ontrolhorizons [65℄. A signi�
ant e�ort has been exerted to redu
e these limitations.Bemporad and Filippi introdu
ed suboptimal expli
it MPC [13℄. Adja
ent
riti
al regions are merged when an error toleran
e 
an be met. Rossiterand Grieder used an interpolation s
heme to redu
e the storage requirementsby 2-3 times and redu
e the on-line 
omputational 
osts by 10 times [72℄.Johansen and Gran
harova proposed a te
hnique to logrithmi
ally limit theon-line sear
h times with a stru
tured binary tree [31℄ [44℄. O�-line, the re-gions are divided into su

essively smaller hyper
ubes until the error toleran
esare met at ea
h of the verti
es. Grieder and Morari performed a 
omplexityanalysis of the on-line implementation to redu
e the 
ontroller 
omplexity byorders of magnitude at a performan
e 
ost of <%1 [32℄. Tondel et al. in-
reased the eÆ
ien
y of the o�-line 
al
ulation by deriving a new explorationstrategy for sub-dividing the parameter spa
e [86℄ [87℄. Even with all of theseimprovements, the largest MPC problem reported in the literature is 
ontrolof a laboratory model heli
opter. The problem has 6 states, 2 manipulatedvariables, 8 
onstraints, is dis
retized in 0.01 se
ond segments, has a 
ontrolhorizon of 0.5 se
onds, and 4 input parameters [86℄.5.1.2 Parameterization of A
tive SetsIn deriving state parameterized expli
it MPC, the problem is trans-formed into a quadrati
 program form. In this form, Seron et al. suggestedthat the optimal 
ontrol 
an be parameterized by the a
tive set instead of102




urrent states [77℄. While Seron, et al. proposed an analyti
al solution, Pan-no

hia et al. opened the approa
h to non-trivial problems by 
reating anumeri
al algorithm to solve the a
tive set parameterized problem [60℄. Ea
hof the 
onstraints 
an either be ina
tive, at the lower bound, or at the up-per bound. O�-line a table of all possible solutions is generated. The on-lineportion 
onsists of �nding the table value that predi
ts non-negative lagrangemultipliers and manipulated variables (MVs) inside the 
onstraint bounds.Storage and retrieval of a 
onstrained linear quadrati
 
ontroller solution forSISO systems has been proposed to repla
e PID 
ontrol [61℄. Two limitationsof this algorithm are (1) 
onstraints are restri
ted to lower and upper boundson the MVs and (2) problem s
aling is 3N , where N is the horizon length. Thetheory for MIMO systems follows by simple extension, but full enumerationof all a
tive sets is prohibitive due to 3mN s
aling, where m is the number of
onstrained inputs.Muske and Badgwell developed o�set free 
ontrol in MPC by 
reat-ing input or output integrating disturban
es [57℄. Panno

hia and Rawlingsshowed that an integrating disturban
e must exist for every measurement toguarantee o�set free 
ontrol [59℄ [62℄. The o�set free 
ontrol is in
luded in the
onstrained LQ 
ontrol of Panno

hia et al. [61℄. Sakizlis et al. followed byin
orporating o�set free 
ontrol into state parameterized expli
it MPC [73℄.
103



5.2 Expli
it NMPC (Nonlinear Models)Fia

o developed the foundation for expli
it NMPC with a sensitiv-ity analysis of nonlinear systems [27℄. Be
ause there is rarely an exa
t ex-pli
it solution to NMPC, all 
omputational redu
tion te
hniques for NMPCare approximate. The e�e
tiveness of a parti
ular te
hnique depends on the
ontrol of the approximation error, storage requirements, speed of the o�-linealgorithm, speed of the on-line algorithm, and guarantees of stability. An ex-pli
it solution of NMPC in this se
tion refers to an expli
it numeri
al solutionthrough storage and retrieval of previous 
omputed solutions. An analyti
expli
it solution is not attempted.5.2.1 Dynami
 ProgrammingDynami
 programming was originally proposed by Bellman to solveoptimal 
ontrol problems [8℄. The goal of dynami
 programming is to �ndan optimal 
ost-to-go fun
tion, whi
h 
an be used to solve for an optimaltraje
tory of inputs as a fun
tion of initial states. Re
ent approa
hes su
has sequential reinfor
ement learning avoid dynami
 programming dimension-ality problems by operating on states as they o

ur sequentially [6℄. Also,neuro-dynami
 programming [45℄ [16℄ over
omes the 
urse of dimensionalityby approximating the 
ost-to-go fun
tion with a neural net. Yet another te
h-nique that balan
es a

ura
y with 
omputational speed is suboptimal dynami
programming with error bounds [48℄. In summary, dynami
 programming's
urse of dimensionality has been partially remedied by algorithms that seek104



to redu
e the storage and sear
h times. However, appli
ations to large s
aleproblems are still infeasible.5.2.2 Arti�
ial Neural NetworksNeural nets are an e�e
tive tool to represent nonlinear models. Neu-ral nets are networks of adaptable nodes whi
h, through a pro
ess of learningfrom task examples, store experimental knowledge and make it available forlater use [5℄. The 
exibility and general appli
ability of neural nets have beendemonstrated by diverse appli
ations a
ross many �elds of study. Kohonennets are used in 
lassi�
ation and fault dete
tion, n-tuple nets in image pro-
essing and vision, and both multi-layer per
eptrons and radial basis fun
tionsare used in signal pro
essing and 
ontrol [90℄. Neural nets are an e�e
tive toolto in
orporate histori
al data for use in state estimation and 
ontrol, although�ltering and pre
onditioning the plant data are often time-
onsuming tasks[67℄. Parisini and Zoppoli suggested that multilayered feedforward neural net-works 
ould store optimal 
ontrol (outputs) as a fun
tion of the 
urrent states(inputs) [63℄. One widely known limitation of neural nets is the inability toextrapolate outside the training domain. This is due to a la
k of expli
it error
ontrol within the algorithm.5.2.3 Multiparametri
 NMPCFor multiparametri
 analysis, suboptimal expli
it MPC te
hniques havebeen developed to allow nonlinear models, nonlinear 
onstraints, and non-105



quadrati
 obje
tive fun
tions. Bemporad et al. introdu
ed multiparametri
approximation of MINLP problems [9℄. Johansen formerly utilized an mp-QP approximation to solve the mp-NLP sub-problem[42℄ but later de
ided touse the in
reased a

ura
y and 
omputational expense of NLP sub-problems[43℄. Hale and Qin [36℄ take a similar approa
h as Johansen but use simpli
esinstead of hyper
ubes to map the nonlinear surfa
e. A predi
tor-
orre
tormethod is used to obtain new points. The predi
tor is a linear extrapolationfrom an existing point to a new point of interest. If the a
tive set of 
on-straints 
hanges, a 
ondition is applied to �nd the a
tive set boundary [35℄.The 
orre
tor uses a Newton's method type algorithm to solve the NLP that
onverges rapidly be
ause of the linear predi
tor initialization. One drawba
kis poor 
omputational s
aling with in
reasing number of parameters (in this
ase, number of states), but polynomial s
aling in other dimensions.5.3 Approximate Nonlinear MPCConsider the 
ontinuous-time nonlinear di�erential algebrai
 equation(DAE) system 0 = f( _x(t); x(t); u(t); �) (5.1)where _x(t) 2 Rp is the state derivative, x(t) 2 Rn is the state, u(t) 2 Rm isthe input, and � 2 Rq is a set of parameters. The dimension of _x is equal tothat of x for ODE models. The dis
rete-time nonlinear DAE system 
an beobtained by numeri
ally integrating Equation 5.1 as an initial value problem(IVP), resulting in the expli
it form that is solved sequentially on a sub-node106



level in optimal 
ontrol problemsxk+1 = f(xk; uk; �) (5.2)or by orthogonal 
ollo
ation, 
reating an impli
it form that is solved on asub-node level simultaneously in optimal 
ontrol0 = f(xk+1; xk; uk; �) (5.3)where xk 2 Rn and u(t) 2 Rm . The indi
es (k) refer to the dis
retized stepwith the 
urrent time being 0. In optimal 
ontrol, when a sampling instanto

urs the 
urrent time is shifted to zero.5.3.1 NMPC FormulationFor the 
urrent state (x0) and parameters (�), a typi
al NMPC algo-rithm solves the optimization problem��(x0; u�1; �) = minx;u  NXi=1 fi(xi; ui�1; �)! (5.4a)subje
t to x0 given (5.4b)u�1 given (5.4
)0 = f(xk+1; xk; uk; �) k = 1; : : : ; N � 1 (5.4d)Dxk � d k = 1; : : : ; N (5.4e)Euk � e k = 0; : : : ; N � 1 (5.4f)107



G (uk � uk�1) � g k = 0; : : : ; N � 1 (5.4g)where D, E, and G are matri
es and d, e, and g are ve
tors of appropriate di-mension. The quantities x and u refer to the sequen
e of ve
tors (x1,x2,. . . ,xN )and (u0,u1,. . . ,uN�1), respe
tively. The optimal solution to the NMPC prob-lem is a unique fun
tion of the 
urrent states x0, previous input u�1, andthe adjustable parameters, �. The adjustable parameters 
an be feedforwardor feedba
k model variables. An example of feedba
k variables are input oroutput integrating disturban
es for o�set free 
ontrol [57℄ [62℄. Feedforwardparameters a

ommodate anti
ipated shifts in pro
ess dynami
s or multiplemodel swit
hing.After the optimal 
ontrol problem is solved the �rst input (u�0) is in-je
ted into the pro
ess. At the next sampling instant, a new estimate of the
urrent states and parameters is obtained. NMPC is often referred to as re
ed-ing horizon 
ontrol (RHC) be
ause the horizon of the optimal 
ontrol problemshifts as time advan
es. The same optimal 
ontrol problem is solved at ev-ery sampling instant, deterministi
ally dependent on the updated variablesassembled in �. � = 24 x0u�1� 35 (5.5)Even though the entire traje
tory of optimal inputs are solved (u� = fu�0; u�1; : : : ; u�N�1g),the only one required for optimal 
ontrol is the �rst input, u�0. The storageand retrieval of optimal 
ontrol 
an therefore be simpli�ed to u�0 as a uniquefun
tion of �. 108



5.3.2 Sensitivity of Optimal Control to ParametersGanesh and Biegler developed a redu
ed hessian strategy for sensitivityanalysis of optimal 
owsheets [30℄. A part of their sensitivity derivation is givenhere. Sensitivities lo
ally approximate the optimal solution with a 1st ordersolution. NMPC 
an be expressed more 
ompa
tly with adjustable parameters�, inequality 
onstraints g, and equality 
onstraints h.��(�) = minx;u (�(x; u)) (5.6a)subje
t to � given (5.6b)g(x; u; �) � 0 (5.6
)h(x; u; �) = 0 (5.6d)where x and u refer to the sequen
e of ve
tors (x1,x2,. . . ,xN ) and (u0,u1,. . . ,uN�1),respe
tively. The NLP is solved by minimizing the Lagrangian LL(x; u; �) = �(x; u; �) + �g(x; u; �) + �h(x; u; �) (5.7)where � is the obje
tive fun
tion, � is the inequality 
onstraint multiplier,and � is the equality 
onstraint multiplier. The Karush-Kuhn-Tu
ker (KKT)
onditions are satis�ed at the optimal solution.r�(x; u; �) +rg(x; u; �)�+rh(x; u; �)� = 0 (5.8a)�g(x; u; �) = 0 (5.8b)109



� � 0 (5.8
)g(x; u; �) � 0 (5.8d)h(x; u; �) = 0 (5.8e)The solution sensitivity reveals how the optimal solution 
hanges with devia-tions in the the parameters �. In order for a lo
al sensitivity to exist, a few
onditions must be met. First, the Lagrangian must be twi
e 
ontinuouslydi�erential in x and u and on
e in �. Se
ond, the 
onstraint gradients mustbe linearly independent at the optimal solution. Finally, the se
ond-ordersuÆ
ien
y 
onditions must be met. In generating the lo
al sensitivities it isassumed that the a
tive set does not 
hange. The a
tive 
onstraints arerxL(x; u; �) = 0 (5.9a)ruL(x; u; �) = 0 (5.9b)gA(x; u; �) = 0 (5.9
)h(x; u; �) = 0 (5.9d)where gAis the subset of g that are at the equality bound. The sensitivitiesare derived by taking the total derivative of the a
tive 
onstraints listed inEquation 5.9.d[rxL(x; u; �)℄ = rxxLdx +ruxLdu+rxgAd�+rxhd� +r�xLTd� = 0(5.10a)d[ruL(x; u; �)℄ = rxuLdx +ruuLdu+rugAd�+ruhd� +r�uLTd� = 0(5.10b)110



dgA(x; u; �) = rxgTAdx +rugTAdu+r�gTAd� = 0 (5.10
)dh(x; u; �) = rxhTdx +ruhTdu+r�hTd� = 0 (5.10d)Ea
h of the equations in 5.10 is divided by d�. In the limit as d� shrinks tozero the lo
al sensitivities be
ome (with some rearrangement)2664 r�xTr�uTr��Tr��T 3775 = �2664 rxxL rxuL rxgA rxhruxL ruuL rugA ruhrxgTA rugTA 0 0rxhT ruhT 0 0 3775�1 2664 r�xLTr�uLTr�gTAr�hT 3775 (5.11)where r�x is the state sensitivity, r�u is the input sensitivity, r�� is thea
tive inequality 
onstraint multiplier sensitivty, and r�� is the equality 
on-straint multiplier sensitivity. Equation 5.11 shows that the only elements re-quired for a sensitivity 
al
ulation are the exa
t hessian and Lagrangian se
ondpartials with respe
t to the parameters. With analyti
al derivatives throughautomati
 di�erentiation the sensitivity 
al
ulation speed 
an be greatly im-proved [91℄.5.3.3 De�ning the Criti
al RegionFor un
onstrained LQ problems the lo
al sensitivity gives an exa
t op-timal solution over all state spa
e. In this 
ase, the sensitivity is equivalent tothe un
onstrained LQR gain matrix. For 
onstrained LQ problems the opti-mal solution is linearly dependent on the adjustable parameters � within thesame a
tive 
onstraint region. An individual query point �q 
an be tested todetermine if it lies within this 
riti
al region (CR). A 1st order approximation111



of optimal variables at �q is determined.xq = x +r�x (�q � �) (5.12a)uq = u+r�u (�q � �) (5.12b)�q = �+r�� (�q � �) (5.12
)Equation 5.13 gives the quali�
ations for a point within the CR.gI(xq; uq; �q) � 0 (5.13a)�q � 0 (5.13b)where gI is the set of ina
tive inequality 
onstraints. If any of these quali�-
ations are not met it indi
ates that the a
tive set 
hanged and the point liesoutside the CR.5.3.4 ISAT Approximate ControlIn situ adaptive tabulation (ISAT) dynami
ally stores and retrievesnonlinear fun
tions with pie
ewise linear approximations. The error 
ontrolstrategy proposed in Pope [66℄ and with further details given by Hedengrenand Edgar [40℄ may be ine�e
tive for problems with 
onstraints. The 
on-straints 
an form a non-
ontinuously di�erentiable or non-
ontinuous fun
-tion. This leads to regions of a

ura
y (ROA) that may not be ellipsoidal inthe limit as the error toleran
e approa
hes zero. Modi�
ations to the ISATalgorithm are made to maintain error 
ontrol for optimal 
ontrol storage and112



retrieval. Spe
i�
ally, the initial estimate of the ROA is eliminated for nonlin-ear problems and restri
ted to the a
tive set 
onstraint region of 
onstrainedLQ problems. Additionally, ellipsoid of a

ura
y (EOA) expansions are madeonly after an expanded validity 
he
k is performed. This se
tion is a tailoredversion of ISAT for re
eeding horizon 
ontrol. A general exposition on ISATis found in Chapter 2, but in a formulation for general nonlinear fun
tion ap-proximation. The notation is adapted here for the 
ontrol problem and newISAT features are introdu
ed to exploit the unique properties of 
LQ solutions.The basi
 unit of the ISAT database is the re
ord. An ISAT re
ord 
onsistsTable 5.1: Elements of the ISAT re
ord for NMPC storage and retrievalISAT Re
ord Element Symbol and DimensionIndependent variables � 2 Rn+m+qDependent variables u�0 2 RmSensitivity A 2 Rm x (n+m+q)Ellipsoid of a

ura
y M 2 R(n+m+q) x (n+m+q)Criti
al region (
LQ only) CR 2 R(n+q) x (n+m+q)of the independent variables (�), the dependent variables (u�0), a sensitivitymatrix (�u�0�� ), an ellipsoid of a

ura
y (EOA), and a 
riti
al region (CR) (seeTable 5.1). The memory required to store an individual ISAT re
ord s
aleswith O((n+m+ q)2).5.3.4.1 First S
enario: RetrievalWhen ISAT re
eives a database request, it performs one of three s
enar-ios. In the �rst s
enario, the query (�q1) is inside a region of a

ura
y termed113



the ellipsoid of a

ura
y (EOA), 
entered about a 
lose stored re
ord, �s (seeFigure 5.1). Retrievals are extremely fast be
ause 
omputations are limited to
Figure 5.1: A retrieval o

urs when the query point (�q1) is within the ellipsoidof a

ura
y (EOA)a binary tree sear
h, 
onditional 
he
king, and matrix-ve
tor multipli
ations.When the ISAT database is mature most of the operations are retrievals.5.3.4.2 Se
ond S
enario: EOA GrowthIn the se
ond s
enario, the query is outside the EOA but inside theerror toleran
e for u�q and u�s�q. In this 
ase, the EOA is expanded to in
ludethe tested query point (see Figure 5.2). For the se
ond and third s
enarios,ISAT has no 
omputational advantage over dire
tly solving the original NLPproblem on-line. If real-time requirements prohibit an on-line NLP solution,an approximation to the optimal 
ontrol 
an be obtained by using û�q anyway,but no guarantees of a

ura
y or stability are provided.5.3.4.3 Third S
enario: AdditionIn the �nal s
enario, the query is outside the EOA and outside the errortoleran
e for u�q or u�s�q. A new ISAT re
ord is added with an initial estimate of114



Figure 5.2: The EOA is grown when the query point is outside the EOA butwithin the error toleran
e for u�0the ROA (see Figure 5.3). For 
onstrained LQ problems, the optimal 
ontrolsolution is linear with respe
t to �. Therefore, an initial estimate of the ROAis the a
tive set state spa
e. For nonlinear problems with 
onstraints, thereis no a

ura
y guarantee. In this 
ase, the initial estimate of the ROA is azero-volume ellipsoid 
entered at u�q.5.3.5 Summary of the ISAT AlgorithmISAT 
an be summarized in 13 steps. Steps 1-5 are the retrieval steps,6-11 attempt growth of the EOA, and 12 is a database addition. The last stepis to inje
t either u�0 or û�0 into the pro
ess. Retrievals produ
e approximateoptimal 
ontrol within the desired error toleran
e �tol whereas growths andadditions produ
e exa
t answers.1. lo
ate nearby re
ords with multiple binary tree sear
hes115



Figure 5.3: A re
ord is added to the ISAT database when query point is outsidethe EOA and error toleran
e for u�02. 
ompute û�q = us + A (�q � �s)3. (for QP problems) if �q � 0 and gI(xq; uq; �) � 0 go to 54. if �TqM�q � �tol go to 55. set û�0 = û�q, go to 136. solve the NLP (or QP) for �q7. if ��û�q � u�q�� > �tol, go to 128. solve the NLP (or QP) for (2�s � �q) to get u�2s�q9. 
ompute û�2s�q = us + A (�s � �q)10. if ��u�2s�q � û�2s�q�� > �tol, go to 1211. grow EOA, set u�0 = u�q, go to 13116



12. add a new re
ord to the database with a zero volume EOA (if QP, initialROA is given by �q � 0) and gI(xq; uq; �) � 013. inje
t u�0 for optimal 
ontrol or û�0 for approximate optimal 
ontrol5.4 Temperature Control of an Exothermi
 CSTRA simple a
ademi
 problem is 
onsidered to show the appli
ability ofISAT to storage and retrieval of optimal 
ontrol. A perfe
tly mixed, adiabati
CSTR has an exothermi
 rea
tion of 
ompound A transformed into 
ompoundB. Temperature 
ontrol of the rea
tor is a 
hallenge due to the highly exother-

Figure 5.4: Diagram of the exothermi
 CSTR. The two state variables rea
-tor 
on
entration 
A and temperature T are 
ontrolled by the ja
ket 
oolingtemperature T
mi
 rea
tion (�Hrxn = 50,000 Jmol ). The temperature of the 
uid in the ja
ketsurrounding the CSTR is manipulated to 
ontrol the temperature of the re-a
tor 
uid. The dynami
s of the rea
tor are des
ribed by a set of ODEsgenerated from a mole balan
e on A and an energy balan
e on the rea
tor.117



At a 
onstant 
ooling temperature of 305 K, the rea
tor temperaturespikes 
ontinuously as the rea
tor goes through 
y
les of 
on
entration buildupfollowed by moments of intense rea
tion (see Figure 5.5). The unsteady re-

Figure 5.5: Unsteady response of the rea
tor temperature due to moments ofintense rea
tion followed by periods of gradual 
ooling.sponse of the rea
tor with a 
onstant 
ooling ja
ket temperature suggests thatunsteady 
ontrol may be ne
essary when pushing the rea
tor to the stabilitylimit. A sequential dire
t single shooting approa
h to dynami
 optimizationis used as the 
ontrol algorithm. The N -step �nite horizon NMPC is given bythe following NLP problem.��(x0; Tsp) = minx;u  NXi=1 (xi � �)T Q (xi � �)! (5.14a)subje
t to x0 given (5.14b)xk+1 = f(xk; uk) k = 1 : : :N (5.14
)118



Euk � e k = 0 : : :N � 1 (5.14d)whereN = 40 Q = � 0 00 1 � E = � 1�1 � e = � 320�280 � � = � 0Tsp �(5.14e)Here x and u refer to the sequen
e of ve
tors (x1,x2,. . . ,xN ) and (u0,u1,. . . ,uN�1),respe
tively. In this problem formulation, � (the 
ost fun
tion) is quadrati
in x (states) and therefore stri
tly 
onvex. The sour
e of nonlinearity 
omesfrom the model fun
tion f(xk; uk) that is solved by integrating the ODEmodel.With a 
onstant rea
tor temperature set point, the �rst optimal 
ontrol stepu�0 is a unique fun
tion of the 
urrent 
on
entration and temperature of therea
tor. The optimal 
ooling ja
ket temperature (u�0 = T �
 ) to drive the rea
tortemperature to 320 K was 
al
ulated for rea
tor 
on
entrations between 0 and1 molm3 and rea
tor temperatures between 310 and 330 K (see Figure 5.6). Eventhough the model is highly nonlinear (rea
tion rate depends exponentially ontemperature), the optimal 
ontrol surfa
e is surprisingly linear with respe
t to�. With 
lipping of the ISAT predi
ted value to meet the 
ontrol 
onstraints,only one ISAT re
ord is required to store all of the optimal 
ontrol solutionswith an error toleran
e of 1.0 K (see Table 5.2). A realisti
 
ontrol problemwas set up to test ISAT for a few set point 
hanges. The 
ontrol horizon isdis
retized into 1 minute segments. The estimator horizon is 40 minutes andthe regulator horizon is 60 minutes. The temperature is sampled every 5 se
-onds and in
ludes gaussian distribution noise with a standard deviation of 2K. Con
entration is sampled every 10 se
onds with a standard deviation of119



Figure 5.6: The optimal ja
ket temperature (T �
 ) is a unique fun
tion of rea
tor
on
entration (
A), rea
tor temperature (T ), and rea
tor temperature set point(Tsp). In this �gure, the set point is �xed (Tsp = 320K) and 
A and T arevaried.
Table 5.2: Elements of the ISAT re
ord for the CSTR exampleElement Value�T [
A T Tsp℄ = [0:9 315:0 318:0℄u�0 T
 = 306:8A [�
A�T
 �T�T
 �Tsp�T
 ℄ = [�6:227 � 4:081 4:889℄M 03 x 3CR N=A
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0.1 molm3 . Plant-model mismat
h is introdu
ed by using an a
tivation energy ofthe �rst order (A ! B) rea
tion of 8750 Jmol for the model and 8740 Jmol forthe plant. At the �rst sampling time the plant state is 0.951 molm3 and 312.8K. The estimated model states are 0.9 molm3 and 300 K. The initial set pointis 315 K. At 50 minutes the set point 
hanges to 300 K, an unrea
hable setpoint. At 100 minutes the set point 
hanges to 328 K, 
lose to the NMPC
losed loop stability limit. At 150 minutes the set point 
hanges to 308 K (seeFigure 5.7). While the two 
ontrol performan
es are virtually indistinguish-able, ISAT performan
e is a
tually slightly better be
ause there is no timedelay asso
iated with 
omputing the optimal 
ontrol solution. Be
ause ISAToperates one step ahead, it responds faster to set point 
hanges and distur-ban
es. This, however, is not the main advantage of using ISAT. The mainadvantage is that NMPC 
an be applied to pro
esses with fast sampling times(<1 �se
) or simple 
omputers (IC 
hips). In addition, enumerating the entire
ontrol solution o�-line 
an reveal infeasible regions, stability limits, and other
losed loop properties. For this example, the CPU times are shown in Figure5.8. NMPC 
onsists of at least two pri
ipal 
al
ulations: estimation and reg-ulation. The estimator and regulator 
al
ulations averaged under 0.1 se
ondswith maximum 
al
ulation time of about 0.3 se
onds. Both the estimator andregulator NLPs were solved with the VF13 SQP solver in FORTRAN usinga dire
t single shooting solution approa
h. All 
al
ulations were performedon a 2.0 GHz Celeron pro
essor. The estimation problem is not redu
ed withISAT. Parameterizing the 
urrent states with all previous measurements is one121



Figure 5.7: Control performan
e of ISAT 
ompared to NMPC. The 
ontrolledvariable (CV) is the rea
tor temperature, the state variable (SV) is the rea
tor
on
entration, and the manipulated variable (MV) is the temperature of the
ooling ja
ket.
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Figure 5.8: Computational times of the estimator and regulator at ea
h sam-pling instant. ISAT is fast be
ause 
omputation is limited to a matrix multi-pli
ation.possible solution. Another solution improves the solution speed but does noteliminate the on-line 
omplexity of solving a NLP problem at every samplinginstant [39℄.5.5 Summary and Con
lusionsMPC is now suggested as a 
andidate to repla
e PID 
ontrol thanks tore
ent developments in o�-line 
al
ulations for eÆ
ient on-line implementation.Up to this point, the proposed algorithms su�er from dimensionality problems.For state parameterization, 
ontrol appli
ations are limited to small modelsand short 
ontrol horizons. For 
onstraint parameterization, 
ontrol appli
a-tions are limited to short 
ontrol horizons and low number of inputs. TheISAT algorithm proposed in this work over
omes the dimensionality problems123



by adaptively storing only those regions a

essed in pra
ti
e. ISAT eÆ
ientlyhandles both NLP problems and 
onstrained LQ problems. ISAT redu
es toan adaptive version of state parameterized 
onstrained LQ when the errortoleran
e is redu
ed to zero. Future work is needed to eÆ
iently solve theestimation problem on-line.
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Chapter 6Moving Horizon Estimation - The Expli
itSolution
Estimation of model states and parameters from pro
ess measurementsbridges the gap between the theoreti
al realm of mathemati
al models andthe realisti
 realm of physi
al pro
esses. Many approa
hes have been sug-gested to a

omplish the re
on
iliation of model and pro
ess, with a range oftradeo�s [80℄. Generally, the tradeo�s are 
entered on model form and size,
omputational expense, ease of implementation, robustness to pro
ess/modelmismat
h, and 
ultural fa
tors su
h as understanding and a

eptan
e.The re
on
iliation pro
ess is an important pre
ursor to other a
tivitiessu
h as fault dete
tion, produ
t quality assuran
e, manual 
ontrol, and model-based 
ontrol. These model-based te
hniques need an a

urate estimate of the
urrent system variables to perform well. Without a

urate state estimation,many of these tools would perform poorly or fail.6.1 Previous WorkFor dynami
 nonlinear model-based 
ontrol of 
hemi
al pro
esses, themost popular feedba
k strategies in pra
ti
e are the extended Kalman �lter125



and a 
onstant or integrating output disturban
e variable [68℄. The Kalman�lter is optimal for un
onstrained, linear systems subje
t to known normallydistributed state and measurement noise [38℄. The Kalman �lter sequentiallyupdates state estimates based on the magnitude of the error between the mea-surements and the model variables. The extended Kalman �lter is an extensionof the Kalman �lter, developed for un
onstrained, nonlinear DAE systems [7℄.By linearizing the model about updated state estimates, the extended Kalman�lter is able to predi
t the nonlinear state evolution, although sub-optimally[38℄. Va
hhani et al. proposed EKF with 
onstraints, although the stateaugmentation strategy for parameter estimation is still a limitation [88℄.State estimation of real systems may in
lude 
hanging measurementfrequen
ies, multiple measurements at di�erent sampling frequen
ies, mea-surement delay, large-s
ale nonlinear models, and 
onstraints. Moving horizonestimation (MHE) is an optimization based approa
h that predi
ts state tra-je
tories by using a time window that in
ludes the most re
ent measurements[41℄ [54℄ [55℄ [71℄. MHE is also known as nonlinear dynami
 data re
on
iliation(NDDR) [47℄ [79℄. MHE is a 
omputationally tra
table approximation to theoptimal in�nite horizon estimation [70℄. All of the 
hallenges of real systemstate estimation are naturally handled in the MHE framework. An estimateof the 
urrent states is typi
ally obtained by solving a least squares optimiza-tion problem subje
t to the model 
onstraints and inequality 
onstraints thatrepresent bounds on variables or equations. Most of the published work 
en-ters around di�erent te
hniques that solve the same minimization problem.126



Jang et al. iteratively linearized the nonlinear ODE model about a refer-en
e traje
tory by 
omputing sensitivities [41℄. Liebman et al. �rst proposeda simultaneous NLP solution approa
h where the di�erential equations aretransformed into algebrai
 equations through orthogonal 
ollo
ation on �niteelements [47℄. Ramamurthi et al. proposed a two step pro
ess to impli
itly es-timate the input disturban
es while expli
itly 
al
ulating state estimates [69℄.Albuquerque and Biegler exploited the MHE SQP stru
ture to a
hieve linear
omputational s
aling with horizon length for ODE models [3℄. They laterextended the te
hnique to DAE systems [4℄.A number of enhan
ements have extended the theoreti
al basis andfun
tionality of MHE. M
Brayer and Edgar proposed a bias dete
tion andestimation strategy to improve state estimation [53℄. O�set free estimationand 
ontrol is a
hieved by augmenting the model with a number of disturban
evariables equal to the number of measurements [57℄ [59℄. Rao et al. derivedsuÆ
ient 
onditions for MHE with linear systems subje
t to 
onstraints [70℄.They also suggested an in�nite horizon approximation by weighting previousstate estimates in the least squares problem.A number of 
riti
al evaluations of the extended Kalman �lter andMHE for nonlinear systems have been reported [38℄ [41℄ [71℄ . Ea
h groupdetermined that MHE 
onsistently outperforms the Kalman �lter and that itexhibits greater robustness to both poor initial state guesses and sub-optimalestimator tuning parameters. Their unanimous 
on
lusion was that the onlypri
e of improvement is the greater 
omputational expense required to solve127



the MHE optimization. The 
ontribution in this work is to eliminate thegreater 
omputational expense by developing an expli
it solution to the MHEoptimization problem. Unlike the impli
it optimization approa
h, the expli
itsolution result is guaranteed in a highly predi
table 
omputational time thatis minimal even for large-s
ale nonlinear models. For state estimation prob-lems with inequality 
onstraints, an iterative pro
edure is added to determinethe set of a
tive 
onstraints. An augmented obje
tive fun
tion monitors thesolution progression to guarantee 
onvergen
e.6.2 Moving Horizon Estimation Problem FormulationThe obje
tive fun
tion of the MHE problem is a least squares fun
-tion that seeks to minimize the di�eren
e between the model values and themeasurements. minx J = (Ys � Ym)TQy(Ys � Ym)s:t: 0 = f( _x; x; u; p)ys = g(x; u; p)a � h(x; u; p) � b (6.1)where J is the obje
tive fun
tion value, Ys is a ve
tor of measurements at allnodes, Ym is a ve
tor of model values at the sampling times, Qy is the inverseof the measurement 
ovarian
e, f is a ve
tor of model equation residuals, x isthe ve
tor of model states, u is the ve
tor of model inputs, p is the ve
tor ofmodel parameters, ys is a ve
tor of measurements, g is an output fun
tion, his an inequality 
onstraint fun
tion, and a and b are lower and upper limits,respe
tively. The optimization found in Equation 6.1 
an be solved with avariety of numeri
al approa
hes [17℄. The approa
h taken in this work is dire
t128



single shooting formulation where all future states in the horizon are uniquelyspe
i�ed by the initial state x0, given sequen
e of inputs u = (u0,u1,. . . ,un�1),and given set of parameters p. At every iteration, the model equations areexa
tly satis�ed.Sensitivities of the initial 
onditions are 
omputed to dis
retize the non-linear model. In pra
ti
e, this dis
retization step is the most 
omputationallyexpensive part of the MHE 
al
ulation. For this study, it is assumed thatthe dis
rete model is readily available. The ve
tors ym and ys are su

essivelysta
ked to form Ym and Ys where the horizon length is n.Ym = 264 ym;0...ym;n 375 ; Ys = 264 ys;0...ys;n 375 (6.2)An in�nite horizon approximation is added by in
orporating a penalty on thedeviation from previous model estimates. This penalty is added by augmentingthe obje
tive fun
tion with the least squares 
ontribution of previous modelestimates X̂m, weighted with a forgetting fa
tor �. Disturban
e variables(shown here as input disturban
es), d, are in
luded as state variables to a
hieveo�set free estimation and 
ontrol. The nonlinear inequality 
onstraints aresimpli�ed by de�ning new states zk = h(xk; uk; pk) and imposing inequality
129




onstraints on zk.minx0 J = (Xs �Xm)TQx(Xs �Xm) + � �X̂m �Xm�T �X̂m �Xm�s:t: 24 xk+1dk+1pk+1 35 = 24 Ak Bk Pk0 I 00 0 I 3524 xkdkpk 35+ 24 Bk00 35 ukys;k = � Ck 0 0 �24 xkdkpk 35+Dkukzk = h(xk; uk; pk) a � zk � b (6.3)
The ve
tors X̂m and Xm are 
omposed of model ve
tors x̂m and xm. Also,Xs is 
onstru
ted from the measurements (see Equation 6.4b) and Qx;k =�CTk Qy;kCk�. Xm = 264 xm;0...xm;n 375 ; X̂m = 264 x̂0...̂xn 375 (6.4a)Xs = 264 �CT0 C0��CT0 (ys;0 �D0u0)...�CTnCn�� CTn (ys;n �Dnun) 375 (6.4b)Solution of this optimization problem is typi
ally a

omplished with an im-pli
it solution te
hnique. The next se
tion develops an expli
it solution to thisproblem.6.3 The Expli
it MHE SolutionFor simpli
ity of the derivation, the augmented state matrix is redu
edto a generi
 linear time-varying form of xk+1 = Akxk +Bkuk and yk = Ckxk +Dkuk. All variables are in deviation form although not expli
itly indi
ated130



here. The model evolution is a unique fun
tion of the initial states.!k = k�1Qj=0Aj  k = kPj=1 �j�1Qi=1Ai�k�j�Bk�juk�j
 = 26664 IA0...An�1 : : : A0
37775 = 26664 I!1...!n�1

37775	 = 26664 0B0u0...An�2 � � �A1B0u0 + � � �+Bn�1un�1
37775 = 26664 0 1... n�1

37775Xm = 
x0 +	
(6.5)

The equations of Xm and Ym are substituted into the obje
tive fun
tion, mak-ing it a unique fun
tion of x0. The expli
it solution to the minimizationproblem is obtained by di�erentiating the obje
tive fun
tion with respe
t tox0, setting the di�erentiated fun
tion equal to zero, and algebrai
ally manip-ulating the equation to solve for the estimated x0 (x̂0) expli
itly.x̂0 = �
T (Qx + �I)
��1 �
T (QxXs + �Xm � (Qx + �I)	)� (6.6)The expli
it solution 
an be 
al
ulated when the inverse of 
T (Qx + �I) 
exists. The inverse exists when previous estimates are used to approximatethe in�nite horizon solution (� > 0). An expli
it solution does not exist whenthe system is unobservable and � = 0. This property is 
onsistent with thefa
t that an unobservable system possesses extra degrees of freedom leadingto states that 
annot be estimated from the available measurements. A moredetailed de�nition of ne
essary and suÆ
ient 
onditions for 
onvergen
e isprovided below. 131



Conditions for a unique solution are given separately for observableand unobservable systems. Also, the 
onditions apply equally for linear andnonlinear systems. Observability of nonlinear systems is established by ana-lyzing the lo
al observability along a referen
e traje
tory [84℄. As long as lo
alobservability is maintained, the nonlinear system is also 
ompletely observable.6.3.1 Fully observable systemsTo obtain a unique solution for fully observable systems, the followingne
essary 
onditions must be met:1. Qy has non-zero eigenvalues2. The number of measurements is greater than or equal to the number ofstates, nWithout an in�nite horizon approximation (� = 0), the expli
it solution re-du
es to the form derived in Ramamurthi et al. [69℄. When the number ofmeasurements is less than n, ! be
omes rank de�
ient. With ! rank de�
ient,the produ
t !TQy! is also rank de�
ient. Also, the produ
t !TQy! be
omesrank de�
ient when Qy has at least one zero eigenvalue. Qy 
an have a zeroeigenvalue when zero weighting is given to a measurement. This situation mayarise when parti
ular measurements are eliminated from the optimization dueto temporary faults in the sampling equipment or transmission delay.SuÆ
ient 
onditions guarantee a unique solution and 
onsist of:132



1. Qy is positive de�nite2. The estimation horizon is greater than or equal to the number of states,nFor observable systems, the observability matrix is full rank. When the horizonis equal to n, ! is exa
tly the observability matrix and therefore, full rank.When Qy is positive de�nite, the produ
t !TQy! is also positive de�nite. Apositive de�nite matrix is invertible, so a unique solution exists to the eMHEproblem.6.3.2 Partially observable systemsFor systems with unobservable states, 
onvergen
e is guaranteed whenthe following 
onditions are met:1. Qy is positive de�nite2. The obje
tive fun
tion is augmented with an in�nite horizon approxima-tion (� > 0)3. ! is full rankWhen Qy is positive de�nite, Qx is positive semi-de�nite. Adding an in�nitehorizon approximation in
reases by � the singular values (equivalent to theeigenvalues for symmetri
 positive semi-de�nite matri
es) of Qx + �I. With! full rank, the produ
t !T (Qx + �I)! is positive de�nite and 
onvergen
e isguaranteed. 133



6.3.3 Example 1: Expli
it versus Impli
it MHE SolutionThis �rst example is used to illustrate that expli
it and impli
it solu-tions of the MHE problem give the same results. A single input, single output(SISO) se
ond order model with stable roots is spe
i�ed as the system.G (s) = 1s2 + 2s+ 1 (6.7)A 
onversion to dis
rete time is performed with a sampling frequen
y of 0.1se
onds. Normally distributed measurement noise with mean of zero and stan-dard deviation of 0.1 is added to the output.xk+1 = � :8144 �0:09050:0905 0:9953 �xk + � 0:09050:0047 �ukyk = � 0 1 �xk + vk (6.8)The �rst state x1 is unmeasured, but observable. The se
ond state, x2, is mea-sured but 
orrupted by measurement noise. The states are both initially atzero while the initial guesses of the states are both set to one. A forgetting fa
-tor of 0.5 is added to the initial state in the time horizon. Figure 6.1 shows theresults of 49 separate optimizations for both expli
it MHE and optimizationbased MHE (labeled as MHE). Starting at time zero, every sampling instantMHE re
al
ulates a new estimate of the 
urrent states. The expli
it solutionsagree 
losely with the impli
it solutions. State x1 
onverges qui
kly to thea
tual system values. State x2 also gradually 
onverges to the 
orre
t solutionbe
ause of the forgetting fa
tor that pla
es weight on the erroneous initialguess. The 
omputational e�ort required to 
ompute a solution is drasti
allydi�erent. The expli
it solution required 2506 
oating point operations. On a134



Figure 6.1: The expli
it and impli
it MHE solutions produ
e the same results.Substantial 
omputational redu
tion is obtained with the expli
it solution ap-proa
h.
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modern day 
omputer operating at 103 million 
oating point operations perse
ond (MFLOPS), the solution would require 0.0003 se
onds. The impli
it so-lution required 785,716 
oating point operations for the last optimization witha horizon of 50 measurements, or roughly 0.08 se
onds on modern 
omputers.For this example, the expli
it solution redu
es 
omputational requirements ofMHE by 314 times.6.4 Inequality Constraints in Expli
it MHERamamurthi et al. [69℄ did not in
lude inequality 
onstraints in deriv-ing an expli
it MHE solution. Inequality 
onstraints represent physi
al limitson state variables or 
ombinations of state variables. For example, mole fra
-tions are always between 0 and 1. If the state estimation predi
ted a molefra
tion outside of this range, that mole fra
tion would have little physi
almeaning and would de
rease the 
redibility of the other results. Inequality
onstraints add valuable information to the state estimation. For systemsthat are partially unobservable, the inequality 
onstraints bound the unob-servable states, thereby in
reasing the level of system observability. However,an unobservable system 
annot be made 
ompletely observable with inequal-ity 
onstraints. Additional a
tual measurements are the only way to make anunobservable system 
ompletely observable.As previously mentioned, the inequality 
onstraints a � h(xk; pk) � bare simpli�ed by 
reating new variables zk and adding zk = h(xk; pk) to the setof state equations. Equivalent 
onstraint information is retained by imposing136



inequality 
onstraints on zk (a � zk � b). Imposing 
onstraint informationleads to a possible infeasible solution. To over
ome this possibility, the inequal-ity 
onstraints are ranked a

ording to the order of importan
e. This rankingis a

omplished by softening the 
onstraints and imposing su

essively higherweighting on more important 
onstraints. Softening the 
onstraints guaranteesa feasible solution be
ause the inequality 
onstraints may be violated to meetthe state equality 
onstraints. Softening of the 
onstraints is performed inpra
ti
e by adding a penalty to the obje
tive fun
tion for 
onstraint violation.minXm J + sTaQasa + sTb Qbsbs:t:; 0 = f( _x; x; u; p)ys = g(x; u; p)sa = a�Xmsb = Xm � b (6.9)The matri
es Qa and Qb have diagonal elements that turn on (weighting > 0)or o� (weighting = 0) to 
ontrol the set of a
tive 
onstraints. A MHE problemwith inequality 
onstraints is iterative be
ause the �nal set of a
tive 
on-straints is not known a priori. However, the predi
tion of states, disturban
es,and parameters is still an expli
it solution for a known set of a
tive inequality
onstraints. The 
omputational time required to solve a problem with inequal-ity 
onstraints is variable, equal to the time required for one expli
it solutionmultiplied by the number of iterations. The expli
it solution subje
t to theset of a
tive inequality 
onstraints is given in Equation 6.10.x̂0 = T�1 �
T (QxXs + �Xm +Qaa +Qbb� R	)�with R = (Qx + �I +Qa +Qb) and T = �
TR
� (6.10)
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Convergen
e is guaranteed by reje
ting iterations that do not produ
e a suf-�
ient de
rease in the obje
tive fun
tion. Ea
h iteration yields a new setof a
tive 
onstraints that are predi
ted to give a de
rease in the obje
tivefun
tion. The initial set of a
tive 
onstraints is determined by 
omputing anun
onstrained MHE solution. Weighting is added to Qa and Qb for statesthat violate the inequality 
onstraints. In su

essive iterations, weighting isremoved for 
onstraints with negative Lagrange multipliers (�a = �2Qasa and�b = 2Qbsb. If the new set of a
tive 
onstraints does not give a suÆ
ientde
rease in the obje
tive fun
tion, the algorithm adjusts the weights on thea
tive 
onstraints. The parameter � in Equation 6.11 is redu
ed until a de-
rease in the obje
tive fun
tion is obtained. An obje
tive fun
tion de
reaseis always possible until 
onvergen
e. However, a full step (� = 1) may notgive a de
rease in the obje
tive fun
tion be
ause of the nonlinear nature of
onstrained systems. The Lagrange multipliers are lo
ally a

urate, linearpredi
tions of a
tive 
onstraint e�e
ts on the obje
tive fun
tion. In the limitas beta approa
hes zero, the linear approximation be
omes exa
t and there-fore, a de
rease in the obje
tive fun
tion is guaranteed. Convergen
e of MHEwith 
onstraints is guaranteed by su

essively de
reasing � until a suÆ
ientde
rease in the obje
tive fun
tion is obtained at every iteration.Qa = �Qa;k + (1� �)Qa;k�1Qb = �Qb;k + (1� �)Qb;k�1 (6.11)On
e a de
rease in the obje
tive fun
tion is obtained, the optimizer a

eptsthe iteration and moves on to �nd a new sear
h dire
tion (new a
tive set of
onstraints that is predi
ted to produ
e a de
rease of the obje
tive fun
tion).138



This iterative sequen
e is terminated when the a
tive set does not 
hange fromone iteration to the next.6.4.1 Example 2: Constrained Version of Example 1Constraints are added to the Example 1 problem to demonstrate thea
tive set strategy. State x1 is arbitrarily 
onstrained between 0 and 0.2. Statex2 is not 
onstrained. An input disturban
e variable x3 is added to a
hieveo�set free estimation. Figure 6.2 shows the results of MHE with and with-out inequality 
onstraints. The un
onstrained solution is the �rst iteration

Figure 6.2: Variable x1 is 
onstrained between 0 and 0.2. The un
onstrainedsolution violates the upper bound 
onstraint on x1. By in
orporating the
onstraints the solution is improved.for expli
it MHE 
al
ulation. After 5 iterations (for ea
h of the 49 separate139



optimizations), 
onstrained expli
it MHE (CE MHE) agrees 
losely with theimpli
it solution (MHE) as seen in Figure 6.3. Using the a
tive set strategy

Figure 6.3: Results for 
onstrained expli
it MHE (CE MHE) 
ompared to opti-mization based MHE (labeled as MHE). Note that x1 now meets the 
onstraint
ondition.proposed in this se
tion, expli
it MHE 
onverges to the 
onstrained solution.The details of the 
onvergen
e are not obvious be
ause the only values reportedin Figure 6.3 are the �nal predi
ted values. An iteration by iteration sequen
eis informative to show the 
onvergen
e properties. The last optimization istaken as a example using all 50 data points with a horizon of 49. Figure 6.4shows the �rst iteration. The third state (x3) is the input disturban
e variable.At the �rst iteration, the upper bound of x1 is violated by the un
onstrainedexpli
it MHE solution. On
e the un
onstrained solution is 
omputed, a sear
h140



Figure 6.4: First iteration of the expli
it MHE solution. State x1 violates theupper bound 
onstraint of 0.2.
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is performed to identify all of the 
onstraint violations. For the next iteration,penalties are added to the obje
tive fun
tion for ea
h of the violations. Figure6.5 shows the results of the expli
it solution with weighting pla
ed at the former
onstraint violations. Negative Lagrange multipliers are identi�ed for the next

Figure 6.5: Se
ond iteration for expli
it MHE. Weighting is added to matrixQb where the x1 traje
tory formerly violated the upper bound 
onstraint of0.2. The 
onstraint information is indi
ated as �
titious measurements eventhough x1 is not a
tually measured.iteration to determine the equality 
onstraints that should be removed from thea
tive set. Negative Lagrange multipliers are found between 0:0 � time � 0:2and 1:3 � time � 1:9. For the next iteration these 
onstraints are removedfrom the a
tive set. No additional 
onstraint violations are identi�ed so no142




onstraints are added to the a
tive set. A de
rease in the augmented obje
tivefun
tion indi
ates that the iteration should be a

epted. Figure 6.6 shows thethird iteration. After the third iteration, negative Lagrange multipliers are

Figure 6.6: Third iteration of expli
it MHE. The expli
it MHE solution is ap-proa
hing the impli
it MHE solution as the a
tive set of 
onstraints is re�ned.found between 0:3 � time � 0:4 and 1:1 � time � 1:2. For the next itera-tion these 
onstraints are removed from the a
tive set and the expli
it MHEis re
al
ulated, resulting in a suÆ
ient de
rease in the augmented obje
tivefun
tion. Figure 6.7 displays the fourth iteration. After the fourth iteration,negative Lagrange multipliers are found between 0:5 � time � 0:6. These
onstraints are removed from the a
tive set for the �nal iteration. Again, theaugmented obje
tive fun
tion de
reases. Figure 6.8 displays the �nal iteration.143



Figure 6.7: Fourth iteration of expli
it MHE. The expli
it MHE solution al-most agrees exa
tly with the impli
itMHE solution. The �nal solution requiresone more iteration for 
onvergen
e.
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The �nal iteration of expli
it MHE shows ex
ellent agreement between both

Figure 6.8: Final iteration of expli
it MHE. In all, the expli
it solution se-quen
e required 5 iterations for 
onvergen
e.solutions. The input disturban
e variable x3 is de�ned as 
onstant over theentire time horizon. This example shows the development of MHE for a 
on-strained linear system, making the problem nonlinear. The MHE frameworknaturally in
orporates 
onstraints into the problem formulation. The expli
itsolution required approximately 2500 
oating point operations per iterationfor a total of 12,500. The impli
it solution required approximately 122 million
oating point operations before the optimizer rea
hed the default maximumnumber of iterations. The inability of the impli
it solution to 
onverge qui
klyis most likely due to the de�
ien
ies of dire
t single shooting with softened145




onstraints. A more robust approa
h obtained by dire
t multiple shooting or
ollo
ation of the state equations would undoubtedly improve the impli
it so-lution 
omputational e�ort, but not to the level of the expli
it MHE approa
h.6.5 Example 3: Flash Column Composition EstimationThis se
tion shows an example of MHE, but for a physi
ally realis-ti
 pro
ess, a 17 state model of a 
ash 
olumn (see Figure 6.9. The unknown
ompositions are estimated from the temperature and 
ow rate measurements.When the liquid stream enters the 
olumn at a pressure below the liquid's va-por pressure, a fra
tion of the stream instantaneously 
ashes into the vaporphase. A rigorous nonlinear model of mass, energy, and thermodynami
 equi-librium relationships predi
ts the dynami
 behavior of the 
olumn. A diagramof the model is presented in Figure 6.9. The feed tank 
ontains an equimolar
Figure 6.9: Flow sheet diagram of the 
ash 
olumn model. The 
ash 
olumn
onsists of a feed tank with unknown spe
ies 
ompositions, a 
ash 
olumn,and vapor and liquid outlet streams.hydro
arbon mixture of C4H10, C5H12, C6H14, C7H16, and C8H18. The feedand 
ash temperatures are measured as are the vapor and liquid 
ow rates.146



Noise is added to the measurements with mean zero and standard deviation 0.5for the temperatures and 0.02 for the 
ow rates. The obje
tive is to estimatethe feed tank 
ompositions from the temperature and 
ow rate measurements.Figure 6.10 shows the measurements taken over the time horizon of interest.The 17 state model has 5 di�erential states and 12 algebrai
 states. For full

Figure 6.10: The estimated states 
onverge qui
kly to the real system eventhough the initial guess is poor.observability, the observability matrix must have rank � 5. For this exam-ple, the observability matrix is rank de�
ient at 3. This analysis reveals thattemperature and 
ow measurements of a 
ash 
olumn 
an only be used to ex-a
tly estimate 
ompositions of mixtures with � 3 
omponents. Alternatively,2 additional 
ompositions 
ould be measured to make the system observable.147



However, even if the system is not fully observable, some information 
an bere
onstru
ted that 
an be better than the initial 
omposition estimates. Forthis example, the 
ompositions are initially estimated as 0.3 whereas the a
-tual 
ompositions are all lo
ated at 0.2. Figure 6.11 shows the estimation ofthe 
ompositions over a 100 se
ond time horizon. A forgetting fa
tor of 0.5 on

Figure 6.11: Estimated 
ompositions of C4H10, C5H12, and C6H14 approa
hthe a
tual values of 0.2. The other two 
ompositions of C7H16 and C8H18deviate signi�
antly be
ause the system is not fully observable.the initial state was used to in
orporate previous estimates. The estimation isable to re
onstru
t the 
ompositions of C4H10, C5H12, and C6H14. However,the other two 
ompositions, C7H16 and C8H18, deviate signi�
antly from the
orre
t solution. This deviation is a result of an unobservable system.148



Inequality 
onstraints 
an bound unobservable states to in
rease thea

ura
y of the estimation. For this example, suppose it is known that the
omposition of C7H16 should not be above a 
omposition of 0.22. This 
on-straint information 
an be in
orporated into the expli
it MHE formulation toprovide a better estimate of 
ompositions. Figure 6.12 shows the results ofbounding the C7H16 
omposition. At the �nal solution the a
tive 
onstraint

Figure 6.12: The 
omposition estimation is greatly improved by adding aninequality 
onstraint to C7H16. Even though the system is not fully observable,the 
omposition estimates 
losely approximate the a
tual values.on C7H16 
omposition has a Lagrange multiplier of +0.02, 
on�rming that the
onstraint should be a
tive. The estimation of the 
omposition is greatly im-proved by in
orporating additional information about the pro
ess in the formof an inequality 
onstraint. 149



6.5.1 Expli
it MHE S
aling with Model SizeAn important property of expli
it MHE is 
omputational s
aling tolarge-s
ale problems. To test the s
alability to large-s
ale problems, a series of17 state 
ash 
olumns are 
ombined to form larger models. These su

essivelylarger models are solved for the linear and nonlinear 
ase as seen in Figure6.13. A horizon of 50 samples is used for all of the simulations. Both linear

Figure 6.13: Expli
it MHE s
aling to large-s
ale model size. Both the nonlin-ear and linear approa
hes s
ale O(x2) in the number of 
oating point opera-tions, where x is the number of variables in the model.and nonlinear expli
it MHE s
ale O(x2) in the number of 
oating point oper-ations, although the linear approa
h s
ales approximately 6 times better thanthe nonlinear method. With 
omputers that operate in the Gigahertz range,the 
omputational feasibility of expli
it MHE is ex
ellent even for large-s
ale150



problems (10,000+ variables).6.5.2 Expli
it MHE S
aling to Long Time HorizonsSome estimation problems require long time horizons (> 100 samplingintervals). Long time horizons may be ne
essary when the measurements havelow signal to noise ratios, pro
ess measurements o

ur mu
h faster than thepro
ess dynami
s, or there is a large di�eren
e among the sampling frequen-
ies of multiple measurements. Another reason for a long time horizon is forparameter estimation where a few parameters are estimated from a long timeperiod of histori
al data. Figure 6.14 displays the e�e
t of time horizon lengthon the number of 
oating point operations for the 17 state 
ash 
olumn model.For nonlinear models, the s
aling is quadrati
 for in
reasing horizon length.For linear models the s
aling is linear for in
reasing horizon length. The linearmodel s
aling is parti
ularly amenable for problems that may require a verylong time horizon.6.6 Example 4: Two State CSTRState estimation of a CSTR is a popular ben
hmark test problem asfound in Albuquerque and Biegler [3℄ and Haseltine and Rawlings [38℄, interalii. A des
ription of the model, variables, and equations is given in AppendixB. The purpose of this example is to estimate the 
omputational load fordi�erent estimation strategies.A realisti
 estimation problem was devised to test eMHE for a sequen
e151



Figure 6.14: Expli
it MHE s
aling to horizon length. For nonlinear models,s
aling is O(x2) in the number of 
oating point operations. For linear models,s
aling is O(x) where x is the horizon length.of step responses. The estimator horizon is set to 60 minutes and divided into1 minute segments. The temperature is sampled every minute and 
orruptedby normally distributed noise with a standard deviation of 5 K. Con
entrationis sampled every 10 minutes with a standard deviation of 0.01 molm3 . Plant-model mismat
h is introdu
ed by using an a
tivation energy of the �rst order(A! B) rea
tion of 8750 Jmol for the model and 8740 Jmol for the plant. Theplant-model mismat
h is introdu
ed to 
ause deviation of the estimated re-sponse from the a
tual pro
ess. The steady state deviation 
an be eliminatedby in
luding parameter estimation or a disturban
e variable. At the �rst sam-pling time the plant is assumed to be at steady state with a ja
ket 
oolingtemperature of 300 K. At 20 minutes the 
ooling temperature is set to 290 K,152



followed by a step to 310 K at 60 minutes. At 70 minutes the 
ooling tem-perature returns to 290 K. Figure 6.15 shows the results of the MHE study.The eMHE solution averaged approximately 22,000 
oating point operations

Figure 6.15: Estimation performan
e of the expli
it solution MHE (eMHE)versus MHE. The state variable (SV) estimation is diÆ
ult to distinguishon the graph be
ause the predi
tions are virtually identi
al for the two ap-proa
hes. The only di�eren
e is the substantially lower 
omputational e�ortrequired to rea
h a solution.to 
ompute a solution. The dire
t single shooting optimization MHE solutionaveraged approximately 40 million 
oating point operations. The CPU timeresults from Liebman et al. were performed on a 
omputer that delivers ap-proximately 1 MFLOPS with LINPACK ben
hmark tests [47℄. He reportedin 1992 solution times in the range of 1-100 se
onds giving approximate 
om-153



putational e�ort in the range of 1-100 million 
oating point operations forsparse solvers and orthogonal 
ollo
ation on �nite elements. The expli
it so-lution approa
h o�ers improved 
omputational performan
e that is insensitiveto 
onvergen
e toleran
e, poor initial 
onditions, strong nonlinearities, andother fa
tors that in
uen
e the impli
it solution approa
h.6.7 Con
lusionsMoving horizon estimation has been demonstrated to be a superiorstate estimation te
hnique 
ompared with the extended Kalman �lter. Theonly disadvantage is the additional 
omputational expense needed to solvethe MHE optimization problem. This 
hapter outlines an expli
it solutionte
hnique that removes the 
omputational disadvantage for large s
ale non-linear DAE systems that is guaranteed to 
onverge when the system is fullyobservable or when previous estimates are in
orporated into the optimiza-tion. Inequality 
onstraints add variable bounds that 
an improve the stateestimation, espe
ially for systems that are not fully observable. An iterativeapproa
h is ne
essary to determine an a
tive set of equality 
onstraints fromthe full set of inequality 
onstraints. The iterative solution has guaranteed
onvergen
e by sele
ting new a
tive sets that generate a suÆ
ient de
rease inthe augmented obje
tive fun
tion. The 
omputational expense of the most
hallenging problem in this 
hapter required 22,000 
oating point operations,only a few mi
ro-se
onds with modern 
omputational power. The 
ompu-tational expense of impli
it optimization MHE is signi�
antly more, with a154



possibility of 
onvergen
e failure depending on the initial 
onditions sele
ted,problem nonlinearity, 
hoi
e of optimizer, et
.
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Chapter 7Con
lusions and Re
ommendations7.1 Summary of ContributionsThe main fo
us of this dissertation is to redu
e the 
omputational re-quirements for large-s
ale DAE model-based estimation and 
ontrol. Thisobje
tive is a

omplished by a variety of strategies that are 
ombined in ane�e
tive way to meet real-time 
onstraints with limited 
omputing resour
es.The prin
ipal strategies are storage and retrieval o�-line to enable eÆ
ienton-line 
ontrol, nonlinear DAE model redu
tion, and development of expli
itoptimization solutions. Both moving horizon estimation and re
eeding horizon
ontrol are developed to meet real-time 
onstraints.7.1.1 Development of a Superior Alternative to Neural Networksfor Nonlinear Fun
tion ApproximationISAT, as formerly applied in 
ombustion appli
ations, was infeasibleas a general nonlinear fun
tion approximator be
ause it required sensitivityinformation. A statisti
al approximation to the sensitivity allows ISAT tostore and retrieve any linear or nonlinear fun
tion with error 
ontrol.
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7.1.2 Automati
, Iterative DAE Model Redu
tionAutomati
 order redu
tion of the di�erential equations is made possibleby introdu
ing a variable error predi
tor that iteratively determines the orderof the redu
ed model. This variable error predi
tor 
an also be used to furtherredu
e the model order by in
reasing the redu
ed order model a

ura
y. Forthe algebrai
 equations, a partitioning and pre
eden
e ordering is performedto divide the equations and variables into su

essively independent sets. On
epartitioned, ISAT stores and retrieves solutions to the subsets of equations.By building a database of solutions, the equations are automati
ally expli
itlytransformed. The automati
 transformation avoids the sus
eptability to errorthat would 
ome from a manual expli
it transformation on an equation byequation basis.7.1.3 Redu
ed Computational E�ort for Nonlinear MPCThe two most 
omputationally expensive parts of nonlinear MPC arestate estimation and regulation. Redu
tion by up to 100 times is possible bystoring and retrieving the 
ontinuous nonlinear DAE integrations.The state estimation is a dynami
 data re
on
iliation of the model pre-di
tion and plant measurements. State estimation is a ne
essary step whenfull state feedba
k is impossible, plant-model mismat
h is present, or mea-surements are 
orrupted with noise. By storing and retrieving DAE modelintegrations and sensitivities, the estimator 
al
ulation speed is greatly im-proved. 157



The regulator uses the results of the estimator to determine a set ofoptimal inputs that will minimize an obje
tive fun
tion. By using ISAT to
ompute the model state evolution 
onstraints, the 
omputational time ofISAT is redu
ed by up to 100 times.7.1.4 Development of Expli
it Nonlinear MPCBy storing and retrieving optimal 
ontrol solutions, an approximateexpli
it NMPC 
ontroller is developed. The error 
ontrol embedded in ISATensures that variable error toleran
es are not ex
eeded. For 
onstrained QPproblems, the initial estimate of the ROA is restri
ted to the state spa
e withthe same a
tive set of 
onstraints. In the limit as �tol goes to zero, the algo-rithm yields the exa
t expli
it MPC solution. The dimensionality problems ofprevious approa
hes is over
ome by only storing and retrieving solutions thatare a

essed in pra
ti
e.7.1.5 Development of Expli
it Moving Horizon EstimationMoving horizon estimation requires a solution to a NLP problem 
om-parable in 
omputational 
omplexity to the 
ontrol formulation. In order formodel-based 
ontrol to fun
tion, a 
urrent estimate of the states is ne
essarybefore every 
ontrol optimization. An expli
it solution to the MHE problemis developed for nonlinear ODE or DAE models. Inequality 
onstraints 
anbe enfor
ed by iteratively de�ning the a
tive set of variables at the 
onstraintbounds. An expli
it solution is guaranteed by weighting previous estimates158



in the obje
tive fun
tion. Disturban
es and parameters are simultaneouslyestimated with the states in one expli
it solution.7.2 Future WorkSeveral extensions of this work are possible. The proposed future workinvolves model redu
tion for the non-expert user, new appli
ations for modelredu
tion, a few suggested developments for ISAT, and expli
it MHE for pa-rameter estimation.7.2.1 Model Redu
tion for the Non-Expert UserAutomated model redu
tion for non-expert users 
an be in
orporatedinto popular DAE solvers with the new te
hniques presented in Chapter 3. Auser would spe
ify an error toleran
e for the original model variables and thesolver 
ould iteratively determine the redu
ed model size. Model redu
tionwas not found to signi�
antly redu
e the 
omputational expense of simulatinga dynami
 system. However, large 
omputational advantages may exist forredu
ed model sensitivity analysis as explained in Se
tion 7.2.2.7.2.2 Model Redu
tion for Sensitivity AnalysisFor initial states sensitivities, an additional n2 variables are solved si-multaneously with the original n variables. By redu
ing the model order tor states, the number of sensitivity variables is redu
ed to r2. For parametersensitivities, an additional nxp variables are solved simultaneously with the159



original variables. A model order of r states redu
es the number of sensitivityvariables to rxp. EÆ
ient sensitivity 
al
ulations are important for the sin-gle and multiple shooting solution te
hniques for nonlinear MPC, MHE, andmodel parameter estimation.7.2.3 Model Redu
tion with the Open Equation FormatChapter 3 shows te
hniques for redu
tion of models in the open equa-tion format (0 = f( _x; x; u)). The simultaneous optimization approa
h requiresa dis
retization s
heme su
h as orthogonal 
ollo
ation on �nite elements to
onvert the di�erential equations into the NLP form. A numeri
al exampleof model redu
tion using the simultaneous approa
h was never developed.Instead, the sequential solution approa
h was used be
ause of programmingsimpli
ity. However, in order to use the sequential approa
h, the model mustbe 
onverted to the semi-expli
it form ( _x = f(x; u)). This 
onversion waspossible for all models that are shown in this dissertation, however, it maybe ne
essary to work with the open equation form dire
tly. An interestingstudy would be to 
ompare the 
omputational and theoreti
al properties ofthe simultaneous and sequential solution approa
hes for redu
ed models insimulation and 
ontrol.7.2.4 Higher Order Pie
ewise Approximations in ISATISAT approximates nonlinear fun
tions by building multi-dimensionalpie
ewise linear lo
al approximations. The storage and retrieval performan
e160




ould be in
reased by developing higher order lo
al approximations. For someappli
ations, it is desirable for the fun
tion approximation to be 
ontinuousor 
ontinuously di�erentiable. A higher order approximator may in
rease theregions that meet these 
onstraints. Another method to approximate 
ontinu-ously di�erentiable fun
tions may be to retrieve multiple nearby linear re
ordsto generate higher order approximations.7.2.5 Parameter EstimationChapter 6 demonstrates a very eÆ
ient implementation of MHE to es-timate the states, parameters, and disturban
e variables from an advan
inghorizon of measurements. Periodi
ally, it may be desirable to estimate newmodel parameters from a long history of normal operating data. In pra
ti
e,this is usually a

omplished by sele
ting a few points at steady state opera-tion, setting the derivatives in the model to zero, and solving an optimizationproblem to minimize the di�eren
e between the model and data. The draw-ba
ks to this approa
h stem from limiting the parameter estimation to steadystate data. Optimal parameter estimation would in
lude all histori
al datathat are deemed valid. These data sets may in
lude produ
t grade transitionsor be segmented by periods of shut-down or 
orrupted measurements. Expli
itMHE was shown to s
ale quadrati
ally with respe
t to model size and horizonlength and may o�er a superior alternative to optimization-based parameterupdates.
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Appendix ABinary Distillation Column Model

Figure A.1: Diagram of a dynami
 binary distillation 
olumn model withequilibrium stages
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Table A.1: VariablesManipulated variablesSymbol Des
ription Units_mF Feed rate gmse
_mR Re
ux rate gmse
_Q Reboiler heating rate Jse
Variables at ea
h of the 26 stagesDi�erential variablesSymbol Des
ription Units_xA Liquid mole fra
tion none_h Spe
i�
 enthalpy JmolAlgebrai
 variablesSymbol Des
ription UnitsyA Vapor mole fra
tion nonexL Liquid mole fra
tion noneT Temperature K_nV Vapor molar 
ow rate molse
_nL Liquid molar 
ow rate molse
hV Spe
i�
 vapor enthalpy JmolhL Spe
i�
 liquid enthalpy JmolP sati Saturation pressure of 
ompound j PaOther variablesSymbol Des
ription UnitsnL Liquid molar holdup molMWF (xA) Mole
ular weight of feed stream gmmolMWR(xA) Mole
ular weight of re
ux stream gmmolP Stage pressure PahVj (T ) Spe
i�
 vapor enthalpy of 
ompound j JmolhLj (T ) Spe
i�
 liquid enthalpy of 
ompound j Jmol
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Table A.2: EquationsDi�erential EquationsComponent A mole balan
e at ea
h stage_xA = 1nL �yAin _nVin + xAin _nLin � yAout _nVout � xAout _nLout + �xAfeed _mfeedMWfeed(xA)��Energy balan
e at ea
h stage_h = 1nL �hVin _nVin + hLin _nLin � hVout _nVout � hVout _nLout + �hLfeed _mfeedMWfeed(xA)�+ _Q�Algebrai
 EquationsRaoult's law for VLEyA = xAP satAPLiquid mole fra
tion equationxL = h�hVhL�hVBubble point temperature equationP = xAP satA + (1� xA)P satBVapor molar 
ow rate equation_nVout = ( _nVin + _nLin) (1� xL)Liquid molar 
ow rate equation_nLout = ( _nVin + _nLin) xLVapor enthalpy equationhV = yAhV A(T ) + (1� yA)hV B(T )Liquid enthalpy equationhL = xAhLA(T ) + (1� xA)hLB(T )Pure 
omponent j saturated vapor pressure equation (DIPPR database)P satj = exp �A+ BT + C ln(T ) +DTE�
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Appendix BDual CSTR Model

Figure B.1: This model is a dual CSTR with an exothermi
 �rst-order rea
tion.It is the same model as the one used by Hahn [34℄, but with some minormodi�
ations.
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Table B.1: VariablesManipulated variablesSymbol Des
ription Unitsu Valve position at the outlet of rea
tor #2 dimensionlessQ Cooling heat 
ow from rea
tor #1 Jse
State variablesSymbol Des
ription UnitsV1 Volume of rea
tor #1 m3CA1 Con
entration of A in rea
tor #1 molm3T1 Temperature of rea
tor #1 KV2 Volume of rea
tor #2 m3CA2 Con
entration of A in rea
tor #2 molm3T2 Temperature of rea
tor #2 KOther parametersSymbol Des
ription UnitsCAF Con
entration of A in the feed molm3TF Feed temperature KqF Feed 
ow rate molse
q1 Flow rate out of rea
tor #1 molse
q2 Flow rate out of rea
tor #2 molse
k0 Pre-exponential fa
tor molm3�se
E A
tivation energy JmolR Universal gas 
onstant (8.31451) Jmol�K� Density of the liquid kgmol
p Heat 
apa
ity of the liquid Jkg�K�H Energy of rea
tion Jmol
 Constant relating valve position to 
ow rate molse
�m3=2
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Table B.2: EquationsEquation(s)Flow ratesq1 = 
pV1 � V2q2 = 
pV1uVolume balan
esdV1dt = qF � q1dV2dt = q1 � q2Component balan
esd(V1CA1)dt = qFCAF � q1CA1 � k0CA1V1 exp �� ERT1�d(V2CA2)dt = q1CA1 � q2CA2 � k0CA2V2 exp �� ERT2�Energy balan
esd(V1T1)dt = qFTF � q1T1 + �H�
p �k0CA1V1 exp �� ERT1��� Q�
pd(V2T2)dt = q1T1 � q2T2 + �H�
p �k0CA2V2 exp �� ERT2��
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Appendix CFlowsheet Model

Figure C.1: Diagram of the 
owsheet model involving equal molar feed streamsof butane, pentane, hexane, heptane, and o
tane at 300 K and 1 ATM. Themodel has 229 variables with 12 ODEs and 217 AEs.Tables C-1 - C-5 are a listing of all of the variables in the 
owsheetmodel. The tables are divided by the model units. Table C-6 shows the irre-du
eable portion from the partitioning and pre
eden
e ordering of the variablesand equations. This is the only set involving more than one variable and oneequation and it 
onsists of 16 variables and 16 equations from the 
ash 
olumn.
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Table C.1: Feed VariablesName Name Unitsfeed1.
(C4H10) feed2.
(C4H10) kmolm3feed1.
(C5H12) feed2.
(C5H12) kmolm3feed1.
(C6H14) feed2.
(C6H14) kmolm3feed1.
(C7H16) feed2.
(C7H16) kmolm3feed1.
(C8H18) feed2.
(C8H18) kmolm3feed1.dens feed2.dens kmolm3feed1.h feed2.h Jkmolfeed1.ndot feed2.ndot kmolse
feed1.vdot feed2.vdot m3se
feed1.x(C8H18) feed2.x(C8H18) nonefeed1.y(C4H10) feed2.y(C4H10) nonefeed1.y(C5H12) feed2.y(C5H12) nonefeed1.y(C6H14) feed2.y(C6H14) nonefeed1.y(C7H16) feed2.y(C7H16) nonefeed1.y(C8H18) feed2.y(C8H18) none
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Table C.2: Flash Column VariablesName Units
ash.outlet liq.
(C4H10) 
ash.outlet vap.
(C4H10) kmolm3
ash.outlet liq.
(C5H12) 
ash.outlet vap.
(C5H12) kmolm3
ash.outlet liq.
(C6H14) 
ash.outlet vap.
(C6H14) kmolm3
ash.outlet liq.
(C7H16) 
ash.outlet vap.
(C7H16) kmolm3
ash.outlet liq.
(C8H18) 
ash.outlet vap.
(C8H18) kmolm3
ash.outlet liq.dens 
ash.outlet vap.dens kmolm3
ash.outlet liq.h 
ash.outlet vap.h Jkmol
ash.outlet liq.mdot 
ash.outlet vap.mdot kgse

ash.outlet liq.ndot 
ash.outlet vap.ndot kmolse

ash.outlet liq.p 
ash.outlet vap.p Pa
ash.outlet liq.t 
ash.outlet vap.t K
ash.outlet liq.vdot 
ash.outlet vap.vdot m3se

ash.outlet liq.x(C4H10) 
ash.outlet vap.x(C4H10) none
ash.outlet liq.x(C5H12) 
ash.outlet vap.x(C5H12) none
ash.outlet liq.x(C6H14) 
ash.outlet vap.x(C6H14) none
ash.outlet liq.x(C7H16) 
ash.outlet vap.x(C7H16) none
ash.outlet liq.x(C8H18) 
ash.outlet vap.x(C8H18) none
ash.outlet liq.y(C4H10) 
ash.outlet vap.y(C4H10) none
ash.outlet liq.y(C5H12) 
ash.outlet vap.y(C5H12) none
ash.outlet liq.y(C6H14) 
ash.outlet vap.y(C6H14) none
ash.outlet liq.y(C7H16) 
ash.outlet vap.y(C7H16) none
ash.outlet liq.y(C8H18) 
ash.outlet vap.y(C8H18) none
171



Table C.3: Heat Ex
hanger VariablesHeat Ex
hanger Outlet Units Name Unitshx
.outlet.
(C4H10) kmolm3 hx
.reserve.
(C4H10) kmolm3hx
.outlet.
(C5H12) kmolm3 hx
.reserve.
(C5H12) kmolm3hx
.outlet.
(C6H14) kmolm3 hx
.reserve.
(C6H14) kmolm3hx
.outlet.
(C7H16) kmolm3 hx
.reserve.
(C7H16) kmolm3hx
.outlet.
(C8H18) kmolm3 hx
.reserve.
(C8H18) kmolm3hx
.outlet.dens kmolm3 hx
.reserve.dens kmolm3hx
.outlet.h Jkmol hx
.reserve.h Jkmolhx
.outlet.mdot kgse
 hx
.reserve.m kghx
.outlet.ndot kmolse
 hx
.reserve.n kmolhx
.outlet.p Pa hx
.reserve.p Pahx
.outlet.t K hx
.reserve.t Khx
.outlet.vdot m3se
 hx
.reserve.v m3hx
.outlet.x(C4H10) none hx
.reserve.x(C4H10) nonehx
.outlet.x(C5H12) none hx
.reserve.x(C5H12) nonehx
.outlet.x(C6H14) none hx
.reserve.x(C6H14) nonehx
.outlet.x(C7H16) none hx
.reserve.x(C7H16) nonehx
.outlet.x(C8H18) none hx
.reserve.x(C8H18) nonehx
.outlet.y(C4H10) none hx
.reserve.y(C4H10) nonehx
.outlet.y(C5H12) none hx
.reserve.y(C5H12) nonehx
.outlet.y(C6H14) none hx
.reserve.y(C6H14) nonehx
.outlet.y(C7H16) none hx
.reserve.y(C7H16) nonehx
.outlet.y(C8H18) none hx
.reserve.y(C8H18) none
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Table C.4: Splitter VariablesSplit Outlet 1 Split Outlet 2 Unitssplit.fra
2 nonesplit.outlet1.
(C4H10) split.outlet2.
(C4H10) kmolm3split.outlet1.
(C5H12) split.outlet2.
(C5H12) kmolm3split.outlet1.
(C6H14) split.outlet2.
(C6H14) kmolm3split.outlet1.
(C7H16) split.outlet2.
(C7H16) kmolm3split.outlet1.
(C8H18) split.outlet2.
(C8H18) kmolm3split.outlet1.dens split.outlet2.dens kmolm3split.outlet1.h split.outlet2.h Jkmolsplit.outlet1.mdot split.outlet2.mdot kgse
split.outlet1.ndot split.outlet2.ndot kmolse
split.outlet1.p split.outlet2.p Pasplit.outlet1.t split.outlet2.t Ksplit.outlet1.vdot split.outlet2.vdot m3se
split.outlet1.x(C4H10) split.outlet2.x(C4H10) nonesplit.outlet1.x(C5H12) split.outlet2.x(C5H12) nonesplit.outlet1.x(C6H14) split.outlet2.x(C6H14) nonesplit.outlet1.x(C7H16) split.outlet2.x(C7H16) nonesplit.outlet1.x(C8H18) split.outlet2.x(C8H18) nonesplit.outlet1.y(C4H10) split.outlet2.y(C4H10) nonesplit.outlet1.y(C5H12) split.outlet2.y(C5H12) nonesplit.outlet1.y(C6H14) split.outlet2.y(C6H14) nonesplit.outlet1.y(C7H16) split.outlet2.y(C7H16) nonesplit.outlet1.y(C8H18) split.outlet2.y(C8H18) none
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Table C.5: Mixer and Tank VariablesMixer Tank Outlet Tank Holdup Unitsmixer1.outlet.
(C4H10) tank.outlet.
(C4H10) tank.reserve.
(C4H10) kmolm3mixer1.outlet.
(C5H12) tank.outlet.
(C5H12) tank.reserve.
(C5H12) kmolm3mixer1.outlet.
(C6H14) tank.outlet.
(C6H14) tank.reserve.
(C6H14) kmolm3mixer1.outlet.
(C7H16) tank.outlet.
(C7H16) tank.reserve.
(C7H16) kmolm3mixer1.outlet.
(C8H18) tank.outlet.
(C8H18) tank.reserve.
(C8H18) kmolm3mixer1.outlet.dens tank.outlet.dens tank.reserve.dens kmolm3mixer1.outlet.h tank.outlet.h tank.reserve.h Jkmolmixer1.outlet.mdot tank.outlet.mdot tank.reserve.m (kg) kgse
mixer1.outlet.ndot tank.outlet.ndot tank.reserve.n (kmol) kmolse
mixer1.outlet.p tank.outlet.p tank.reserve.p Pamixer1.outlet.t tank.outlet.t tank.reserve.t Kmixer1.outlet.vdot tank.outlet.vdot tank.reserve.v (m3) m3se
mixer1.outlet.x(C4H10) tank.outlet.x(C4H10) tank.reserve.x(C4H10) nonemixer1.outlet.x(C5H12) tank.outlet.x(C5H12) tank.reserve.x(C5H12) nonemixer1.outlet.x(C6H14) tank.outlet.x(C6H14) tank.reserve.x(C6H14) nonemixer1.outlet.x(C7H16) tank.outlet.x(C7H16) tank.reserve.x(C7H16) nonemixer1.outlet.x(C8H18) tank.outlet.x(C8H18) tank.reserve.x(C8H18) nonemixer1.outlet.y(C4H10) tank.outlet.y(C4H10) tank.reserve.y(C4H10) nonemixer1.outlet.y(C5H12) tank.outlet.y(C5H12) tank.reserve.y(C5H12) nonemixer1.outlet.y(C6H14) tank.outlet.y(C6H14) tank.reserve.y(C6H14) nonemixer1.outlet.y(C7H16) tank.outlet.y(C7H16) tank.reserve.y(C7H16) nonemixer1.outlet.y(C8H18) tank.outlet.y(C8H18) tank.reserve.y(C8H18) none
174



Table C.6: Partitioning and Pre
eden
e Ordering Impli
it Blo
kVariable Eqn #
ash.outlet vap.x(C8H18) 203
ash.outlet vap.h 214
ash.outlet liq.h 195
ash.outlet liq.x(C8H18) 192
ash.outlet vap.x(C7H16) 191
ash.outlet liq.x(C7H16) 199
ash.outlet vap.x(C6H14) 190
ash.outlet liq.x(C6H14) 198
ash.outlet liq.ndot 194
ash.outlet vap.x(C4H10) 188
ash.outlet vap.ndot 196
ash.outlet vap.x(C5H12) 197
ash.outlet liq.x(C5H12) 189
ash.outlet liq.x(C4H10) 218
ash.outlet liq.t 229
ash.outlet vap.t 193
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