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Model-based control incorporates fundamental process knowledge to
achieve improved monitoring and control performance. However, on-line model-
based control is generally limited to linear models or nonlinear models of
low-dimension. Rigorous models of dynamic process are often described by
differential algebraic equations (DAEs). Many rigorous DAE models require
too much computational effort to be implemented in real-time control appli-
cations, where control calculations must be performed on-line (i.e. in a few
seconds). The principal focus of this dissertation is to reduce the computa-
tional requirements for large-scale model-based estimation and control. This
objective is accomplished with a variety of strategies that are combined in an
effective way to meet real-time constraints with limited computing resources.
The principal strategies are adaptive storage and retrieval off-line to enable

efficient on-line control, nonlinear DAE model reduction, and development of

vi



an explicit solution to moving horizon estimation (MHE). Both MHE and re-
ceeding horizon control (RHC) are developed to meet real-time constraints. In
situ adaptive tabulation (ISAT) is used to store and retrieve control solutions.
In addition to the adaptation for control applications, ISAT is developed as
a general nonlinear function approximator and is shown to outperform neural
networks in both interpolation and extrapolation. In addition, ISAT is de-
signed to handle nonlinear functions with discontinuities or regions that are
not continuously differentiable. With DAE model reduction, storage and re-
trieval of control solutions with ISAT, and the explicit solution to moving
horizon estimation, real-time nonlinear model predictive control (NMPC) is

feasible with large-scale DAE models.
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Chapter 1

Introduction

The dynamic modeling of chemical and biological processes, using first
principles, usually leads to mathematical models that are systems of differen-
tial and algebraic equations. Two main classes exist: lumped parameter and
distributed parameter models. The lumped parameter models are mostly sys-
tems of differential and algebraic equations. The differential equations stem
from material and energy balances over different finite control volumes, while
the algebraic equations usually describe the physical, chemical, and thermo-
dynamic properties of the system. Often the algebraic relations represent
dynamic mechanisms that occur infinitely fast. This time scale difference is
used in model reduction of reaction networks, hence reduced models for the
kinetics are sometimes DAEs. Fundamental models for distributed parame-
ter systems consist of sets of partial, differential, and algebraic equations. In
these models, the conservation laws are expressed around infinitesimal control
volumes, leading to partial differential equations. Using different techniques,
e.g., the method of lines, these models are approximated as DAEs so they can

be numerically solved.

The quandary of an engineer who must develop a dynamic physico-



chemical or biological model to use in process control is that there is a very
large range of possible models that can be used, from simple to complex. Ev-
ery model incorporates assumptions that must be made by the modeler, who
usually does not know a priori the impact of the assumptions on model accu-
racy or control quality. If the model is too complex (e.g., over 20 states), then
the computation time for control calculations may be prohibitive, in the range
of several hours, for a process that responds with time constants on the order
of several minutes. What is needed is a methodology that allows the mod-
eler to use a rigorous model, and imbeds model reduction and computation
reduction into the CAD approach, so that time reductions by a factor of 100
can be achieved, permitting real-time calculations. Using rigorous models has
been a recent trend in related fields, e.g., in process simulators such as HYSY'S
and in computational fluid dynamics software such as Fluent. Developing a
methodology to use such models for process control is the main thrust of this

research.

The proposed approach consists of unifying four steps in order to carry
out model-based control of DAE systems in real-time (order of several minutes

between control changes):

1. differential and algebraic equation reduction (new adaptive approach)

2. shift control calculations offline for efficient online retrieval, using in situ

adaptive tabulation (new applications for estimation and control)

3. explicit solution to moving horizon state and parameter estimation



4. explicit solution to receeding horizon control

The challenge is to make this approach work for DAE systems with hundreds

of variables, which has not been done successfully before.

1.1 DAE Model Reduction

Large scale first principles models can consist of hundreds of differential
equations and thousands of algebraic equations. Solving the differential alge-
braic equations (DAEs) simultaneously in simulation and control applications
can pose a numerical challenge. Other motivations for model reduction are
for storage and retrieval of optimal control trajectories, insight into the model

structure, and analysis of dynamic degrees of freedom.

Nonlinear model reduction approaches such as balanced covariance ma-
trices (BCM) and proper orthogonal decomposition (POD) have been devel-
oped to optimally reduce the number of differential states. However, these
model reduction approaches cannot reduce the number of algebraic equations.
Because the algebraic equations often greatly outnumber the differential states,
significant order reduction of the overall model is not achieved by POD and
BCM, which construct a reduced model from a linear combination of the orig-
inal states. During this transformation, physical significance of the variables
is lost. In applications it is often desirable or required for a reduced model to

retain physical significance of the original variables.

Other approaches have been suggested for DAE model reduction, but



they generally suffer from poor scaling to large scale problems or extensive
model configuration [20]. The proposed technique in this work has the advan-
tage of good scaling for large scale problems and no special model manipu-
lation. An added advantage is that the physical significance of the algebraic
equations is retained. A major focus of this work is also in making the model
reduction approach adaptive in order to achieve a specified level of accuracy
compared to the orginal model. Being adaptive, the DAE model is reduced

automatically with no prior training simulations.

1.2 Storage and Retrieval

In control, a group of inputs are used to determine a certain number of
outputs. If the model is deterministic, the same set of independent variables
(inputs) will always produce the same set of dependent variables (outputs).
In block diagram form, the inputs (s) enter the system and leave as a set of

outcomes (f) . Sensitivity information may also be optionally available from

s f

—— _—
calculations (A)

Figure 1.1: Block diagram of a deterministic calculation of f based on inde-
pendent variables s. The block diagram may represent open loop simulation
or a simplification of closed loop control.

the function evaluation. The sensitivity matrix (A) reveals the amount that f



changes with a small perturbation in s.

_of
A= (1.1)

In some applications, it is desirable to store previously computed values of f
in order to estimate future values of f without redoing the usual calculations.
In this process of storage and retrieval it is desirable for the estimated values

of f to be within some error tolerance (€;,) of the actual f.

|f - fest| < €tol (1.2)

Costs associated with a storage and retrieval method include configuration
costs, CPU time costs, and storage costs. Configuration costs are largely a
function of the degree to which the method is generalized and automated.
CPU time costs include the construction of a database and the retrieval time.
Storage costs can be a factor if the dimension of s or f is large. Overall,

storage and retrieval may be desirable if the following conditions exist.

1. Retrieval time is much faster than the original calculation
2. The same calculations are performed repeatedly but with different values
3. Real time constraints make the original calculation infeasible

4. The CPU time to generate the database is small compared with retrieval

savings

5. Storage costs are small



Storing and retrieving solutions to sets of nonlinear algebraic equations can
be accomplished in many ways. General criteria to benchmark storage and

retrieval methods were given by Pope [66].

1. The CPU time required to create the store

2. The memory required for the store

3. Inaccuracies in the retrieved mapping (e.g., interpolation errors)
4. The CPU time required to retrieve from the store

5. The degree to which the technique is generally applicable and can be

automated

An exhaustive review of all possible storage and retrieval techniques is beyond
the scope of this work. However, one algorithm, the artificial neural network,
has become a popular technique for nonlinear function approximation. In situ
adaptive tabulation (ISAT) is then introduced as a new approach for storage

and retrieval. Each of the algorithms is judged by the benchmark criteria.

Neural nets are networks of adaptable nodes which, through a process
of learning from task examples, store knowledge about system behavior and
make it available for later use [5]. The flexibility and general applicability of
neural nets have been demonstrated by diverse applications across many fields
of study. Neural nets are an effective tool to incorporate historical data for

use in state estimation and control, although filtering and preconditioning the



plant data are often time-consuming tasks [67]. One limitation of neural nets

is the inability to extrapolate outside the training domain.

1.2.1 In Situ Adaptive Tabulation

In situ adaptive tabulation (ISAT) is a storage and retrieval method
developed for direct numerical simulation (DNS) of turbulent combustion
flames [66]. ISAT directly controls the approximation error by adding multi-
dimensional linear regions to chart unmapped state space. In this way, ex-
trapolation error is kept within specified error tolerances. Another desirable
property of ISAT is that the store is constructed in situ, without previous
training simulations or optimizations. For DNS, ISAT replaces the chemical
reaction integrations to greatly enhance the speed of the calculation. As a
black-box function approximator, ISAT gradually replaces the original func-
tion calculation by storing and retrieving previous computations (see Figure

1.2).

s f

— ISAT ——

4)

Figure 1.2: ISAT stores solutions and sensitivities (A) to approximate f with
multidimensional piecewise linear regions.



1.3 Research Objectives

The main objective of this research is to develop techniques to apply
large scale first principles models in real-time control. Detailed models of
chemical manufacturing processes often consist of many thousands of DAEs.
Solving large scale models in control applications can be computationally in-
feasible in real-time. Several strategies have been developed to make optimal

approximations and simplications. Other objectives of this research include:

1. Optimally reduce the real-time computational requirements of nonlinear
model predictive control (NMPC) for large scale models. Many tech-
niques have been proposed to reduce the on-line requirements of NMPC
[22] [23] [43], but are generally limited to single process units and small

models with short control horizons.

2. Develop adaptive model reduction of DAE models to optimally reduce
the model order. This optimal reduction of model order retains the most
important dynamic degrees of freedom of the original model. Developing
an adaptive approach means that training and application occur simul-

taneously in an iterative process.

3. Reduce the real-time computational requirements of dynamic state es-
timation while retaining the accuracy of large scale model based state
estimation. Receeding horizon state estimation can be nearly as compu-
tationally demanding as the receeding horizon control problem. Because

both are solved on-line, both must meet real-time cycle requirements.



4. Propose ISAT as a replacement for neural networks as a general nonlinear
function approximator. One of ISAT’s limitations was that a sensitivity
calculation is required to add a new record to the database. Because
many nonlinear function calculations do not include this feature, a mod-

ification to the algorithm is necessary.

1.4 Overview of this Dissertation

In this introductory chapter, storage and retrieval of open loop simu-
lations and closed loop control is proposed with ISAT. ISAT efficiently stores
multiple linear approximations of a nonlinear solution. It is a generic approach
that is applied for storage and retrieval for real-time control. A brief overview
of neural networks as a comparison, a history of ISAT development, and dis-
cussion of DAE model reduction provide some background for this research.

Each of the research objectives is addressed in following chapters.

Chapter 2 gives details of the ISAT algorithm modified to adaptively
approximate any nonlinear function. An approximation to the local sensitiv-
ity is developed with multivariable linear regression. Unlike neural networks,
the ISAT mapping of the nonlinear surface is performed sequentially, thereby
avoiding large global optimizations. ISAT and neural networks are directly

compared in an illustrative example.

Chapter 3 introduces DAE model reduction. Because ISAT storage
and retrieval is more efficient for smaller problems, significant effort has been

devoted to extracting optimally reduced small and medium scale models from



large scale models. In practice, many large scale models can be reduced with
very little reduction in model accuracy. An adaptive DAE model reduction
approach is proposed with the only tuning parameters being the required vari-
able accuracy. The adaptive strategy simultaneously refines the reduced model

structure and model order with an iterative approach.

Chapter 4 outlines the application of a combined model reduction and
storage and retrieval for real-time NMPC. DAE simulations are stored and
retrieved to reduce real-time control requirements by 85 times for the regulator.
Application to state estimation is also outlined. In sequential or hybrid NMPC
formulations, the same store can be accessed for state estimation and the

regulator, leading to faster training of the ISAT database.

Chapter 5 proposes another way to dynamically store NMPC solutions.
By parameterizing control solutions as a function of current states, NMPC
solutions can be stored and retrieved for sequential, hyrbid, or simultaneous
solution strategies. The proposed storage of optimal control is potentially more
efficient than that of Chapter 4 and requires no customization of the nonlinear
programming (NLP) sub-problems. A control study involving a continuously
stirred tank reactor (CSTR) model demonstrates an application of ISAT in

control.

Chapter 6 is the estimation counterpart to Chapter 5 on control. Chap-
ter 5 reveals an explicit solution procedure for control to reduce the computa-
tional demands. However, the estimation problem must also be solved at every

time horizon step with a computational load similar to the control problem.

10



An explicit solution to the unconstrained moving horizon estimation problem
is proposed. This explicit solution is able to estimate the current states, pa-
rameters, and input or output disturbances. For constrained problems, an
iterative solution technique is proposed to guarantee convergence in solution
times that are close to the explicit solution. By combining the techniques of
chapters 5 and 6, model predictive estimation and control can be implemented

without computational hardware restrictions.

11



Chapter 2

The ISAT Algorithm

Model size, nonlinearity, sparsity, and other factors contribute to the
ease or difficulty of obtaining a numerical solution in simulation and control
calculations. Generally, small nonlinear models in the range of 100 states or
less are amenable to real-time (10 seconds or less cycle time) MPC imple-
mentation. By reducing the model size, larger models can be efficiently applied

in real-time control applications.

Another real-time feasible MPC strategy involves shifting the compu-
tational burden off-line for efficient on-line retrieval. Storage and retrieval of
control trajectories can eliminate the on-line computational burden of model
predictive control. By reducing the control calculations to a simple lookup of
precomputed solutions, advanced control can be applied to applications that
do not merit large computational resources. The purpose of this chapter is
to demonstrate the application of a storage and retrieval algorithm, ISAT,
that compactly stores the precomputed control solutions, efficiently accesses
the values to meet fast sampling constraints, and adaptively builds the store
when new information is accessible. In applying ISAT to control calculations,

some of the specially tailored features designed for the original application in

12



simulation of reacting turbulent flows [66] had to be modified. However, this
chapter does not actually discuss the specific tailoring to control. Instead,
the ISAT algorithm is made generic to store and retrieve any deterministic
nonlinear function. Subsequent chapters then take this generic framework to
show control applications. By starting general and becoming specific, all ap-
plications of ISAT can be seen in one context. Also, this will aide application

to other areas outside of control or combustion modeling.

Besides generalizing ISAT for a range of applications, a new develop-
ment in this chapter is a more thorough explanation of the algorithm on a
step-by-step basis. This is intended to expose all of the details to facilitate
future development. One of the biggest limitations to widespread use of ISAT
as a general nonlinear function approximator is the requirement of sensitiv-
ities. As a new development, sensitivities are estimated from a database of
previous input-output data using linear regression. A filtering strategy is able
to determine when sufficient data exist to form a locally accurate linear ap-

proximation.

In storage and retrieval, the goal is to retain the accuracy of the original
calculations while substantially lowering the computational costs. Analogies to
the ISAT method exist in many different industries and products. For example,
computer systems are built with multi-layers of caching. One of the reasons
that Pentium@®) processors are considered superior to Celeron®) processors is
the larger amount of cache. This cache stores and accesses frequently com-

puted instructions and data and thereby improves the processor performance.
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As another example, the computer can speed-up the effective download speed
for internet connections by storing web pages on the hard disk. When a web
site is visited again, the page can be loaded from the much faster hard disk.

The common characteristics of these speed-up technologies are:

1. The first time through there is no speed-up. In fact, there may be some

slow-down associated with building and storing the database.
2. Search time is generally fast compared to repeating the operation.

3. Storage costs for the database are low compared to the cost of repeating

the operations.

4. There is a sufficient probability that the operation will be repeated,

otherwise the database would serve mainly as an archive.

5. The system performance increases as the database matures and more

operations are repeated.

ISAT is storage and retrieval algorithm for nonlinear functions. These
nonlinear functions may be time intensive computer simulations, calculations
that require real-time results, or for applications that do not merit substantial
compuational power. As a data-based application, there is a phase of training
associated with every application. As the database matures and retrievals
occur, ISAT uses a binary tree architecture to ensure fast search time. With
a parallel increase in data storage capacity and processor speed in modern

computers, storage costs rarely become a factor in ISAT applications [21].
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2.1 Review of ISAT for Turbulent Combustion Simula-
tions

Detailed combustion models typically include reactants, products, and
reaction intermediates that result from hundreds of reactions. These reaction
timescales can range from 1072 to 1 second. Models with a large range of

timescales produce a stiff system that is difficult to integrate.

Analytical and numerical tools have been developed to optimally reduce
the kinetic models. Some of these tools include sensitivity analysis, principal
component analysis, and species lumping procedures [85]. Another tool is
computational singular perturbation (CSP) as a formal way to apply partial-

equilibrium approximations on an a priori basis [46].

Many of the methods for creating reduced mechanisms rely on steady-
state or partial-equilibrium approximations. However, the reduced mecha-
nisms are generally limited to a range of temperature, pressure, and/or species’
concentrations, known as the thermochemical space. Outside of this defined
space, large errors can occur. To overcome this deficiency, Mass and Pope
proposed a new method for reducing the simulation burden of detailed chem-
ical kinetics based on intrinsic low-dimensional manifolds (ILDM) [50] [51].

However, the ILDM method also had the following shortcomings [93].

1. Storage requirements increase dramatically as the manifold dimension

increases.

2. The entire thermochemical space must be calculated for a fixed dimen-
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sional manifold that cannot be easily adapted when a higher dimensional

manifold is required.

3. For higher dimensional manifolds, the work to retrieve information is not

trivial.
4. There is a lack of dynamic error control.

5. Existence, uniqueness, and continuity of the lower dimensional manifold

are not guaranteed.

ILDM was created as a dimension reduction technique that gave modest
improvements in computational performance. Later, Pope developed in situ
adaptive tabulation (ISAT) to directly reduce the computational requirement
without dimension reduction [66]. The ISAT method calculates and stores
the data in situ rather than as a preprocessing step. Thus, only areas of the
thermochemical space that are accessed are included in the database. Another
benefit of ISAT is the addition of error control that seeks to limit the retrieved
data is within a specified error tolerance [49]. In a turbulent flame simulation,
a reduction by a factor of 1000 in the computational effort was demonstrated

[66].

Consider how ISAT reduces computational time of simulating the com-
plex chemistry in turbulent flames. Often tens of chemical species are linked
together by thousands of possible chemical reaction pathways. Coupling the

chemistry, convection, and diffusion in a simultateous simulation is often too
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computationally demanding. As a first step, the chemistry integration is iso-
lated from other physical simulations, such as mixing, by one of many splitting
schemes. During the course of the reacting flow simulation, integration queries
consisting of initial states (¢g), an integration time (At), and an error toler-
ance (€,) are sent to ISAT many times. ISAT returns the final states (¢;) of

the chemistry integration within the specified error tolerance. Since Pope first

$o AL, &g R

Reacting Flow

Simulation & ISAT

Figure 2.1: Block diagram of ISAT interaction with the reacting flow simu-
lation. TISAT stores and retrieves the thermochemical properties involved in
chemical reactions. Because the chemistry is decoupled from the other aspects
of the simulation, the final chemical compositions are a unique function of the
initial concentrations and time.

published the ISAT method, there have been numerous applications of ISAT
in combustion to simulations that were previously quite formidable. Saxena
and Pope [74] [75] simulated a piloted jet diffusion flame of C Hy — air with 16
species and 41 reactions. A significant speedup was not reported because the
chemistry calculations took only 60% of the total CPU time. Other simulations
have shown that up to 99.9% of the CPU calculation are chemistry related,
making possible an overall reduction of 1000 times [66]. Shah and Fox [78]
performed computational fluid dynamic (CFD) simulations of methane ther-

mochlorination reactors involving 38 species with a speedup of 138 over direct
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integration. They also mentioned that ISAT has been successfully applied to
a mechanism with 116 species and 447 reactions, although no further details
were given. Xu and Pope [92] performed another simulation of piloted jet
flames of methane with a parallel implementation of ISAT with an estimated

speedup of 40.

There has been some interest in reducing the storage requirements for
ISAT. Tang and Pope developed an extension that combines ISAT and model
reduction through rate-controlled constrained equilibrium, abbreviated ISAT-
RCCE [81]. ISAT-RCCE as applied to a mechanism with 32 species and 175 re-
actions shows a speedup factor of 500 over direct integration. Another method
to reduce storage was proposed by Chen et al. [21]. The ISAT database is
replaced by a neural net, thereby reducing the storage requirement from ~100
MB to =1 MB. Even though there is a savings in memory, there is a loss of
error control. The authors mention that by using a neural net, extrapolation
would produce unpredictable results and that ISAT should be used for points

outside the training domain.

2.2 Details of the ISAT Algorithm

The ISAT algorithm was originally developed for storage and retrieval
of initial value problems (IVPs) involving ordinary differential equation (ODE)
models (see Figure 2.2). ISAT was originally developed to store and retrieve
ODE numerical integrations. Given the initial states, the final states are ap-

proximated by a linear extrapolation from a neighboring solution. ISAT at-
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Figure 2.2: ISAT was originally designed to store and retrieve numerical inte-
grations of chemistry evolution in turbulent combustion simulations.

tempts to control the approximation error by defining a region of accuracy

around the initial state.

A generalized development of the algorithm is necessary for the broader
application as a nonlinear function approximation tool for cases in which gra-
dient information is not available. As a nonlinear function approximator, the
potential applications of ISAT are greatly expanded. In subsequent chapters,
the ISAT algorithm is applied to IVPs involving differential-algebraic equa-
tions (DAEs) and regulator solutions for nonlinear model predictive control

(NMPC). A generalized form of the ISAT algorithm follows.

2.2.1 The ISAT Record

The basic unit of the ISAT database is the record. An ISAT record
consists of the initial states and inputs, the final states, a sensitivity matrix,
and an ellipsoid of accuracy (EOA). The sensitivity can be estimated when

it is not explicitly available from the function calculation. The EOA is a
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matrix used to control the retrieval error. A distinguishing feature of ISAT

over other storage and retrieval methods is the automatic error control. For

Table 2.1: Elements of the ISAT record, along with the vector and matrix
dimensions

ISAT Record Element Symbol and Dimension

Independent variables s € R™
Dependent variables feR
Sensitivity A e R™™
Ellipsoid of accuracy M e R™m™

optimal control, s is a set of parameters and initial states, f is a set of inputs
to the system, A is a sensitivity of the inputs to s, and M is an ellipsoidal
region about s that defines the linear approximation limit in order to achieve

a desired accuracy.

2.2.2 Searching the Records with Binary Trees

When accessing the database, the only piece of information that is
known is a query vector of initial conditions. Ideally, a stored record is re-
trieved that minimizes the approximation error. However, the approximation
error cannot be verified without performing the calculation of interest, thereby
negating the utility of storage and retrieval. Generally, closer records produce
lower approximation errors because the linear approximation is locally accu-
rate. The approximation error is sub-optimally minimized by selecting a record

that minimizes a measure of closeness. In this case the measure of closeness is
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the difference between the query vector (s,;) and stored vector (s;) .
T = s, — S (2.1)

Searching the ISAT records sequentially would require O(N) operations to
completely search the database and find the closest record. A more efficient
search structure is the binary tree. A balanced binary tree requires O(logs(N))
operations for locating a record. One of the drawbacks to binary tree searching

node;

node,
records

recordy record,

Figure 2.3: Each node of a binary tree can either be a leaf or branch. The
leaves of the binary tree are individual records of the ISAT database. A branch,
on the other hand, points to two other nodes. All branches divide until a leaf
terminates the line.

is that the closest record is not always selected. To overcome this deficiency,
multiple binary trees are used to increase the probability of finding the closest
record. The records are equally divided among the binary trees to maintain a
balance in search times. Once all of the binary trees are searched, a sequential
search is performed to determine the closest record among the ones the binary
trees selected. By adjusting the number of binary trees, an effective compro-
mise is reached between the accuracy of the sequential search and the speed

of the binary tree search.
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Once a close record is located, ISAT performs one of three scenarios.
These scenarios include retrieval, growth, and addition. Each of these is de-

scribed in more detail below.

2.2.3 Record Retrieval

The automatic error control decides if retrieval is appropriate. The
error control is accomplished with the ellipsoid of accuracy (EOA) with a center
being the stored start. Another point, s, is within the EOA if 27 M,z < €2, .
If the query point is within the EOA then f is estimated (f.s) with a linear

approximation using the sensitivity (A).

fest = fs + Az (22)

If 7 M,z > €2, then the point s, is outside of the EOA and a retrieval
cannot be performed. Even though the query point is not inside the EOA, the
linear approximation may still be within the error tolerance for f..;. The next

step of the algorithm is to check the actual error.

2.2.4 Record Growth

When retrieval is not possible, the approximation error is computed. In
order to check the actual error, an original function evaluation must determine
the correct value of f (f = function(s,)). If |f — fest| > €101, the EOA should

not be expanded. Instead a new record should be added to the ISAT database.
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The growth step should be skipped and the algorithm jumps ahead to the ISAT

addition phase (see section 2.2.5).

If |f — fest] < €101, the EOA can be expanded to include s,. This new
region is a minimum volume ellipsoid that includes the new point, s,, and the
original EOA. The growth algorithm involves six steps. Each of the steps is
described first in mathematical terms and subsequently with a two dimensional

graphical example.

2.2.4.1 Definition of the EOA and growth point

After replacing €, with ¢ to simplify the notation, the EOA is defined

by all possible query points that satisfy Equation 2.3.
I Mz < 2 (2.3)

In the two-dimensional example shown in Figure 2.4, an ellipse is centered
about the origin as an estimate to the region of accuracy. This ellipse can

grow as the region of accuracy is revealed with further query points.

2.2.4.2 Transform the coordinates to map the EOA to a unit hy-
persphere

In this step a matrix 7}, is computed to map the original z-coordinates
onto a new y-coordinate system that transforms the EOA into a unit hyper-
sphere. A unit hypersphere is simply a higher-dimensional generalization of
the three-dimensional sphere with radius of one. The matrix 7, maps all

points in z into the y coordinates with the relation y = T,,x. Likewise, the
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Figure 2.4: The center point of the ellipse is the origin. The growth point s,
becomes z, after the translation and the EOA is defined in terms of x.

inverse of T, (or T,,) maps y into the z coordinates with = = Ty;,] y = Tyyy.
The first subscript letter of T refers to the transformed coordinate system

while the second subscript letter refers to the original coordinates.

A Schur decomposition gives M, = Q,3,Q" with @, being a unitary
matrix (QT = Q,!). The square root of the diagonal matrix ¥, is computed
by taking the square root of the individual elements along the diagonal. The

: : C1g1/2
transformation matrix becomes 7,, = c 15,/ QT

It will now be shown that the coordinate transform does, in fact, trans-
form the EOA to a unit hypersphere in the new coordinate system. First, the

inverse of T, is found to be

T =Ty = Q2,2 (2.4)

yx T
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Making the substitution 7,,y = x in the EOA equation gives
(cQa™, ' ?y) Mo (cQ, %, Py) = ¢ (2.5)
Rearranging and substituting M, = Q,X,Q" gives
Ay, PN Qe QL QS ) = ¢ (2.6)

The ¢® term cancels and Q7 Q, = I because @, is a unitary matrix. This

leaves

YIS P, Py =1 (2.7)

Finally, because Z;WE:EE;]/Q = I the EOA in transformed space becomes a

unit hypersphere.
y' Iy =1 (2.8)

2.2.4.3 Map the growth point to the transformed coordinates

The same transformation matrix 7, is used to transform the growth

point to the new coordinates.
Yg = Tyarq (2.9)

The magnitude and normalized direction of y, are important for subsequent

calculations. The magnitude is the Euclidean norm of y,.

mag (Yq) = ||Yqll, (2.10)
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Y2

Y1

Figure 2.5: In a two dimensional example, the y-axes are shown relative to
the z-axes. In the y-axes reference frame, the ellipse becomes a unit circle
centered at the origin.

The normalized direction is simply the vector divided by the magnitude.

e yq
quHQ

Yn (2.11)

2.2.4.4 Align one of the y-axes with the direction of the growth
point

One of the y-axes must be aligned with the direction of the growth
point. This is accomplished by computing an orthonormal basis to y,. An
orthonormal basis is produced by first subtracting the outer product of y,

from the identity matrix of appropriate dimension.

R=1-yy’ (2.12)
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T

/

Figure 2.6: The growth point is translated to the new y reference frame. The
magnitude is the distance between y, and the origin. The normalized vector
yn has a unit length and points in the direction of y,,.

[yl o
Y1

A Schur decomposition of R gives

R = Qpsi@l (2.13)

The diagonal matrix ¥ is equal to the identity matrix except that one of the
diagonal elements is zero. This diagonal element corresponds to the axis that
is aligned with y, in the z coordinate system. The transformation matrix is
the transpose of the unitary matrix from the Schur decomposition (or obtained

more efficiently by a Householder transformation).
T., = QL (2.14)

A new coordinate system is defined by z = T,,y. Transforming the y coordi-

nates to the z coordinates the EOA becomes
(T,.2)"1(T,.2) = 1 (2.15)
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Rearranging gives

T Tz =1 (2.16)

Because T}, has the special property of a unitary matrix that T;;Tyz =1, the

EOA is also a unit hypersphere in the z coordinates.

ATz =1 (2.17)

Figure 2.7: The axes are rotated so that one axis aligns with the growth point.
This rotation is important so that the ellipse can be expanded along the aligned
axis.

2.2.4.5 Grow the hypersphere into an ellipsoid that reaches the
growth point

The half length of the axis, aligned with y,, is expanded by modifying
the appropriate element of the identity matrix. This is the same element that

corresponds to the zero diagonal element of Y. In this case, the first diagonal
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element is shown as the appropriate selection. The semi-axis of the i*" axis of
an ellipsoid 27 M,z = ¢? is (¢?/0;)"/? where o; is the i* eigenvalue of M,. In
order to stretch the hypersphere into a minimum volume ellipsoid that includes
z, and the original EOA, the half length is lengthened to the magnitude of z,.

Because the magnitude of z, is equal to that of y,, the matrix element is set

t0 [|ygll5 . )
[[¥all, 0 0
=] 9 1 0 (2.18)
0
0 0 1
The grown EOA is 2" M,z = 1.
23

Figure 2.8: The circle is expanded into an ellipse that reaches the growth
point. This is a minimum area expansion of a symmetric ellipse.
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2.2.4.6 Transform the expanded ellipsoid back to the original co-
ordinate system

The grown EOA is transformed back to the original coordinate system
with inverse transformation matrices. The 2z coordinates are a function of the

x coordinates according to
2 =T,y ="T,T,x (2.19)

Substituting for z in the EOA equation and multiplying both sides of the
equation by ¢? reverts back to the x coordinates and recovers the form of the
original EOA. This is the minimum volume ellipsoid that includes the original

ellipsoid and the growth point.
eTMfx = ¢ (2.20)
with the expanded volume determined by

M¢ = (T, T! M, T,,T,.) (2.21)

yr—zy

2.2.5 Record Addition

When |f — fest| > €0 the EOA should not be expanded. Instead a
new record should be added to the ISAT database. The core elements of an
ISAT record are s, f, A, and M,. Each of these elements is discussed in the

subsequent sections.
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Figure 2.9: When the ellipse is transformed back to the original coordinates,
Z4 is on the ellipse perimeter. In addition, the ellipse is a symmetric minimum
area expansion that includes the growth point and the original ellipse.

2.2.5.1 Initial states and inputs
The vector s is the query point that is not eligible for retrieval or

growth. This point becomes the center of the new EOA.

s =, (2.22)

2.2.5.2 Final states

The vector f comes from an original function calculation. There is
no computational advantage with growth or addition because a complete cal-
culation is required. Record growths and additions are part of the database
building phase. The real advantage of ISAT occurs when retrievals greatly

outnumber growths and additions.
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2.2.5.3 Sensitivity

Sensitivity information may also be optionally available from the func-
tion evaluation. For dynamic systems, the intial state sensitivities can be
solved simultaneously with the state equations. Automatic differentiation can
improve the accuracy and reduce the computational burden that is required
to obtain sensitivities. The sensitivity matrix A reveals the amount that f

changes with a small perturbation in s.

_f

A =
0s

(2.23)

When the sensitivity is not available from the function evaluation a statistical
approximation can be made. At least m, where m is the dimension of the
vector s, function evaluations are required to calculate an accurate sensitivity.
The function evaluations can be obtained by sorting through a database of

previous results or by generating new results.

When sorting through a database of previous results, care should be
taken to select records that are close to s, otherwise the sensitivity may not
be locally accurate. The data filtering routine in this section may be modified
based on the known characteristics of the function that is approximated. The
filter suggested here is designed for functions that exhibit discontinuities, re-
gions that are not continuously differentiable, or strong nonlinearities. When a
sensitivity is requested, a multiple binary tree search is conducted to gather a
set of 4m records that are close to s, (s, € R™). Multivariate linear regression

is used to obtain a sensitivity about s,. If the residuals from the regression
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are less than the requested ISAT tolerance, the sensitivity is accepted as a
local approximation. In the event that the requested ISAT tolerance is not
met, data are filtered from the set by two alternate means. The first filter
eliminates the record with the highest regression residual. The second filter
removes the record that is furthest from s, in the 1-norm sense. These filters
remove records until the regression tolerances are met or until fewer than m
linearly independent records remain. Linear independence of the records is ex-
amined with a singular value decomposition of the raw data set. Independence

is maintained if m non-zero singular values exist.

When generating new results, m linearly independent vectors of s should
be generated around s,. These linearly independent vectors can be created by
defining an orthonormal basis as R = I — yy”, where y is any unit vector.
Performing a function evaluation m times for all of the s vectors can be a cpu

time intensive step.

Once the m function evaluations are completed, the sensitivity can be
estimated through multivariate linear regression. Each of the s and corre-

sponding f vectors are first subtracted from s, and f,.

As=s5,—15 (2.24)

Af=f(sqg)—f=fo—f (2.25)

The linear regression model includes a residual vector, €,.44 , as an indication
of how much each local result deviates from the linear model. A large residual

indicates that a perturbation of s does not fit in with the linear model. This
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could indicate that the perturbation of s should be reduced to generate locally
linear solutions to f.

Af = AAS + €reia (2.26)

The vectors are assembled into matrices X and Y.

[ As, | g
X = : (2.27)
As,,
[ an ]
y=1| : (2.28)
| Af

An estimate of the sensitivity is calculated by simple matrix multiplications.
A=yXT(xx")" (2.29)

The regression approximation to the sensitivity can be poor if data are not
in the local linear area. However, an inaccurate sensitivity approximation
will not degrade the error control, but will likely decrease the efficiency of
ISAT. Without an accurate first order approximation, the EOA size is limited
to smaller local region. It is preferable to use integrated sensitivity analy-
sis when available. For example, popular ODE and DAE integrators such as
ODESSA, DASAC, and DASPK include the capability to compute the sensi-
tivity simultaneously with the integration. This sensitivity information is used

in the first order approximation of f..
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2.2.5.4 Initial estimate of the EOA

An initial estimate of the EOA should be conservative for good error
control. ISAT employs a first-order approximation for estimating f. Second

order and higher terms have been truncated from this approximation.
.fest = fs + Az (230)

By assuming a zero-order function estimation, the first-order term becomes an

approximation to the truncation error.

fest = fs (231)
Corume 2 A (2.32)

Substituting €., for the error term in the EOA equation gives an approxi-

mation for the zero-order EOA.

" Myr = =€l epune = (Az)T (Az) = 2T (AT A)x (2.33)

M;eroforder — ATA (234)

Sometimes the zero-order approximation produces an EOA with a large prin-
ciple axis because of a low sensitivity in a particular direction or because the
dimension of f is less than s. To remedy this problem, the singular values
of A are adjusted to be at least ¢2,/2. To accomplish this, a singular value
decomposition of A is performed to give ULV, Any diagonal elements below
€2 /2 are raised to the minimum value. The corrected matrix is reconstructed

from the new diagonal matrix of singular values.

A=UsvT” (2.35)
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The corrected zero-order approximation of the EOA ensures that large princi-

ple axes are conservatively reduced.

M;ero—order — ATA (236)

2.2.5.5 Binary Tree Addition

Once all of the ISAT record elements are computed, the record is added

to the binary tree. The growth of the binary tree involves the creation of a

new node. In this case, the record added to the tree is records. Supposing

that records is closer to records, the tree is grown on the right branch with the

creation of nodes. The new node, is defined by v, and ay which are obtained
node; node,

=/

node
record, record 2
1 2 record,

record, record,

Figure 2.10: The binary tree is grown to include a new record. The growth
creates a new node where the next closest record previously appeared.

from the following equations, where s, and s3 belong to the new record and

next closest record, respectively.

Vg = S3 — S9 (237)
a = vl (S3 ‘; SQ) (2.38)

36



As a final step, the node, pointers are linked to records and records, and node;

points to nodes.

2.3 Scaling to Large Scale Problems

One of the limitations of the ISAT method is that the storage require-
ments are proportional to n?, where n is the total number of states [21]. There-
fore, smaller models are better suited to computational reduction through
ISAT. A practical limit may be on the order of 100 states (see examples in
Chapter 4).

2.4 Example: Comparison of ISAT and Neural Net-
works

ISAT and neural networks are compared in this example. Neural net-
works were selected as a competitive alternative due to their success in control
applications. For this example, all retrievals are purposely kept within the
training domain. ISAT directly controls the most intuitive tuning parameter
for nonlinear function approximation: The amount of error between the ac-
tual function and its approximation. Neural networks tuning parameters are
centered on the network structure and optimization tolerance for convergence.
These tuning parameters are less intuitive and lead to an indirect error control
scheme. The first eigenfunction of an L-shaped membrane is selected as a test
problem for the comparison (see Figure 2.11). One quadrant of the eigenfunc-

tion is linear while the three quadrants are a continuous nonlinear function.
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Figure 2.11: The first eigenfunction of an L.-shaped membrane used to compare
ISAT and neural networks. The second and third eigenfunctions have also been
shown in MathWorks™ publications.

The eigenfunction is a good test of nonlinear function approximation algo-
rithms because it exhibits both linear and nonlinear regions with parts that
are not differentiable. The horizontal axes z and y are the independent set.
The vertical axis z is the dependent set. Data were generated by selecting
coordinates of z and y at 31 equally spaced intervals for a total of 961 (= 31?)
function evaluations. On the graph, the intersection of two lines indicates a

point where a function evaluation occurred.

Because the sensitivities are not available from the calculation, ISAT
used a statistical approximation for the slope at each point. ISAT’s princi-
pal tuning variable is the absolute tolerance for function approximation error
(€01). As the error tolerance is lowered, the number of linear regions in the

ISAT approximation increases. To illustrate, the error tolerance was initially
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set at €, = 0.5. Because the 2z values range from -0.3 to 1.0, an error tolerance
of 0.5 is extremely coarse. ISAT computed 12 linear regions to approximate

the nonlinear function (see Figure 2.12). The shape of the nonlinear function

Figure 2.12: ISAT approximation with an error tolerance of 0.5. Due to the
high error tolerance, the approximation is very coarse with 12 linear regions.

is barely recognizable because the nonlinear region is approximated with only
a handful of linear functions. One good aspect of the approximation is that the
left quadrant is exactly represented by ISAT’s linear approximation. Decreas-
ing the error tolerance to €;,,; = 0.1 produces considerably better results with a
total of 48 linear regions. However, there are still regions of the approximation
that approach the maximum error tolerance (see Figure 2.13). Finally, with an
error tolerance of ¢;,; = 0.01 and 206 linear regions, the ISAT approximation
resembles the original function (see Figure 2.14). For this example problem,
the number of linear regions increases proportional to the reciprocal of €.

With other applications of ISAT, ¢, should be chosen to balance the costs of
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Figure 2.13: ISAT approximation with an error tolerance of 0.1. The approx-
imation is more refined with 48 linear regions.

function approximation error and storage requirements. For comparison, the
same function approximation was made with an artificial neural network. The
neural network has two layers with a linear output layer of 1 neuron and a
tangent function layer with 4 neurons. The neural network was generated and
optimized using MATLAB’s neural network toolbox. The neural network was
trained with the same data that produced the ISAT database (see Figure 2.15).
The approximation deviates significantly from the original function shown in
Figure 2.11. Some of the key missing features are the non-continuously dif-
ferentiable points, a quadrant that is exactly linear, and shape of the peak.
A neural network is basically a nonlinear function with parameters that are
optimized to fit a desired function. The neural network can approximate a
wide range of nonlinear functions. However, some expertise is required to de-

termine the number of layers, number of neurons in each layer, training data
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Figure 2.14: ISAT approximation with an error tolerance of 0.01. The approx-
imation includes 206 linear regions and ISAT closely approximates the original
eigenfunction.
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Figure 2.15: Neural network approximation to the eigenfunction.

41



set, and optimization to fit the nonlinear function. In addition, there is no
error control to limit the amount of approximation error. The approximation

error is determined by the structure and training of the neural network.

ISAT, as opposed to neural networks, uses linear regions to fit a desired
function. Also, ISAT has direct control over the error tolerance, which is
the most important tuning parameter for nonlinear function approximation
algorithms. Other advantages of ISAT over neural networks are that no global
optimization step is required to build the database. When ISAT encounters
data outside of the training set, it either expands an existing linear region or
adds a new linear region. The creation of new linear regions is determined by
the error tolerance control. Also, ISAT can approximate functions that are

not continuous or continuously differentiable.

2.5 Summary and Conclusions

This chapter outlines a new storage and retrieval algorithm for non-
linear functions. Although originally developed to reduce the computational
burden of DNS in turbulent combustion, the algorithm shows promise as a
general nonlinear function approximator. In this chapter, a description of the
algorithm has been developed in a way that does not restrict the application
of ISAT to one particular area. Although many of the details of the ISAT
algorithm are presented in other papers, a more thorough explanation of the
algorithm is given to clarify some of the details. In addition to reporting the

details of ISAT, new features have been developed. Many functions do not

42



produce an exact sensitivity. In the case when the sensitivity is not avail-
able, a statistical approximation is attempted. The statistical approximation
is determined by collecting previous calculations close to the point of interest.
This feature also identifies when insufficient data exist to provide an accurate
sensitivity. With a sensitivity approximation, any nonlinear function can be

stored and retrieved with ISAT.

The eigenfuction of an [.-shaped membrane was used as a test problem
to demonstrate ISAT’s capabilities compared to neural networks. In subse-
quent chapters, it will be shown how ISAT applies in storage and retrieval of
open-loop and closed-loop simulations. Open-loop simulations refer to simu-
lations without optimization of particular model paramters. Closed-loop cal-
culations seek to optimize decision variables to meet an objective. These
applications in process control are further examples of ISAT’s capability as a

general storage and retrieval technique.

One of ISAT’s limitations is that storage costs scale with the square of
the system size. To overcome this deficiency, model reduction is incorporated
to decrease the model order. The next chapter is devoted to model reduc-
tion because the efficiency of storage and retrieval can be poor for large scale
problems. Because large scale systems are typically necessary to accurately
model real-world phenomena, model reduction is used to reduce the model size

within an acceptable range for storage and retrieval.
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Chapter 3

DAE Model Reduction

A major obstacle to more NMPC applications is the rapid and reliable
solution of the optimization problem in real-time [68]. To overcome this ob-
stacle, several approaches have been suggested to reduce the computational
overhead. In Chapter 4, the computational load is reduced by storing and
retrieving solutions of DAE integrations of the model equations. In Chapter
5 the computation is shifted off-line by storing and retrieving optimal control
solutions. Both techniques are much more efficient for lower dimensional prob-
lems. Model reduction generally does not significantly lower the computational
cost of simulation and control. However, model reduction can enable off-line
storage and retrieval for efficient on-line implementation. The model reduction
strategies in this chapter are an important step in achieving computationally

feasible model based control solutions.

DAE model reduction has traditionally been an a posteriori approach.
Training simulations determine an acceptable reduced order model that may
or may not be valid over the entire set of desired simulations. This chapter
outlines a new in situ approach to adaptively determine the reduced model

order during the desired simulations. One benefit of this new approach is more
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direct control over reduced model error. The model error, not the model order,
becomes the principal tuning parameter. This change of tuning parameters is
more intuitive because the technique automatically adjusts the model order to

meet variable error tolerances.

3.1 Previous Work

DAESs consist of differential equations and algebraic equations. In the

general form, the DAE problem is as follows

fDAE(Z,Z,t) =0 (31)

where z is a vector of variables and ¢ is a scalar. The DAE is nonlinear when
the vector f is a nonlinear function of the Z, z, or £. In order for the problem to
be a DAE, at least one of the coefficients of Z must be zero. The DAE can be
grouped into differential equations (fopr) and algebraic equations (faz). The

variables are also divided into differential variables (x) and algebraic variables

(y)-

fODE(jijayat) =0 (32)

fap(z,yt) =0 (3.3)

Typically, the DAE equation residuals are time invariant and ¢ can be elimi-
nated from the general equation form. However, it is included in subsequent

derivations for the sake of generality.
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3.1.1 Reduction of Differential Equations

The main types of model reduction for nonlinear ODE models are pro-
jection methods, proper orthogonal decomposition (POD), balanced covari-
ance matrices (BCM), perturbation methods, and model simplification [52].
Perturbation methods are useful for models where there is a large separation
of time scales allowing the fast dynamics to be eliminated [89]. Even though
there are many types of model reduction techniques, few are optimal in some
sense. Two optimal nonlinear model reduction approaches are balanced em-
pirical gramians [34] and POD [94]. Balanced empirical gramians were later
found to be a special case of BCM [33]. The two step process, in POD and
BCM, first computes a similarity transform from step or impulse simulations of
the original model. Next, a Galerkin projection constructs the reduced states
from a linear combination of the original states. The reduced set of states
from BCM is optimal in capturing input to output dynamics of the original
nonlinear system. POD is optimal in capturing input to state dynamics. Dur-
ing the Galerkin projection step, the physical meaning of the variables is lost

but can be recovered by an inverse transform.

A Galerkin projection maps a full set of variables onto a reduced set of
variables that make up the reduced model. For BCM, the Galerkin projection
is a set of vectors that optimally captures the highest degree of input-output
dynamics. For POD, the Galerkin projection is a set of orthogonal vectors but
captures the highest degree of input-state dynamics. Each successive vector is

the direction that maximizes the amount of variance in the model states while
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maintaining orthogonality to the previous directions. For the semi-explicit

ODE model form
H1) = (1) (3.4

the Galerkin projection (P) is applied by defining a reduced set of variables
z(t) = PTZ(t) +r(t) (3.5)

where 7(t) is a state residual to account for the inaccuracy of the reduced
model. The reduced model exactly represents the original model when the

residual is retained.

i(t) = Pf(PTZ(t) + r(t)) + Pri(t) (3.6)

At this point the residual and its derivative are typically set to zero and some
of the system dynamics are necessarily lost due to the reduced order of the

model.

i(t) = Pf(P"a(1)) (3.7)

Two techniques for obtaining a Galerkin projection are described in sections
3.1.1.1 and 3.1.1.2. POD is optimal in capturing input-state effects while BCM

is optimal for input-output effects.

3.1.1.1 Proper Orthogonal Decomposition

POD is performed by analyzing the variance among the system states.
This is accomplished by decomposing the covariance matrix of the states into

eigenvectors and eigenvalues. The eigenvectors associated with the m largest
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eigenvalues become the pricipal directions in the reduced model. Here m is
the order of the reduced model and n is the order of the original model. The
Galerkin projection consists of the similarity transform (7') and a projection
matrix (P). The projection matrix consists of the top m rows of an iden-
tity matrix. For POD, the similarity transform (7') is the transpose of the
eigenvector matrix.

P=rT (3.8)

The Galerkin projection takes a linear combination of states to form a reduced
set. The model can either be reduced through truncation or residualization
[34]. Truncation assumes that the transformed states corresponding to the
lowest (n — m) eigenvalues are constant (see Equation 3.9). Truncated re-
duced models perform better than residualized models with high frequency

perturbations. One disadvantage is that there is usually some steady state

offset. ) ) o )
T f1(Z, u)
Tm B fm(j,u)
im+1 B 0 (3 9)
.z, ] L 0 ]

Residualization assumes that the derivates of the transformed states corre-
sponding to the lowest (n — m) eigenvalues are constant (see Equation 3.10).
Residualized reduced models have no steady state offset, but perform worse
than truncation for higher frequency responses. Residualization is often not

desireable because the reduced model is a DAE of the same order as the orig-
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inal ODE.

a1 [ A T
0 | | fusi(,u) (3.10)
B 0 ] i fn(fu)

These definitions of truncation and residualization are consistent with those
given for linear systems. For linear system truncation, the reduced states
are set to zero because the variables are in deviation form. For linear sys-
tem residualization, an explicit transformation of the reduced variables can be

obtained.

3.1.1.2 Balanced Covariance Matrices

Nonlinear model reduction using balancing of covariance matrices has
proven effective for sets of ODEs [33]. This method reduces the nonlinear
model to a variable subspace that captures the most important dynamics of
input-output behavior. One system studied by Hahn and Edgar [?] is a binary
distillation column with the reflux ratio (u) as the manipulated variable and
distillate composition (z;) as the controlled variable. The simulated column
contains 30 trays, a reboiler, and condenser. The 32 states are the compositions
of the liquid at each stage. The ODE model is placed in the general nonlinear

form.

i = f(v,u) (3.11)

y = h(z) (3.12)



A similarity transform (7") is computed from the balancing of empirical grami-
ans. The transformed variables are in order from most important to the least
important for input/output behavior. The transformed system is shown in
Equation 3.13. The Galerkin projection (]5) is a combination of the similarity
transform (7") and a projection matrix (P). The projection matrix consists

of the top m rows of an identity matrix, where m is the order of the reduced

model.

t=PTf(T'P"z,u) (3.13)

y=h(T"'P"z) (3.14)

The reduced model is often written in a more concise form in terms of the

reduced variables (z)

i = f(z,u) (3.15)

y = h(z,u) (3.16)

Hahn and Edgar [33] showed that a reduced system with 3 transformed vari-
ables shows excellent agreement with the full 32 state model on step tests. For
example, the first transformed state is shown as a linear combination of the
original 32 states.

gl
Ho)
I3
71 =1[97 40 34 --- 0.08 007 024 ]| : (3.17)

T30
T31
T32
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As a physical interpretation, the relative importance of the 1st-3rd states
(reflux drum composition and top rectification stages composition) on in-
put/output behavior is much greater than the 30th-32nd states (lowest bot-
toms stages and reboiler composition). The relative weighting of stages 1-31
monotonically decreases until stage 32 where there is a slight increase from
0.07 to 0.24. This increase from stage 31 (sump) to stage 32 (the reboiler) can
be attributed to the reboiler vapor that drives the separation. The similar-
ity transform from the balancing of empirical gramians confirms that most of
the important dynamics for control are found in the states at the top of the
column. With the transformation, the nonlinear system can be reduced by
truncation or residualization. By reducing the number of dynamic variables
through truncation, the computational requirements are reduced by ~ 40%.

Equation 3.18 shows the form of the 3 state model by truncation.

[ ‘/?1 | [ fil(j:u) |

T3 fo(@, u)

T f3(2,

ﬁj - 3% v (3.18)
L i‘32 . - 0 -

The dyanamic response of this reduced system is shown in the subsequent

section. It is also compared to a truncated model by POD and linearization.

3.1.1.3 Example Comparison of POD, BCM, and Linearization

POD, BCM, and linearization are compared for the 32 state binary

distillation column model. In the first comparison, trucated models generated
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with POD and BCM are compared in an open-loop step test. The step test
is generated by simulating a decrease in the reflux ratio, thereby lowering the

purity of A in the distillate (see Figure 3.1). The response of the distillate

094! —— 32 states /
><<c --- 3 states-BCM
< —«— 3 states-POD
g 0.93 1
£
[@]
O
(]
T
= 0.92 1
0
o
091 | I | | | B

Time (min)

Figure 3.1: A step decrease in reflux ratio produces a corresponding decrease
in the distillate composition. A nonlinear 32 state model, a 3 state BCM
reduced model, and a 3 state POD model are shown.

concentration is traced for 120 minutes. BCM and POD perform equivalently
for the 3 state reduced model. Because truncation was performed, instead of

residualization, there is a slight steady state offset.

Model simplication may include linearization. However, depending on
the degree of nonlinearity and the state deviation from the original linearized
values, a linear model may not capture the true dynamics. To illustrate this

point, the 1 state truncated POD and BCM models are compared with a
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linearized model of 32 states (see Figure 3.2). Interestingly, both 1 state

0.945
— 32 states
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Figure 3.2: The same dynamic response as Figure 3.1 is shown in this plot.
Here a nonlinear 32 state model, 1 state BCM and POD models, and 32 state
linearized model are compared.

reduced models outperform the 32 state linearized model in dynamic response
and steady state offset. This demonstrates the effectiveness of nonlinear model
reduction compared to another model simplication strategy. Because POD
and BCM are optimal in two unique ways, they will always outperform, with
respect to their objectives, all other reduced or simplified models with the

same or lower order.
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3.1.2 Reduction of Algebraic Equations

None of the previously mentioned model reduction techniques can re-
duce the number of algebraic equations in DAE models. Because algebraic
equations usually greatly outnumber the differential equations, reduction of
the differential equations often does little to reduce the overall order (and
also computational time) of a DAE model. Some attempts have been made
to reduce the algebraic equations in a DAE model. These approaches search
for an optimal precedence order and partitioning of the algebraic equations
and variables. Obtaining a precedence order and partitioning can be done us-
ing a manual directed graph (digraph) as a graphical approach, using matrix
methods to produce a block diagonal lower matrix [82], or through tearing
[18]. These techniques attempt to maximize the number of algebraic variables
that can be solved explicitly. However, this problem is NP complete, meaning
that all possible combinations of variables must be attempted to find a max-
imum set of explicit equations [20]. Another technique for order reduction is
through relaxation of the algebraic states [58]. Relaxation directly generates a
Gaussian elimination scheme when the algebraic equations are linear or made

linear.

3.1.2.1 Pairing Variables to Equations

Variables and equations are paired by rearranging the sparsity matrix
to a maximum transversal. All variables are paired to equations when problem

is completely specified (no degrees of freedom) and the maximum transversal is
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a zero-free diagonal [25]. The sparsity matrix (.J), also known as the incidence
matrix, is generated by identifying the variables that are contained in each
equation. The differential states are generally specified for an initial value
problem (IVP). The remaining variables are the differential state derivatives

and the algebraic variables.

| 1 ifyjora;appearsin f;
iy = { 0 otherwise (3.19)

Computing a zero-free diagonal involves changing the equation or variable
orders. The order of the row and column are then matched to give a vari-

able/equation pairing.

3.1.2.2 Application to Large Scale Problems

Another consideration relevant to large scale DAE systems is the com-
putational time that is required for the analysis. In this paper, n and 7 are
the order of the matrix and the number of non-zeros, respectively. The maxi-
mum transversal algorithm has a worst case bound of O(n7) although typical
examples are more like O(n) + O(7) [25]. The lower block triangular algo-
rithm also exhibits excellent scaling for large problems with an upper bound

of O(n) + O(r) [26].

3.1.2.3 Example: Flowsheet Model Reduction

Flowsheet models typically consist of many individual models linked
together by streams. If the model will be used in plant-wide control, model

reduction is desirable to reduce the size of the model. In this example, there
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is a tank containing equal molar proportions of five liquid hydrocarbons. The
stream exiting the tank is split into two with a splitter valve. The first stream
is mixed with another feed stream of hydrocarbons, and the second stream
passes through a heat exchanger. Overall the model includes 12 differential

equations and 217 algebraic equations (see Figure 3.3). In this example, an

Feed 1 Feed 2
Product 1 R

Product 2

o0n o — T

—l:‘ Product 3

Figure 3.3: Flowsheet model involving equal molar feed streams of butane,
pentane, hexane, heptane, and octane at 300 K and 1 ATM. The model has
229 variables with 12 ODEs and 217 AEs.

analysis of the algebraic equations was performed to determine independent
sets of variables and equations and the solution order. The algebraic equations
decomposed into 202 independent sets. There was one implicit set of 16 alge-
braic equations from the flash column. With the exception of this set, each
of the algebraic variables can be solved independently with a paired algebraic
equation by following the precedence ordering. Explicitly transforming the

algebraic equations manually or with ISAT reduces the model order from 229
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to 28. Details of the decomposition are given in Appendix C.

3.1.2.4 Explicit Transformation of Implicit Sets

Once the successive independent sets are identified, a storage and re-
trieval technique can be used to store and retrieve solutions to the groups of
algebraic variables and equations. ISAT is a storage and retrieval algorithm
that builds piecewise linear regions of the solution. ISAT controls the pre-
diction error by defining an ellipsoid of accuracy (EOA) that specifies a local
region about which the linear approximation is valid. If a query point is ac-
cessed outside of the EOA, the linear prediction error is exactly calculated.
When the prediction error is above a specified tolerance, a new linear region is
added to the database. Adding linear regions involves a sensitivity calculation
and a conservative estimate of the new EOA. ISAT is used here to store and
retrieve solutions to implicit blocks of variables and equations. An external
statistical approximation of the sensitivity through linear regression is given

as an alternative when an internal sensitivity calculation is not available.

3.2 Adaptive Reduction of DAEs

The total degrees of freedom (DOF) are equal to the order of the DAE
model. The dynamic degrees of freedom (DDOF) are defined as the minimum
order of a reduced model that shows good agreement with the full model. The
DDOF are the underlying combination of variables that control the dynamics

of the process. A more precise definition of the DDOF is the minimum order
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of a reduced order model (ROM) that meets accuracy criteria.
[wrom — 2| < €l (3.20)

The proposed adaptive reduction of DAEs iteratively adjusts the order of the
ROM to meet the accuracy criteria. The adaptive approach consists of 3
successive steps applicable to any DAE of index-1 or index-2. The approach
may also be applicable to higher index DAEs, although this idea has not been
explored. With a few exceptions, many of the models encountered in practice
are index-1 DAEs. In addition, a variety of techniques have been developed
to transform higher index DAEs to lower index form, but that work is beyond

the scope of this chapter.

1. Reduction of the differential equations
2. Partitioning and precedence ordering of the algebraic equations

3. Explicit transformation of algebraic/differential equations

As an index-1 DAE, the equations can be divided into differential and algebraic
sets of equations and variables. Any variable that is present in differential
form is classified a differential variable. Likewise, equations that are paired to
differential variables in step 2 are classified as differential equations. Under
this definition algebraic equations may contain differential variables. Each
step is an extension of existing approaches, modified to automatically control

the ROM error.
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3.2.1 Step 1: Reduction of ODEs

To adaptively reduce the order of the differential equations, a measure
of the reduced model accuracy must be introduced. When performing non-
adaptive model reduction, the training simulations are performed, similarity
transforms are generated, and singular values can be investigated to determine
an acceptable number of states for the reduced model. However, when the
training data set does not cover the entire nonlinear region of interest, the
singular values may be a poor indication of reduced model accuracy outside of
the training domain. One possible solution is to directly solve the full model
and reduced model at various checkpoints to determine the accuracy of the
reduced model. Another option that avoids the periodic solution of the full
model is to control the equation residuals. For linear systems at steady state,
the equation residuals and variable residuals are exactly related. A linearized

model is used to predict the variable residuals from the equation residuals.

3.2.1.1 Predicting Variable Error

Ideally, one would like to adjust the order of the reduced model to con-
trol the variable errors directly. Barring simultaneous solution of the reduced
and full order model, the variable error cannot be directly calculated for non-
linear systems. A new approach is to estimate the variable residual (r(¢)) from

the equation residual (R(?)).

i(t) = Pf(PTz(t)) + R(t) (3.21)
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When the system is linear, the equation residuals are related to the variable

residuals by the state matrix (A).

i(t) = Az(t) (3.22)
with
x(t) = PTa(t) + r(t) (3.23)
i(t) = PTa(t) + 7(t) (3.24)

the linear reduced model becomes
PTi(t) = A (PT:i(t)) + Ar(t) — i (t) (3.25)

The equation residual and variable residual are related to each other by the

state matrix and the variable residual derivative.
R(t) = Ar(t) — 7(t) (3.26)

By assuming that the variable residual is locally constant, the variable residual
derivative term can be ignored and an estimate of the variable residual can be

obtained.

F(t) = A (R(t)) (3.27)

By linearizing the nonlinear model, an estimate of the variable residuals can be
obtained from the equation residuals. The predictive capability of this relation
for nonlinear models depends on the severity of nonlinearity and closeness to

the point of linearization.
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3.2.1.2 Correcting Variable Error

A semi-explicit ODE model is a restricted form of the more general
open equation format.

fli,z) =0 (3.28)

Applying the Galerkin projection to the open equation format changes the
solution procedure. By reducing the number of variables and maintaining
the same number of equations, extra degrees of freedom arise. Physically,
this is the result of giving up some of the least important dynamic degrees
of freedom. The reduced order model is solved by minimizing the residuals

instead of finding equation roots.
R=f(P"z, P"x) (3.29)

Once a minimized residual solution is found, a variable correction can be ap-
plied from the predicted variable error (see Equation 3.27). The correction
relies on a linearized version of the ODE portion of the DAE model. The

corrected ROM is the sum of the ROM and the linear correction term.
x%OM = YrowMm + AilR(t) (330)

The correction is derived under the assumption that the linear model is locally
accurate and that the fast dynamics have decayed. The correction may not

perform well when either of these assumptions is not valid.
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3.2.1.3 Controlling Variable Error

The minimized equation residuals will generally be small for a good
ROM. As the order of the ROM is decreased, the equation residuals will gen-
erally increase. The differential equation model reduction approach is made
adaptive by increasing or decreasing the number of states of the ROM to meet
the required variable tolerances. This approach also involves a periodic update
of the Galerkin projection. The rank of the projection matrix (P) is adjusted
to meet the desired order of the ROM. The similarity transform (7') is pe-
riodically recomputed as more training simulations become available. Before
simulations are added to the training set, the order of the ROM is equal to
full order model. As the simulations proceed, the ROM order is iteratively
decreased until the training set is mature and the true number of DDOF are

determined.

3.2.2 Step 2: Partitioning and Precedence Ordering

The method proposed in this work differs from previous work by ana-
lyzing a dependency matrix M, instead of the incidence matrix J [26]. Tt will
be shown that Mp can reveal more information about variable dependencies.

The dependency matrix Mp is derived by first linearizing the DAE.

A"+ Bx' + Cy' +at' =0 (3.31)

Dz'+ Ey' + pt' =0 (3.32)
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The prime indicates deviation from reference values. A, B, C, D, and F are
coefficient matrices and a and 3 are coefficient vectors. The reference values
are selected to give non-zero coefficients for the deviation variables. Because
the selection of reference values is arbitrary, the coefficients can be arbitrarily
selected to be 1 if the equation contains the variable and 0 otherwise. In
this case the matrix F is equivalent to the incidence matrix .J. Rearranging
and combining the linear differential and algebraic equations results in the

following matrix form:

AR R -

The dependency matrix Mp reveals the solution dependencies among the lin-

earized equations.

(3.34)

A c1!
0 E

MD - |:
The variable dependency information in Mp can be illustrated by a linear
system of Ax = b. When A is invertible, the solution to z is A~'b. Each

element of the vector z is computed from the corresponding row of A; and

the vector b.
zi=» Aj'b; (3.35)
J

However, the solution to x; is independent of b; if A{jl =0V j#i Ifzis
independent of b; then it is also independent of equation j. The dependen-
cies in the linear system also apply to the corresponding nonlinear system.
Therefore, linearizing the DAE reveals the structure of the nonlinear system

dependencies.
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The matrix Mp can be converted to lower triangular block diagonal
form with Tarjan’s algorithm [82]. Each block along the diagonal is a set
of algebraic equations that require a simultaneous solution. The reduction
of algebraic equations occurs by explicitly solving for independent groups of
equations. Test cases with moderate sized DAE systems (< 300 states) show
that many of the equations included in the implicit set can be transformed for
explicit calculation. Once an algebraic variable is explicitly calculated, it can
be removed from the model as a variable that the solver must calculate. Ex-
plicit approximations to implicit solutions can be attempted to further reduce

the DAE order as Bosley did for batch distillation [19].

3.2.2.1 Example: Binary Distillation

A binary distillation column model, described in Appendix A, is em-
ployed to show a practical application of DAE model reduction. In this case
the model is reduced to a set of ODEs, although the complete removal of all
algebraic equations is not always possible. The DAE model has 52 differential
equations and 233 algebraic equations. The independent variables are shown
in Table 3.1. During the linearization step, the reference values are selected
to give non-zero coefficients for the deviation variables. Since the reference

values are arbitrary, the non-zero coefficients are shown by X if the equation
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Table 3.1: Variables at each stage of the distillation column

Differential variables

Symbol Description Units
T A Liquid mole fraction none
h Specific enthalpy ﬁ
Algebraic variables

Symbol  Description Units
Ya Vapor mole fraction none
Ty Liquid mole fraction none
T Temperature K
ny Vapor molar flow rate TTOCZ
nr, Liquid molar flow rate TT‘;’
hy Specific vapor enthalpy ﬁ
hr Specific liquid enthalpy ﬁ
pgat Saturation pressure of compound j Pa

contains the variable and 0 otherwise.
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N
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(3.36)

The non-zero values of Mp show the dependencies between the variables and

equations. The non-zero values of My, in lower triangular block diagonal form
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are shown below with the corresponding variable order.

(3.37)
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sat
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PR
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) Ya
[ i } = hy (3.38)
rL
’flv OI’fLL
TA

h

The first three rows indicate that T, P5", and P;™ must be solved simulta-
neously since the corresponding equations form one block. The equations for

P35 and P§* can be explicitly substituted into the bubble point temperature

equation.

P =24 P5(T) + (1 — 2.4) Ps*(T) (3.39)

For the cyclohexane / heptane binary mixtures, an explicit temperature solu-

tion is approximated by a second order polynomial in composition.

T = ¢ + c3x4 + 5274 (3.40)
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The vector ¢ was calculated with a least squares fit with data from the sets
2a€[0 1]tobec=[38542 -21.57 3.736 |'. The polynomial fit has

a mean sample error of 0.012 K and a maximum sample error of 0.04 K.

The molar flow rates form the last block along the diagonal. Since the
molar flow rate equations are linear, they can be solved explicitly. After solving
the flow rates the dependency matrix indicates that the differential equation
variables can now be solved explicitly. If extraneous algebraic equations were
present in the model, they could be identified at this point since the equations
for #4 and h have no further dependencies. By explicitly solving all of the
algebraic equations, the model is in an ODE form. In this form, nonlinear
model reduction techniques can be applied to further reduce the number of

differential states.

As an ODE, the distillation column model is available for further model
reduction through BCM or POD. POD was chosen for this example and the
number of differential states was reduced to 26. Figure 3.4 shows the bottoms
composition after a 5% increase in reboiler duty. The ODE model with 52
states approximates the 285 state DAE very well. The ODE model with 26
states also approximates the DAE model well but with a larger offset in the
steady-state value of composition. ODE models with fewer than 20 states
performed poorly, indicating that there are at least 20 dynamic degrees of

freedom in the binary distillation column model.

67



0.1

—— DAE - 285 states
_ 0.095 - --=- ODE - 52 states
S N Y ODE - 26 states
=~ 0.09-

Bottoms Composition
o o
o © o
~ o 7]
(&)] [e5) (&)
T

0.07 -

0065 I I I I L I I
0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec)

Figure 3.4: 5% Step Change in Reboiler Duty

3.2.3 Step 3: Explicit Transformation of Algebraic/Differential Equa-
tions

Because the implicit solution of a large number of algebraic equations is
computationally expensive, variables that can be solved explicitly are removed
from the set y [37]. However, some algebraic variables cannot be explicitly
solved or solved independently of other variables. The following techniques can
be used to automatically identify independent sets of variables and equations.
The sets that require an implicit solution are explicitly approximated with
ISAT. The process is called adaptive because the ISAT database adaptively

adds records to the database to control the approximation error.

Chapter 4 introduces the storage and retrieval of differential equations

with ISAT. Once the ISAT database is mature, meaning that mostly retrievals
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occur, the differential equations are rarely solved. Explicit transformation of
the differential equations refers to a mature database, not a mathematical

reformulation of the equations.

3.3 PDE Example: Unsteady Heat Conduction

A simple partial differential equation (PDE) example demonstrates the
reduction approach with the number of reduced states controlled by the equa-
tion residuals. The example is an unsteady 1-D heat conduction problem using

physical properties of aluminum (see Figure 3.5). The heat transfer dynamics

Figure 3.5: Graphical representation of a 1-D simulation of heat transfer in a
1.0 m thich aluminum slab. The PDE is spatially discretized to a set of ODEs,
one for every interior node.

are modeled with one PDE.

or 9 ([, ar
_ 9 (oL 41
P9t ~ o <k oz ) (841)

The PDE is spatially discretized with the finite element approach to give a set

of ODEs. The total slab thickness is 1.0 m and node points were placed every

~4.8 cm for a total of 20 equally spaced interior nodes. The temperature of

69



the nodes on the boundaries are specified by the boundary conditions.

aﬂ 1 m m
p(Ti)e(T5) o1 = N [kzh (T — 1) — kf;i (T; — Tzel)] (3.42)

(26T )K(T))
ki ‘(k(m)w(m)

(3.43)

An estimate of the thermal conductivity at each finite element interface (k™
is obtained by the harmonic mean of the thermal conductivities at the node
temperatures. The slab of aluminum is initially at an ambient temperature
of 25°C. At the initial time the temperature on the left side of the slab is
increased to 100°C. After 100 minutes the temperature profile is nearly equal
to the steady state linear temperature profile. Figure 3.6 shows the various

reduced order models in comparison with the full state model. Any reduced

20 states ||

400+ -
O 3states
-8~ 2states
380 -2 1 state

Temperature (K)
g 8

8

g

0 02 0.4 0.6 0.8 1
Distance (m)

Figure 3.6: Full 20 state model compared with reduced order models of 3, 2,
and 1 states using POD.

order model above 3 states fits the correct solution well. The 2 state model
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deviates from the correct solution as does the 1 state model, but more sig-
nificantly. Singular values from POD, the 1-norm of the variable residuals,
and 1-norm of the equation residuals are shown in Figure 3.7 on a semi-log

plot. Singular values are generally used to determine the order of the reduced

10 : ‘ . ‘
=+ Variable Residuals
L) e Equation Residuals
...... —— Singular Value
10° - TS
10° |
107

0 2 4 6 8 10
Reduced Model Order
Figure 3.7: Equation residuals have a strong correlation to the variable resid-

uals. The singular values also decrease with an increase in model order, but
have limited ability to predict variable error.

model for POD in the a posteriori approach. However, singular values have
little predictive capability as to the absolute accuracy of the model states.
Equation residuals are more directly tied to variable error between the full
order model states and reduced order model states. The variable residuals can
be predicted by linearizing the model about the actual solution (see Figure
3.8). In this example, the finite element discretized differential equations are

nearly linear. The model nonlinearities are in the temperature dependence of
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Figure 3.8: The predicted and actual variable errors are shown. The prediction
is excellent for this example because the model is near steady state and nearly
linear.

the aluminum thermal conductivity, heat capacity, and density. These prop-
erties do not change significantly in the temperature range of the simulation
(25°C to 100°C). Because of near-linearity and proximity to steady-state, the
equation residuals are excellent predictors of the variable residuals (see Figure
3.9). Further work needs to be done to validate the variable residual prediction
with models of varying degrees of nonlinearity and for simulations with fast

dynamics that are not captured by the reduced model.

3.4 Index-2 DAE Example: Large-Scale Distillation Model

The PDE example of Section 3.3 is a simple example to demonstrate

the proposed model reduction approach. A more complex example is given in
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Figure 3.9: Using the equation residuals to predict variable error, the reduced
models show improved accuracy. In this case, the 1 state reduced order model
is sufficiently accurate. Without the correction, a 3 state model is required for
similar accuracy (see Figure 3.6).
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this section to demonstrate model reduction of a large-scale DAE. The model
developed for this example is more indicative of the complexity of a real sim-
ulation and control problem for distillation. A diagram of the model is shown

in Figure 3.10. The model is developed for a column of 22 trays, a condenser,

Side Draw 1

Feed

Side Draw 2

\r Reboiler

Figure 3.10: The multi-component distillation column model consists of 22
trays, multiple sidedraws, a condenser, a reboiler, and a sump at the column
base.

v

a sump and reboiler, 2 sidedraws, and 1 feed stream. A linear paraffin mixture
between C;Hg and CeyHyg is modeled by lumping successive sets of 3 hy-
drocarbons into 5 pseudo-components. The lumping procedure substantially
reduces the model size by considering only 5 species (CsHig, C11 Has, C14H3o,
C17Hsg, Cy Hyy) that approximate the thermo-physical properties of the entire
range. The simulated mixture is preheated and fed into the column at tray

12. Sidedraws are taken from trays 5 and 16. The species of interest for this
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study is C11Hoy (approximates the CigHyy to CioHag range), found in high

concentration (>90% purity) in the sidedraw from tray 5 (Sidedraw 1).
Constructing a distillation column model from first principles is an
effort intensive task that can require months of work. Models can also be
constructed from process simulators, such as HYSYS, but the model equa-
tions are not exposed. The approach taken in this example was to develop an
object-oriented simulator that automatically constructs the distillation model
variables and equations from a subset of simpler models. This object-oriented
approach is shown as a pyramid in Figure 3.11 with successive object layers.

Moving up the pyramid indicates successively more complex models, formed

Advanced

Model
distillation
column, etc.

Basic Models — vessel,
splitter, mixer, compressor, flash
column, distillation stage

i
r -2
Accumulation Stream

[

S

Variables - pressure, temperature, mole Fundamental
fractions, mass fractions, concentrations, dynamic equations
moles, mass, volume, enthalpy

Thermo-physical properties database (DIPPR)

Figure 3.11: The distillation column model is constructed from an object-
oriented simulator. More advanced models are simply combinations of base
level models connected by streams.
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by combining the basic models (vessels, splitters, mixers, flash columns, distil-
lation stages, etc.). The object-oriented modeling approach necessitates model
equations in the open equation format (0 = f(&,x,u)). For the distillation
column in this study, the model is an index-2 DAE with 3250 states. The
index of a DAE refers to the number of times the algebraic equations must
be differentiated to transform the model into an ODE. Only a small subset of
equations are index-2 with the majority being index-1. The index-2 equations
are the 22 bubble point temperature equations, with 1 in each of the distil-
lation stage sub-models. The model is reduced in three steps. The first step
involves model reduction at the most basic modular level. Each stream (or
accumulation) includes pressure, temperature, mole fractions, mass fractions,
concentrations, molar flow rate (or moles), mass flow rate (or mass), volu-
metric flow rate (or volume), density, and enthalpy. Pressure, temperature,
mole fractions, and molar flow rate (or moles) are used to uniquely specify the
state of the mixture. All other variables are solved explicitly as a function of
these variables and can be removed from the implicit set. Another reduction
in variables is gained from the object-oriented framework. Instead of defining
connection equations, two connecting streams can be merged into one stream
object. The explicit transformation and stream merging reduces the model
size from 3250 to 353 variables. The 353 variable model consists of 107 differ-
ential variables and 246 algebraic variables. The index-2 DAE is converted to
index-1 form by differentiating the index-2 algebraic equations. The differenti-

ated bubble point temperature equations are used to remove the temperature
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derivative in the energy balance. By removing the temperature derivatives,
the index-2 equations become index-1 equations. In index-1 form, the alge-
braic equations are explicitly solved at each function call, thereby removing
the 246 algebraic variables from the implicit set. The remaining differential
variables are reduced with POD to 2, 5, or 8 ODEs. The reboiler heating rate
is stepped by 25% from 2.0e7 m—in to 2.5e7 m—in at 10 minutes. The index-2
DAE of 353 variables is numerically integrated with DASPK and compared

with the reduced order models (see Figure 3.12). The 2 state model shows

0.955
—— 2 states
— Sstates — —
- - - 8states _—
0.95-| — 353 states ==

Mole Fraction C1 1H2 4 at Side Draw 1

0.935

0 20 40 60 80 100
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Figure 3.12: The reduced models are compared with the 353 state distillation
model.

significant steady state offset, compared with the other reduced models. The
5 state model performs better in eliminating the offset, but the dynamic re-
sponse deviates significantly. The 8 state model has excellent agreement with
the full 353 state model in both dynamic response and gain. For this example,

an 8 state model is recommended to approximate the full order model.
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Even though the model is drastically reduced in size, no computational
advantage is achieved. The 353 state model step test simulation required 41
CPU seconds on a 2 GHz Celeron processor, running FORTRAN. Based on
LINPACK benchmarks for processor MFLOPS (million floating point opera-
tions per second), the step test required approximately 30 billion floating point
operations. Each reduced model step response was generated in MATLAB, re-

quiring approximately 31 billion floating point operations.

There are several reasons that the reduced model does not substan-
tially reduce the computational burden. The primary reason is that all the
equation residuals must still be computed to form the reduced order model
equation residuals. The calculation of equation residuals requires 22 billion
floating point operations for both the full and reduced models. This is an ir-
reducible overhead, regardless of model size. With efficient DAE solvers, such
as DASPK, no computational advantage is gained by solving the algebraic
equations explicitly at each residual evaluation. An amount of computational

overhead is also added in the index-2 to index-1 transformation.

Clearly, model reduction is not computationally advantageous for this
example. Fortunately, there are a variety of other justifications for model
reduction. One reason is the insight that model reduction provides. Even
though the original model has thousands of variables, there are only 8 de-
grees of freedom that control the dynamic response. Another reason is for
off-line storage and retrieval of control solutions for efficient on-line implemen-

tation. Off-line storage and retrieval presented in Chapters 4 and 5 is more
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efficient for smaller models, with an upper limit of about 100 states. Explicit
moving horizon estimation of Chapter 6 scales quadratically with states so
smaller models are more efficient, although typical examples have negligible
computational expense. The model reduction strategies in this chapter are
an important enabling step in achieving computationally feasible large-scale

model-based control solutions.

3.5 Summary and Conclusions

Because many large scale DAE models consist mostly of algebraic equa-
tions, ODE model reduction techniques applied to DAE models are ineffective
at significantly reducing the overall order of the model. An adaptive DAE
model reduction technique is outlined in this chapter with special considera-

tion for large scale models. The technique consists of three steps:

1. Adaptive POD reduces the number of differential states.

2. Algebraic states are partitioned into successive implicit sets of variables
and equations by reconstructing the sparsity pattern into a lower trian-

gular block form.

3. Explicit transformation of algebraic and differential equations.

Large scale models are often expressed in the open equation format. POD
is applied to the open equation format by minimizing the equation residuals

instead of finding roots. Once a minimized solution is found, the equation
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residuals provide an estimate of the variable accuracy. The differential vari-
able accuracy is controlled by increasing or decreasing the order of the reduced
model. In this way, POD is made adaptive while dynamically constructing the
similarity transform. The estimate of the variable accuracy can also be used
to improve the reduced model accuracy. In the 1-D unsteady heat conduction
problem, it was shown that the correction reduced the DDOF from 3 states
to 1 state. To reduce the algebraic variables, the variables and equations
are restructured into successively independent sets. These independent sets
are explicitly approximated with ISAT. ISAT directly controls the approxi-
mation error by expanding or adding piecewise linear regions. A flowsheet
model example showed a reduction of algebraic variables by a factor of 8. A
multi-component distillation column model is used todemonstrate reduction
techniques on a large-scale index-2 DAE model. The model is reduced from

3250 states to 8 states with little loss of accuracy.

The explicit transformation of differential equations can be accom-
plished by ISAT by storing and retrieving integration solutions. This topic
is further discussed in Chapter 4 with some numerical examples with ISAT.
None of the examples in this chapter used ISAT although the applicable meth-

ods are discussed.
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Chapter 4

Storage and Retrieval in Nonlinear Model
Predictive Control

Simulation of physical processes described by differential-algebraic equa-
tions (DAEs) often involves hundreds of differential equations and thousands
of algebraic equations. Storage and retrieval of these simulations may be de-
sireable for a number of reasons. Some of these reasons include real-time
optimization, real-time dynamic data reconciliation, computational reduction
of complex simulations with DAE sub-models, and computational reduction of
parameter sensitivity studies. Storing the simulations shifts the computational

burden off-line for a more efficient on-line implementation.

This chapter focuses on a method to reduce the computational require-
ments of nonlinear model predictive control (NMPC) in real-time control ap-
plications. Nonlinear model identification is generally seen as a major obstacle
to implementing NMPC. However, once an accurate nonlinear model is iden-
tified, the computational effort is often too great to implement the model
in a real-time application. The approach in this paper is a two step pro-
cess, model reduction followed by computational reduction. Model reduction

is accomplished by computing balanced covariance matrices for the dynamic
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system. Computational reduction is accomplished by using the method of
in situ adaptive tabulation (ISAT). ISAT was previously developed for com-
putational reduction of turbulent flame direct numerical simulations and is
extended to the sequential NMPC framework in this work. A case study is
performed with a binary distillation column model with 32 states. By com-
puting balanced covariance matrices and using ISAT, the computational speed
is 85 times faster than the original NMPC while maintaining the accuracy of
the nonlinear model. Because ISAT is a storage and retrieval method, it is
compared to artificial neural networks in another case study, a dual CSTR
model with 6 states. Open loop and closed loop step tests are performed
to demonstrate the superior quality of ISAT in extrapolating outside of the

training domain.

The three most significant obstacles to NMPC applications are non-
linear model development, state estimation, and rapid, reliable solution of
the control algorithm in real time [68]. This chapter outlines an attempt to
overcome the last two obstacles through a computational reduction technique
formerly developed for turbulent combustion simulations [66]. ISAT stores
and retrieves open loop simulations and thereby reduces the computational
effort of integrating continuous dynamic first principles models. In direct mul-
tiple shooting implementations of NMPC [17] [83] open loop simulations are
performed many times until an optimal trajectory of manipulated variables
is found. Also, in sequential state estimation (dynamic data reconciliation)

many open loop simulations are performed until an approximation to the un-
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measured states is obtained [47]. Because the open loop simulations occupy
a majority of the computational effort, ISAT has potential to greatly improve

the speed of state estimation and dynamic optimization.

An important assumption for ISAT is that nearby integrations will
likely be repeated. For storage and retrieval of a single step test or impulse
response, very few integrations will likely be repeated and ISAT would likely
show poor performance. In control applications, similar disturbances to the
system can occur frequently or step changes to switch between product grades
can happen regularly. The ISAT method is a framework for the estimator and

controller to access data from previous calculations.

4.1 Direct Methods for Solving NMPC Problems

There are multiple methods for solving equivalent NMPC problems. Se-
quential, hybrid, and simultaneous formulations are three popular numerical
techniques [17]. The sequential approach minimizes an objective function by
manipulating the decision variables over a finite control and prediction horizon.
The simultaneous approach accomplishes the same objective by manipulating
both the decision variables and the state values at collocation nodes. The
hybrid approach is a compromise between sequential and simultaneous ap-
proaches by allowing for the use of state of the art DAE solvers to control
discretization. A summary of the three approaches is given by Binder [17]
in Table 4.1. ISAT can be used to reduce the computational burden of se-

quential and hybrid NMPC by storing and retrieving the DAE simulations.
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Table 4.1: Comparison of Direct Methods for NMPC

Single Shooting Multiple Shooting Collocation

Solution approach sequential hybrid simultaneous
Use of DAE solvers yes yes no

Size of NLP small intermediate large

Initial guesses initial states all node values all node values
Solves highly no yes yes

unstable systems

DAE model fulfilled yes partially no

in each iteration step

By explicitly transforming the DAE model, the integrations of the model are
reduced. Because integrations of the model are the overwhelming majority of
computational effort, a drastic reduction in calculation time can be achieved.
In the sections 4.1.2 and 4.1.1 the sequential and hybrid NMPC approaches

are summarized to reveal the application of ISAT.

4.1.1 Hybrid NMPC

Hybrid NMPC is a compromise between small NLP problem sizes of
the sequential approach and the incorporation of state constraints in the si-
multaneous approach. Hybrid NMPC also permits the use of state of the art
DAE solvers to control discretization error. The state estimation and regulator

algorithms can be formulated as NLP problems.
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4.1.1.1 Estimator

Dynamic data reconciliation (filtering of data, state estimation, etc.) is
necessary for NMPC when modeled states are not directly measured or data
uncertainty is high due to noise [47]. ISAT can be employed in a sequential
direct multiple shooting approach to data reconciliation. The N-step finite-

horizon problem formulation is given by the following.

—1

. def
n;nnfb(:b,n,y) = Z [C(xk, yi, n6)] + C (20, Yo, M0) (4.1a)
57 k—— N
subject to
y given, u given, Ty = F(xg, ug), yp = G(zk, ug) (4.1b)

where @ is the cost function, z is the sequence of model states (r = z_y,2_n.1,

..,xg), n is the sequence of state constraint violations (n =n-n,7-n11, - --,70),
y is the sequence of measurements (y = y_n,y_nu11, - --,Y0), « is the sequence of
inputs (v = u_nN,u_n11,...,u_1), and C is the cost function at each sampling
instant. This formulation is similar to the dynamic optimization problem but
instead of finding optimal inputs, optimal states are found that agree with the
measured data (y). The terminal constraint was added to allow a different
cost function for the most current measurement. With model-plant mismatch,
the most current measurement is likely to be the most reliable and should

therefore receive a greater weighting in the optimization.

ISAT is used in the direct single and multiple shooting solution tech-

niques to state estimation [17] by storing and retrieving integrations of the
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continuous dynamic nonlinear model. Data reconciliation must occur before
dynamic optimization in order to provide an estimate of the current states
(7). It is critical for the cycle time of a real-time controller to operate faster
than the response time of the process it is controlling. Cycle time selection
depends on many factors including plant/model mismatch, stability margins

for large disturbances, constraint violation tolerance, and economic factors.

4.1.1.2 Regulator

The N-step finite-horizon NMPC regulator is given by the following
NLP problem. The length of the horizon, N, may be different for the estimator

and regulator.

min ®(x, u, n) (4.2a)
T,u,mn
subject to
Zo given; Th41 = F('Tk,uk)a Duk S d; G'Tk — Tk S g, Mk Z 0 (42b)

In this problem formulation, ® (the cost function) is typically quadratic in x
(states), u (inputs), and n (state constraint violations) and therefore strictly
convex. The symbols z, u, 1 denote sequences of vectors with = = (1,29,
cxN), u = (Ug,uy, ... un-1), and n = (91,79, ...,etay). The source of
nonlinearity comes from the model function F'(zj,uy) that is solved by inte-
grating the DAE model. ISAT fits into the NMPC scheme by storing and

retrieving integrations of the continuous dynamic model. Typically the model

is expressed in the open equation continuous format F(&,x,u) = 0. ISAT
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numerically transforms the nonlinear model into a discrete semi-explicit form

xp1 = F(xg, uy). Details of this transformation are given in Chapter 2

4.1.2 Sequential NMPC

Sequential NMPC leads to the smallest NLP problems with the fewest
number of optimization variables. In this approach, only the manipulated vari-
ables are optimized while the state variables are explicitly calculated at each
iteration. In addition to size, sequential NMPC is the simplest to program and
can be used with dense matrix solvers. In addition to hybrid NMPC, sequential
NMPC allows the use of DAE solvers to solve the model on the sub-node level.
DAE solvers avoid the discretization challenges of collocation approaches. The
estimator and regulator NLP problem formulations are included in this section

to show the applicability of ISAT in reducing the computational burden.

4.1.2.1 Estimator

The optimization variables for sequential data reconciliation are the
states at N time steps back from the current time (z_y). The states at z_y

are manipulated to minimize the objective function.
—1

. def
min q)(l', y) é Z [C(xka yk)] + C(x(la yO) (43&)
T_N
k=—N
subject to
y given, u given, v = F(zk, up) (4.3b)
where y and u are sequences of vectors given by vy = (y_n,y_n11, ---,Y0) and

u= (u_n,u_ng1, -.-,u_1). ISAT is an integral part of the sequential NMPC
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estimator by integrating the nonlinear continuous dynamic model, effectively

transforming the model into a discrete form (v = F(xg, ug)).

4.1.2.2 Regulator

The regulator formulation minimizes an objective function by manip-
ulating the decision variables (uy for & = 0,(N — 1)). Only manipulated
variable constraints are permitted in the sequential regulator. State variable
constraints can be posed as soft constraints in the objective function. In hybrid
NMPC the state constraints are softened with the introduction of 7, the state
constraint violations. Without the softening of the state constraints infeasible
solutions may arise. One advantage of softening the state constraints is that
proritization of the constraints occurs automatically. This may be desireable
to meet safety constraints while sacrificing less important objectives such as

economic constraints.

min ®(x, u, n) (4.4a)
u
subject to
xy given, Ty = F(xg,uy), Duy < d (4.4Db)
where z, u, and 7 represent the sequences of vectors (z1,x9, ..., zn), (ug,u1,

cooun—1), and (91,m2, ... ,nn). Again, ISAT can be applied for computational
reduction by storing and retrieving solutions to the initial value problems.
Integrating the model for the sequential NMPC regulator requires about 99%
of the computational effort for the example problem shown in Section 4.2.

By reducing that computational burden of integrating the model, the total
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NMPC cycle time is reduced by approximately 100 times. The computational
reduction is very problem dependent, but typical performance on a handful of

problems tested have been in the range of 20-500 times faster.

4.2 Example: Sequential NMPC

Combining model reduction and computational reduction through ISAT
exploits the strengths of both methods. Generally, the model reduction step
decreases the number of dynamic variables but does not have sufficient com-
putational speed-up. Computational reduction is more effective with a low
number of dynamic variables and can reduce the computational time signifi-
cantly. Figure 4.1 provides an overview of the combined approach for the 32

state distillation column model in Hahn and Edgar [34]. A case study has

Model with 32 states

|

BCM or POD
v

{ Reduced Model }

[ Distillation Column }

with 5 ODEs

I
ISAT
v

[ Reduced Model ]

with 5 ODEs

Figure 4.1: Model and computational reduction flowchart.

been performed with the distillation column model comparing NMPC/LMPC
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for the following models.

1. Nonlinear reduced model with 5 dynamic states and ISAT

2. Nonlinear reduced model with 5 dynamic states

3. Nonlinear model with 32 states

4. Linear model with 32 states

Models 1 and 2 are from full state model with 32 dynamic variables, reduced
through truncation down to 5 dynamic variables. Using the sequential ap-
proach to MPC, the distillation column models are integrated multiple times
in order to find optimal control moves that minimize a quadratic objective

cost function.

Certain operational, safety, or economic constraints must be considered
when developing control solutions to real systems. These limitations can be
implemented as either hard or soft constraints in the MPC framework. Soft
constraints are costs added to the objective function. In the author’s opinion,
soft constraints are the more intuitive method because the solver can choose
to violate a constraint if the economic performance of the entire plant will
be improved. In addition, the relative importance of each soft constraint is
automatically considered. Hard constraints may be more desirable for some
situations such as when safety is a concern. In this sequential NMPC approach,

hard constraints can be implemented on the manipulated variables.

90



The nominal operating point for the reflux ratio is 3. Soft constraints
limit the operating region to between 2 and 4. The reflux ratio (manipulated
variable) is adjusted every 5 minutes. The control horizon is 10 minutes (2
time steps) and the prediction horizon is 15 minutes (3 time steps). Typical
industrial MPC control horizons are generally longer to approximate the in-
finite horizon solution. The coarse discretization and short time horizon in
this example are sub-optimal, but still show an instructive comparison of the
reduced models in an MPC application. Longer time horizons should actually
improve ISAT’s performance due to more model integrations with each opti-
mization. Because ISAT stores and retrieves model integrations, an increase
in integrations will train the database faster. The main ISAT tuning param-
eter, €, is set to 1073 for good accuracy. Figure 4.2 shows the closed loop
responses. During the first control move, all MPC results are at the reflux
ratio lower bound of 2. Figure 4.3 shows the speed-up factor (compared to 32
state NMPC) for the 5 optimization steps of Figure 4.2. The cpu times shown
on the graph are from computations on a 2 GHz Celeron® processor. The
results from this simulation use a previously trained ISAT database with 169
records. Without a previously trained database ISAT averages 30 times faster
over the first 5 optimizations and adds 13 records to the new database. This
case study shows that ISAT can exhibit significant computational reduction

while preserving the accuracy of the nonlinear model.

Although applied with a model reduced through balanced covariance

matrices, ISAT for NMPC can be used with any model reduction technique
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Figure 4.2: Closed loop response comparison for nonlinear MPC with ISAT
with 5 states, nonlinear MPC with 5 states, nonlinear MPC with 32 states,
and linear MPC.
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Figure 4.3: Speed-up factor for each of the optimizations shown in Figure 4.2.
The number above each curve indicates the average optimization cpu time on
a 2 GHz processor.
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that reduces the number of dynamic degrees of freedom. In the case where
the model already has a low number of variables, ISAT can be applied directly

without a model reduction step.

4.3 Example: ISAT vs. Neural Networks in Control
Calculations

As mentioned previously, a neural net is a type of storage and retrieval
method. Hence it is instructive to compare ISAT and a neural net in a control
application. The example model is a dual CSTR model (see Figure 11) with
one manipulated variable (heat addition to the first tank), six states, and one
controlled variable (temperature of the second reactor). The model was used
by Hahn and Edgar [34] as a benchmark model for nonlinear model reduction

(see Figure 4.4). The data were gathered from ISAT training. For the sake

Feed <l

Reaction
A—B

Product

Figure 4.4: Diagram of two CSTRs in series with a first order reaction. The
manipulated variable is the heating rate to the first CSTR.

of comparison, the neural net used the same 1609 ISAT records for training.

The neural net was constructed with MATLAB’s neural net toolbox as one
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nonlinear hidden layer and a linear output layer (see Figure 4.5). Before the

7 Layer 1 Layer 2 ?
| Hyperbolic Linear O
n tangent transfer u

» sigmoid » function >t
P transfer o]
u . 6 neurons
t function u
s 20 neurons ;

Figure 4.5: Neural net with one hidden layer and one output layer. The hidden
layer is a hyperbolic tangent function and the output layer is a linear function.
This neural net relates 7 inputs to 6 outputs.

training, the data were appropriately scaled for efficient implementation in
the neural net. Figure 4.6 shows a large open loop step test, one that is
outside those found in the training data. In this step test, the cooling is
increased to the point that the irreversible reaction is extinguished and a large
temperature step results. Up to about 5 minutes of simulated time, the neural
net and ISAT perform similarly. To this point both accessed data that were
within the training domain. Beyond 5 minutes ISAT is superior in agreement
with the non-reduced model due to a built in error checking strategy. Before
5 minutes, the ISAT method performs mostly retrievals. Once ISAT detects
large errors from retrievals, it starts adding records to the database. When
the temperature reaches steady state, the ISAT algorithm performs retrievals

again.

ISAT and the neural net were compared in a closed loop simulation

with a small set point change inside the training domain (see Figure 4.7). All
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Figure 4.6: Open loop step test for the dual CSTR model. The error control of
ISAT adds records to the database when extrapolating outside of the training
domain.
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Figure 4.7: Small closed loop set point change within the training domain.

95



three show excellent agreement as they reach the new set point along the same
trajectory. Next, a large set point change was performed to access a region

of state space outside of the training domain (see Figure 4.8). For this step
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Figure 4.8: Large closed loop set point change outside of the training domain.

change, the neural net controller eventually becomes unstable. This is because
the neural net does not have the capability to extrapolate outside of the data
that was used to train it. In this respect, the ISAT method is superior because
it detects when it has gone outside of the training domain and integrates the

model to generate and add new data to the training set.

ISAT outperforms neural nets because of the internal error control that
manages the amount of error. The only tuning parameter for ISAT is the
amount of permissible error, €;,,. On the other hand, neural nets have multiple

tuning parameters such as number and type of layers, number of nodes in each
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layer, and a training optimization tolerance. ISAT requires no optimization

step and can begin working in situ with no prior training set.

4.4 Parameter Sensitivity Studies

The dynamics of a controlled process can change due to fouling, distur-
bances, unusual operating states, ambient variations, and changes in product
specifications [76]. When the process dynamics change significantly, an adap-
tive model is automatically tuned to provide satisfactory closed loop perfor-
mance. Adaptive control can be achieved in the NMPC framework with the

addition of adjustable parameters () in the nonlinear model.

dx
E = f(l'(t), u(t), 9) (4'5)
0= _q(l‘(t),u(t),a) (4'6)

The adjustable parameters can be obtained from a first principles model of the
disturbance or a least squares optimization of the model using plant historical
data. The addition of adjustable parameters poses an interesting challenge
for ISAT’s error control strategy. Because ISAT is a storage and retrieval
method, drastically changing the parameters can invalidate the stored data.
Therefore, a strategy will be devised to gradually change the parameters and
simultaneously filter out the unaccessed data. By controlling the parameter
transition, ISAT will still show significant computational reduction over the
original NMPC. Another advantage of gradual parameter transition is that

it avoids possible instabilities that can occur by switching controllers on-line.
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Gradual parameter transition is a natural expression of the process dynam-
ics when the system dynamics change slowly, such as for fouling or catalyst

deactivation.

There may be some situations where the parameter transition should
occur quickly (i.e. grade changes, large disturbances). In these situations, a
gradual parameter transition is not appropriate. For a large change in the
parameters, the ISAT database provides a first order approximation to the
nonlinear model integration while new sensitivities are computed. In this way
the real-time controller requirements are automatically met with a simplified
model. Once the ISAT database is rebuilt, the controller will improve accord-

ing to the predictive capabilities of the full nonlinear model.

4.5 Summary and Conclusions

This chapter outlines a new technique for computational reduction for
NMPC. In this approach, model reduction through balanced covariance matri-
ces is followed by computational reduction through ISAT. Although previously
developed for turbulent flame simulations, ISAT can be directly applied be-
cause many open loop simulations are performed to find optimal inputs to the
control problem. A case study with a binary distillation column model showed
a speedup of 85 over the original NMPC. Like neural nets, ISAT reduces the
computational cost through storage and retrieval. Another case study with a
dual CSTR showed the advantage of using ISAT over neural nets when the

simulation accessed data outside the training domain.
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Chapter 5

Nonlinear Model Predictive Control - The
Explicit Solution

Model predictive control (MPC) has traditionally been an expensive
technology, confined to applications that justify substantial modeling effort,
implementation costs, and computational resources (fast computers). The
application of MPC has also been limited to processes with slow cycle times
(slow processes) because it requires the solution to a constrained finite-horizon
linear programming (LP) or quadratic programming (QP) problem at each
sampling instant. The success (or failure) of MPC is due to the accuracy of the
underlying model. This model is used to predict unmeasured or noisy states,
coordinate multiple decision variables for optimal control, and meet safety
and operational constraints. MPC is a type of optimal control because the
optimization minimizes a cost function subject to constraints. At the solution
of the minimized objective function the only way to get better performance
is to increase the accuracy of the model, relax contraints, or modify the cost

function to reflect more realistic price structures.

For some applications linear models are not sufficiently accurate. When

models or constraints are nonlinear, a nonlinear programming (NLP) opti-
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mization must be solved at each cycle. Nonlinear MPC (NMPC) problems are
often significantly more difficult to solve than QP problems solved in MPC.
One difficulty that non-convex problems can lead to multiple local minima.
Global minimum solvers are still the subject of active research. The increase
in problem difficulty further restricts NMPC applications to those with slower

processes and faster computers.

PID control, compared to MPC, is a relatively cheap technology that
can be applied with slow computers to fast processes. However, PID control
is not formulated to provide optimal model-based control, effective handling

of constraints, or coordination of multiple decision variables.

5.1 Explicit MPC (Linear Models)

MPC is now suggested as a candidate to replace PID control thanks
to recent developments in computational reduction of the MPC algorithm [56]
[61] [65]. By computing all possible LP solutions off-line, the on-line portion
is reduced to some conditional checking and simple matrix multiplications.
This modification extends the potential of MPC to fast processes and simple

computers (e.g. integrated circuit chips).

The linear quadratic regulator (LQR) with a linear model and quadratic
objective function is a special case of MPC without constraints. Without
constraints the linear solution of the Riccati equation is optimal for all possible
initial states. An on-line implementation of LQR would consist of simply

multiplying the state vector by the gain matrix to obtain the optimal control
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vector. With constraints, the optimal solution is a piecewise affine (PWA)
linear function of the initial states. The linear regions are often refered to as
characteristic or critical regions (CRs). Each region is bounded by a set of
constraints. When the constraint boundary is crossed, the linear solution may
no longer be exact. On-line retrieval of explicit MPC with constraints includes
one extra step: location of the region with the correct active set of constraints.
Once this region is located (via the checking of several conditions), the rest of

the computation is identical to the LQR implementation.

5.1.1 Parameterization of Initial States

The development of multi-parametric linear programs (mp-LPs) started
with the formulation of Gal and Nedoma [29] [28]. Acevedo and Pistikopoulos
extended sensitivity analysis to mixed-integer linear programming (MILP) by
solving mp-LP problems [2] [1]. Dua and Pistikopoulos generalized the model
form by developing multiparametric analysis of mixed-integer nonlinear pro-
gramming (MINLP) [24]. Bemporad et al. applied the mp-LP work to MPC
applications with linear objective functions [10] [15] and mixed-integer models
[11]. Pistikopoulos et al. extended the theory of mp-LPs to include multi-
parametric quadratic programs (mp-QPs) [64]. This extension made possible
the explicit LQR solution subject to constraints or in other words, explicit

MPC [14] [12].

Even though an exact explicit solution is possible in theory for convex

problems, there were some serious implementational issues that limited appli-
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cations of explicit MPC to small systems, few constraints, and short control
horizons [65]. A significant effort has been exerted to reduce these limitations.
Bemporad and Filippi introduced suboptimal explicit MPC [13]. Adjacent
critical regions are merged when an error tolerance can be met. Rossiter
and Grieder used an interpolation scheme to reduce the storage requirements
by 2-3 times and reduce the on-line computational costs by 10 times [72].
Johansen and Grancharova proposed a technique to logrithmically limit the
on-line search times with a structured binary tree [31] [44]. Off-line, the re-
gions are divided into successively smaller hypercubes until the error tolerances
are met at each of the vertices. Grieder and Morari performed a complexity
analysis of the on-line implementation to reduce the controller complexity by
orders of magnitude at a performance cost of <%1 [32]. Tondel et al. in-
creased the efficiency of the off-line calculation by deriving a new exploration
strategy for sub-dividing the parameter space [86] [87]. Even with all of these
improvements, the largest MPC problem reported in the literature is control
of a laboratory model helicopter. The problem has 6 states, 2 manipulated
variables, 8 constraints, is discretized in 0.01 second segments, has a control

horizon of 0.5 seconds, and 4 input parameters [86].

5.1.2 Parameterization of Active Sets

In deriving state parameterized explicit MPC, the problem is trans-
formed into a quadratic program form. In this form, Seron et al. suggested

that the optimal control can be parameterized by the active set instead of
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current states [77]. While Seron, et al. proposed an analytical solution, Pan-
nocchia et al. opened the approach to non-trivial problems by creating a
numerical algorithm to solve the active set parameterized problem [60]. Each
of the constraints can either be inactive, at the lower bound, or at the up-
per bound. Off-line a table of all possible solutions is generated. The on-line
portion consists of finding the table value that predicts non-negative lagrange
multipliers and manipulated variables (MVs) inside the constraint bounds.
Storage and retrieval of a constrained linear quadratic controller solution for
SISO systems has been proposed to replace PID control [61]. Two limitations
of this algorithm are (1) constraints are restricted to lower and upper bounds
on the MVs and (2) problem scaling is 3", where N is the horizon length. The
theory for MIMO systems follows by simple extension, but full enumeration

3mN

of all active sets is prohibitive due to scaling, where m is the number of

constrained inputs.

Muske and Badgwell developed offset free control in MPC by creat-
ing input or output integrating disturbances [57]. Pannocchia and Rawlings
showed that an integrating disturbance must exist for every measurement to
guarantee offset free control [59] [62]. The offset free control is included in the
constrained LQ control of Pannocchia et al. [61]. Sakizlis et al. followed by

incorporating offset free control into state parameterized explicit MPC [73].
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5.2 Explicit NMPC (Nonlinear Models)

Fiacco developed the foundation for explicit NMPC with a sensitiv-
ity analysis of nonlinear systems [27]. Because there is rarely an exact ex-
plicit solution to NMPC, all computational reduction techniques for NMPC
are approximate. The effectiveness of a particular technique depends on the
control of the approximation error, storage requirements, speed of the off-line
algorithm, speed of the on-line algorithm, and guarantees of stability. An ex-
plicit solution of NMPC in this section refers to an explicit numerical solution
through storage and retrieval of previous computed solutions. An analytic

explicit solution is not attempted.

5.2.1 Dynamic Programming

Dynamic programming was originally proposed by Bellman to solve
optimal control problems [8]. The goal of dynamic programming is to find
an optimal cost-to-go function, which can be used to solve for an optimal
trajectory of inputs as a function of initial states. Recent approaches such
as sequential reinforcement learning avoid dynamic programming dimension-
ality problems by operating on states as they occur sequentially [6]. Also,
neuro-dynamic programming [45] [16] overcomes the curse of dimensionality
by approximating the cost-to-go function with a neural net. Yet another tech-
nique that balances accuracy with computational speed is suboptimal dynamic
programming with error bounds [48]. In summary, dynamic programming’s

curse of dimensionality has been partially remedied by algorithms that seek
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to reduce the storage and search times. However, applications to large scale

problems are still infeasible.

5.2.2 Artificial Neural Networks

Neural nets are an effective tool to represent nonlinear models. Neu-
ral nets are networks of adaptable nodes which, through a process of learning
from task examples, store experimental knowledge and make it available for
later use [5]. The flexibility and general applicability of neural nets have been
demonstrated by diverse applications across many fields of study. Kohonen
nets are used in classification and fault detection, n-tuple nets in image pro-
cessing and vision, and both multi-layer perceptrons and radial basis functions
are used in signal processing and control [90]. Neural nets are an effective tool
to incorporate historical data for use in state estimation and control, although
filtering and preconditioning the plant data are often time-consuming tasks
[67]. Parisini and Zoppoli suggested that multilayered feedforward neural net-
works could store optimal control (outputs) as a function of the current states
(inputs) [63]. One widely known limitation of neural nets is the inability to
extrapolate outside the training domain. This is due to a lack of explicit error

control within the algorithm.

5.2.3 Multiparametric NMPC

For multiparametric analysis, suboptimal explicit MPC techniques have

been developed to allow nonlinear models, nonlinear constraints, and non-
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quadratic objective functions. Bemporad et al. introduced multiparametric
approximation of MINLP problems [9]. Johansen formerly utilized an mp-
QP approximation to solve the mp-NLP sub-problem[42] but later decided to
use the increased accuracy and computational expense of NLP sub-problems
[43]. Hale and Qin [36] take a similar approach as Johansen but use simplices
instead of hypercubes to map the nonlinear surface. A predictor-corrector
method is used to obtain new points. The predictor is a linear extrapolation
from an existing point to a new point of interest. If the active set of con-
straints changes, a condition is applied to find the active set boundary [35].
The corrector uses a Newton’s method type algorithm to solve the NLP that
converges rapidly because of the linear predictor initialization. One drawback
is poor computational scaling with increasing number of parameters (in this

case, number of states), but polynomial scaling in other dimensions.

5.3 Approximate Nonlinear MPC

Consider the continuous-time nonlinear differential algebraic equation
(DAE) system
0= f(a(t),z(t), u(t), 0) (5.1)

where z(t) € RP is the state derivative, z(¢) € R" is the state, u(t) € R™ is
the input, and # € R? is a set of parameters. The dimension of # is equal to
that of z for ODE models. The discrete-time nonlinear DAE system can be
obtained by numerically integrating Equation 5.1 as an initial value problem

(IVP), resulting in the explicit form that is solved sequentially on a sub-node
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level in optimal control problems

Tpy1 = f(zp, up, 0) (5.2)

or by orthogonal collocation, creating an implicit form that is solved on a

sub-node level simultaneously in optimal control

0= f(xkyr, Tk, ug, 0) (5.3)

where z;, € R* and u(t) € R™. The indices (k) refer to the discretized step
with the current time being 0. In optimal control, when a sampling instant

occurs the current time is shifted to zero.

5.3.1 NMPC Formulation

For the current state (z¢) and parameters (), a typical NMPC algo-

rithm solves the optimization problem

®*(xg,u_1,0) = min (Z fi(xi, uiq, 0)) (5.4a)

T,u -
i=1

subject to
o given (5.4b)
u_y given (5.4c¢)
0= f(zgs1, ok, ux,0) k=1,...,N—1 (5.4d)
Diy<d k=1,...,N (5.4e)
Eup<e k=0,...,N—1 (5.4f)
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Gup—ux1)<g k=0,...,.N—1 (5.4g)

where D, FE. and G are matrices and d, e, and ¢ are vectors of appropriate di-
mension. The quantities z and u refer to the sequence of vectors (x,z9,...,2x)
and (ug,u1,. .., un_1), respectively. The optimal solution to the NMPC prob-
lem is a unique function of the current states zgy, previous input u_;, and
the adjustable parameters, #. The adjustable parameters can be feedforward
or feedback model variables. An example of feedback variables are input or
output integrating disturbances for offset free control [57] [62]. Feedforward
parameters accommodate anticipated shifts in process dynamics or multiple

model switching.

After the optimal control problem is solved the first input (ug) is in-
jected into the process. At the next sampling instant, a new estimate of the
current states and parameters is obtained. NMPC is often referred to as reced-
ing horizon control (RHC) because the horizon of the optimal control problem
shifts as time advances. The same optimal control problem is solved at ev-
ery sampling instant, deterministically dependent on the updated variables

assembled in ¢.

o
o= u (5.5)
Lo |
Even though the entire trajectory of optimal inputs are solved (u* = {ug, ul, ..., uy_1}),

the only one required for optimal control is the first input, uj. The storage
and retrieval of optimal control can therefore be simplified to u; as a unique

function of ¢.
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5.3.2 Sensitivity of Optimal Control to Parameters

Ganesh and Biegler developed a reduced hessian strategy for sensitivity
analysis of optimal flowsheets [30]. A part of their sensitivity derivation is given
here. Sensitivities locally approximate the optimal solution with a 1st order
solution. NMPC can be expressed more compactly with adjustable parameters

¢, inequality constraints ¢, and equality constraints h.

@*(¢) = min (9(r, 1) (5.6a)
subject to
¢ given (5.6b)
g(z,u,¢) <0 (5.6¢)
h(z,u,¢) =0 (5.6d)
where x and u refer to the sequence of vectors (z1,2s,...,xx) and (ug,uq,. .. un_1),

respectively. The NLP is solved by minimizing the Lagrangian L
Lz, u, ¢) = ®(z,u,¢) + Ag(z, u, @) + vh(z,u, §) (5.7)

where @ is the objective function, A is the inequality constraint multiplier,
and v is the equality constraint multiplier. The Karush-Kuhn-Tucker (KKT)

conditions are satisfied at the optimal solution.
VO(z, 1, 6) + Vg(x,u, )\ + Vh(z,u, 6)v = 0 (5.82)

Ag(z,u, ) =0 (5.8b)
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A> 0 (5.8¢)
g9(z,u,¢) <0 (5.8d)
h(z,u,¢) =0 (5.8¢)

The solution sensitivity reveals how the optimal solution changes with devia-
tions in the the parameters ¢. In order for a local sensitivity to exist, a few
conditions must be met. First, the Lagrangian must be twice continuously
differential in z and w and once in ¢. Second, the constraint gradients must
be linearly independent at the optimal solution. Finally, the second-order
sufficiency conditions must be met. In generating the local sensitivities it is

assumed that the active set does not change. The active constraints are

V. L(z,u,6) =0 (5.92)
V.L(z,u,¢) =0 (5.9b)
galz,u, ) =0 (5.9¢)
h(z,u, ) =0 (5.9d)

where ¢4is the subset of g that are at the equality bound. The sensitivities
are derived by taking the total derivative of the active constraints listed in

Equation 5.9.

AV, L(2, 1, 8)] = VauLdz + Vg Ldu + VygadA + Vohdy + Vi, LTdé = 0
(5.10a)

A[VuL(2, 1, 0)] = Vau Ldz + VuLdu + Vygad + Vyhdv + Vg, L7d¢ = 0
(5.10b)
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dga(z,u, §) = V,ghdz + V,ghdu + Vyghide = 0 (5.10¢)
dh(z,u,d) = V,h"dx + V,h"du + V0" dé = 0 (5.10d)

Each of the equations in 5.10 is divided by d¢. In the limit as d¢ shrinks to

zero the local sensitivities become (with some rearrangement)

—1

V! Vel Vil Viga Vih \
Voul | | Vel VL Viga Vih Voul” -
VoA || Vagh Vugh 00 Voga (-1
V¢Z/T Vth VUhT 0 0 V¢hT

where Vyx is the state sensitivity, V,u is the input sensitivity, VA is the
active inequality constraint multiplier sensitivty, and Vv is the equality con-
straint multiplier sensitivity. Equation 5.11 shows that the only elements re-
quired for a sensitivity calculation are the exact hessian and Lagrangian second
partials with respect to the parameters. With analytical derivatives through
automatic differentiation the sensitivity calculation speed can be greatly im-

proved [91].

5.3.3 Defining the Critical Region

For unconstrained L.QQ problems the local sensitivity gives an exact op-
timal solution over all state space. In this case, the sensitivity is equivalent to
the unconstrained LQR gain matrix. For constrained LQ problems the opti-
mal solution is linearly dependent on the adjustable parameters ¢ within the
same active constraint region. An individual query point ¢, can be tested to

determine if it lies within this critical region (CR). A 1st order approximation
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of optimal variables at ¢, is determined.

t = ¢+ Vg (6, — 9 (5.122)
g, =u+ Vyu (g, — o) (5.12b)
Ay = A+ V(o — ) (5.12¢)

Equation 5.13 gives the qualifications for a point within the CR.

gl(xq:uqa¢q) S 0 (513&)

A, >0 (5.13b)

where g7 is the set of inactive inequality constraints. If any of these qualifi-
cations are not met it indicates that the active set changed and the point lies

outside the CR.

5.3.4 ISAT Approximate Control

In situ adaptive tabulation (ISAT) dynamically stores and retrieves
nonlinear functions with piecewise linear approximations. The error control
strategy proposed in Pope [66] and with further details given by Hedengren
and Edgar [40] may be ineffective for problems with constraints. The con-
straints can form a non-continuously differentiable or non-continuous func-
tion. This leads to regions of accuracy (ROA) that may not be ellipsoidal in
the limit as the error tolerance approaches zero. Modifications to the ISAT

algorithm are made to maintain error control for optimal control storage and
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retrieval. Specifically, the initial estimate of the ROA is eliminated for nonlin-
ear problems and restricted to the active set constraint region of constrained
LQ problems. Additionally, ellipsoid of accuracy (EOA) expansions are made
only after an expanded validity check is performed. This section is a tailored
version of ISAT for receeding horizon control. A general exposition on ISAT
is found in Chapter 2, but in a formulation for general nonlinear function ap-
proximation. The notation is adapted here for the control problem and new
ISAT features are introduced to exploit the unique properties of cL.QQ solutions.

The basic unit of the ISAT database is the record. An ISAT record consists

Table 5.1: Elements of the ISAT record for NMPC storage and retrieval

ISAT Record Element Symbol and Dimension
Independent variables ¢ € Rvtmta

Dependent variables ug € R™

Sensitivity A € Rmx(ntmta)
Ellipsoid of accuracy M € Rv+mta) x(ntm-+q)

Critical region (cLQ only) CR € R(n+a) x (n+m+q)

of the independent variables (¢), the dependent variables (uf), a sensitivity
matrix (aaﬁ), an ellipsoid of accuracy (EOA), and a critical region (CR) (see
Table 5.1). The memory required to store an individual ISAT record scales

with O((n +m + q)?).

5.3.4.1 First Scenario: Retrieval

When ISAT receives a database request, it performs one of three scenar-

ios. In the first scenario, the query (¢,1) is inside a region of accuracy termed
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the ellipsoid of accuracy (EOA), centered about a close stored record, ¢, (see

Figure 5.1). Retrievals are extremely fast because computations are limited to

Figure 5.1: A retrieval occurs when the query point (¢,) is within the ellipsoid
of accuracy (EOA)

a binary tree search, conditional checking, and matrix-vector multiplications.

When the ISAT database is mature most of the operations are retrievals.

5.3.4.2 Second Scenario: EOA Growth

In the second scenario, the query is outside the EOA but inside the
error tolerance for uy and uy .. In this case, the EOA is expanded to include
the tested query point (see Figure 5.2). For the second and third scenarios,
ISAT has no computational advantage over directly solving the original NLP
problem on-line. If real-time requirements prohibit an on-line NLP solution,
an approximation to the optimal control can be obtained by using 1, anyway,

but no guarantees of accuracy or stability are provided.

5.3.4.3 Third Scenario: Addition

In the final scenario, the query is outside the EOA and outside the error

tolerance for uy or uy . A new ISAT record is added with an initial estimate of
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¢s_¢q2

Figure 5.2: The EOA is grown when the query point is outside the EOA but
within the error tolerance for u

the ROA (see Figure 5.3). For constrained L() problems, the optimal control
solution is linear with respect to ¢. Therefore, an initial estimate of the ROA
is the active set state space. For nonlinear problems with constraints, there
is no accuracy guarantee. In this case, the initial estimate of the ROA is a

zero-volume ellipsoid centered at u;.

5.3.5 Summary of the ISAT Algorithm

ISAT can be summarized in 13 steps. Steps 1-5 are the retrieval steps,
6-11 attempt growth of the EOA, and 12 is a database addition. The last step
is to inject either wug or g into the process. Retrievals produce approximate
optimal control within the desired error tolerance ¢, whereas growths and

additions produce exact answers.

1. locate nearby records with multiple binary tree searches
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Figure 5.3: A record is added to the ISAT database when query point is outside
the EOA and error tolerance for ug

2. compute Uy = u, + A (¢q — @)

3. (for QP problems) if A\, < 0 and g;(z,, uy, ¢) < 0goto b
4. if ¢y Moy < €401 g0 t0 5

5. set ug = 1y, go to 13

6. solve the NLP (or QP) for ¢,

7. if ‘ﬁ; — u;‘ > €401, 20 to 12

8. solve the NLP (or QP) for (2¢, — ¢,) to get uj, ,

9. compute U5, = us + A (s — 9q)

10. if |uj,_, — U5,_,| > €101, g0 to 12

11. grow EOA, set ug = uy, go to 13
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12. add a new record to the database with a zero volume EOA (if QP, initial

ROA is given by A\, > 0) and g7(x,, ug, ¢) <0

13. inject uj for optimal control or 4 for approximate optimal control

5.4 Temperature Control of an Exothermic CSTR

A simple academic problem is considered to show the applicability of
ISAT to storage and retrieval of optimal control. A perfectly mixed, adiabatic
CSTR has an exothermic reaction of compound A transformed into compound

B. Temperature control of the reactor is a challenge due to the highly exother-

Feed (compound A)

Cooling Jacket

Reaction
A—B

Product (A and B)

Figure 5.4: Diagram of the exothermic CSTR. The two state variables reac-
tor concentration ¢4 and temperature T are controlled by the jacket cooling
temperature 7

mic reaction (AH,.,, = 50,000 ﬁ) The temperature of the fluid in the jacket
surrounding the CSTR is manipulated to control the temperature of the re-
actor fluid. The dynamics of the reactor are described by a set of ODEs

generated from a mole balance on A and an energy balance on the reactor.
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At a constant cooling temperature of 305 K, the reactor temperature
spikes continuously as the reactor goes through cycles of concentration buildup

followed by moments of intense reaction (see Figure 5.5). The unsteady re-

500

450 -

400 -

Temperature

350+

300 : :
0 5 10 15
Time (min)

Figure 5.5: Unsteady response of the reactor temperature due to moments of
intense reaction followed by periods of gradual cooling.

sponse of the reactor with a constant cooling jacket temperature suggests that
unsteady control may be necessary when pushing the reactor to the stability
limit. A sequential direct single shooting approach to dynamic optimization
is used as the control algorithm. The N-step finite horizon NMPC is given by
the following NLP problem.

®* (9, Typ) = min (Z (z; —0)" Q (x; — 9)) (5.14a)

T,

i=1
subject to
xo given (5.14b)
Tk41 = f(xk,uk) k=1...N (514C)
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Fu,<e k=0...N-1 (5.14d)

where
0 0 1 320 0
A P I Y R Y I
(5.14e)
Here 2 and u refer to the sequence of vectors (x1,29,...,2x) and (ug,uq,. .. ,uy_1),

respectively. In this problem formulation, ® (the cost function) is quadratic
in = (states) and therefore strictly convex. The source of nonlinearity comes
from the model function f(zy, ux) that is solved by integrating the ODE model.
With a constant reactor temperature set point, the first optimal control step
ug is a unique function of the current concentration and temperature of the
reactor. The optimal cooling jacket temperature (uj = T7) to drive the reactor
temperature to 320 K was calculated for reactor concentrations between 0 and
1 ™9 and reactor temperatures between 310 and 330 K (see Figure 5.6). Even
though the model is highly nonlinear (reaction rate depends exponentially on
temperature), the optimal control surface is surprisingly linear with respect to
¢. With clipping of the ISAT predicted value to meet the control constraints,
only one ISAT record is required to store all of the optimal control solutions
with an error tolerance of 1.0 K (see Table 5.2). A realistic control problem
was set up to test ISAT for a few set point changes. The control horizon is
discretized into 1 minute segments. The estimator horizon is 40 minutes and
the regulator horizon is 60 minutes. The temperature is sampled every 5 sec-
onds and includes gaussian distribution noise with a standard deviation of 2

K. Concentration is sampled every 10 seconds with a standard deviation of
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Figure 5.6: The optimal jacket temperature (7)) is a unique function of reactor
concentration (c4), reactor temperature (7'), and reactor temperature set point
(Tsp). In this figure, the set point is fixed (T, = 320K) and ¢4 and T are
varied.

Table 5.2: Elements of the ISAT record for the CSTR example
Element Value

o' [ca T T,,] = [0.9 315.0 318.0]

uj T, = 306.8

A [Bea 0L Fr] = [—6.227 — 4.081 4.889)]
M 03x3

CR N/A
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0.1 % Plant-model mismatch is introduced by using an activation energy of
the first order (A — B) reaction of 8750 —Z for the model and 8740 -~ for
the plant. At the first sampling time the plant state is 0.951 T;—';’ and 312.8
K. The estimated model states are 0.9 ";1—‘11 and 300 K. The initial set point
is 315 K. At 50 minutes the set point changes to 300 K, an unreachable set
point. At 100 minutes the set point changes to 328 K, close to the NMPC
closed loop stability limit. At 150 minutes the set point changes to 308 K (see
Figure 5.7). While the two control performances are virtually indistinguish-
able, ISAT performance is actually slightly better because there is no time
delay associated with computing the optimal control solution. Because ISAT
operates one step ahead, it responds faster to set point changes and distur-
bances. This, however, is not the main advantage of using ISAT. The main
advantage is that NMPC can be applied to processes with fast sampling times
(<1 psec) or simple computers (IC chips). In addition, enumerating the entire
control solution off-line can reveal infeasible regions, stability limits, and other
closed loop properties. For this example, the CPU times are shown in Figure
5.8. NMPC consists of at least two pricipal calculations: estimation and reg-
ulation. The estimator and regulator calculations averaged under 0.1 seconds
with maximum calculation time of about 0.3 seconds. Both the estimator and
regulator NLPs were solved with the VF13 SQP solver in FORTRAN using
a direct single shooting solution approach. All calculations were performed

on a 2.0 GHz Celeron processor. The estimation problem is not reduced with

ISAT. Parameterizing the current states with all previous measurements is one
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Figure 5.7: Control performance of ISAT compared to NMPC.
variable (CV) is the reactor temperature, the state variable (SV) is the reactor
concentration, and the manipulated variable (MV) is the temperature of the

cooling jacket.
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Figure 5.8: Computational times of the estimator and regulator at each sam-
pling instant. ISAT is fast because computation is limited to a matrix multi-
plication.

possible solution. Another solution improves the solution speed but does not
eliminate the on-line complexity of solving a NLP problem at every sampling

instant [39].

5.5 Summary and Conclusions

MPC is now suggested as a candidate to replace PID control thanks to
recent developments in off-line calculations for efficient on-line implementation.
Up to this point, the proposed algorithms suffer from dimensionality problems.
For state parameterization, control applications are limited to small models
and short control horizons. For constraint parameterization, control applica-
tions are limited to short control horizons and low number of inputs. The

ISAT algorithm proposed in this work overcomes the dimensionality problems
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by adaptively storing only those regions accessed in practice. ISAT efficiently
handles both NLP problems and constrained L@ problems. ISAT reduces to
an adaptive version of state parameterized constrained L(Q when the error
tolerance is reduced to zero. Future work is needed to efficiently solve the

estimation problem on-line.
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Chapter 6

Moving Horizon Estimation - The Explicit
Solution

Estimation of model states and parameters from process measurements
bridges the gap between the theoretical realm of mathematical models and
the realistic realm of physical processes. Many approaches have been sug-
gested to accomplish the reconciliation of model and process, with a range of
tradeoffs [80]. Generally, the tradeoffs are centered on model form and size,
computational expense, ease of implementation, robustness to process/model

mismatch, and cultural factors such as understanding and acceptance.

The reconciliation process is an important precursor to other activities
such as fault detection, product quality assurance, manual control, and model-
based control. These model-based techniques need an accurate estimate of the
current system variables to perform well. Without accurate state estimation,

many of these tools would perform poorly or fail.

6.1 Previous Work

For dynamic nonlinear model-based control of chemical processes, the

most popular feedback strategies in practice are the extended Kalman filter
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and a constant or integrating output disturbance variable [68]. The Kalman
filter is optimal for unconstrained, linear systems subject to known normally
distributed state and measurement noise [38]. The Kalman filter sequentially
updates state estimates based on the magnitude of the error between the mea-
surements and the model variables. The extended Kalman filter is an extension
of the Kalman filter, developed for unconstrained, nonlinear DAE systems [7].
By linearizing the model about updated state estimates, the extended Kalman
filter is able to predict the nonlinear state evolution, although sub-optimally
[38]. Vachhani et al. proposed EKF with constraints, although the state

augmentation strategy for parameter estimation is still a limitation [88].

State estimation of real systems may include changing measurement
frequencies, multiple measurements at different sampling frequencies, mea-
surement delay, large-scale nonlinear models, and constraints. Moving horizon
estimation (MHE) is an optimization based approach that predicts state tra-
jectories by using a time window that includes the most recent measurements
[41] [54] [55] [71]. MHE is also known as nonlinear dynamic data reconciliation
(NDDR) [47] [79]. MHE is a computationally tractable approximation to the
optimal infinite horizon estimation [70]. All of the challenges of real system
state estimation are naturally handled in the MHE framework. An estimate
of the current states is typically obtained by solving a least squares optimiza-
tion problem subject to the model constraints and inequality constraints that
represent bounds on variables or equations. Most of the published work cen-

ters around different techniques that solve the same minimization problem.
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Jang et al. iteratively linearized the nonlinear ODE model about a refer-
ence trajectory by computing sensitivities [41]. Liebman et al. first proposed
a simultaneous NLP solution approach where the differential equations are
transformed into algebraic equations through orthogonal collocation on finite
elements [47]. Ramamurthi et al. proposed a two step process to implicitly es-
timate the input disturbances while explicitly calculating state estimates [69].
Albuquerque and Biegler exploited the MHE SQP structure to achieve linear
computational scaling with horizon length for ODE models [3]. They later

extended the technique to DAE systems [4].

A number of enhancements have extended the theoretical basis and
functionality of MHE. McBrayer and Edgar proposed a bias detection and
estimation strategy to improve state estimation [53]. Offset free estimation
and control is achieved by augmenting the model with a number of disturbance
variables equal to the number of measurements [57] [59]. Rao et al. derived
sufficient conditions for MHE with linear systems subject to constraints [70].
They also suggested an infinite horizon approximation by weighting previous

state estimates in the least squares problem.

A number of critical evaluations of the extended Kalman filter and
MHE for nonlinear systems have been reported [38] [41] [71] . Each group
determined that MHE consistently outperforms the Kalman filter and that it
exhibits greater robustness to both poor initial state guesses and sub-optimal
estimator tuning parameters. Their unanimous conclusion was that the only

price of improvement is the greater computational expense required to solve
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the MHE optimization. The contribution in this work is to eliminate the
greater computational expense by developing an explicit solution to the MHE
optimization problem. Unlike the implicit optimization approach, the explicit
solution result is guaranteed in a highly predictable computational time that
is minimal even for large-scale nonlinear models. For state estimation prob-
lems with inequality constraints, an iterative procedure is added to determine
the set of active constraints. An augmented objective function monitors the

solution progression to guarantee convergence.

6.2 Moving Horizon Estimation Problem Formulation

The objective function of the MHE problem is a least squares func-

tion that seeks to minimize the difference between the model values and the

measurements.
min J = (Y, — ¥;,)7Q, (Y, — V3,
s.t. ():f(:i?,z,u,p) (61)
Ys = g($7 U’p)

a> h(x,u,p)>b

where J is the objective function value, Y is a vector of measurements at all
nodes, Y;, is a vector of model values at the sampling times, (), is the inverse
of the measurement covariance, f is a vector of model equation residuals, z is
the vector of model states, u is the vector of model inputs, p is the vector of
model parameters, y, is a vector of measurements, ¢ is an output function, A
is an inequality constraint function, and a and b are lower and upper limits,
respectively. The optimization found in Equation 6.1 can be solved with a

variety of numerical approaches [17]. The approach taken in this work is direct
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single shooting formulation where all future states in the horizon are uniquely
specified by the initial state xg, given sequence of inputs u = (ug,u1,. .. ,Up_1),
and given set of parameters p. At every iteration, the model equations are

exactly satisfied.

Sensitivities of the initial conditions are computed to discretize the non-
linear model. In practice, this discretization step is the most computationally
expensive part of the MHE calculation. For this study, it is assumed that
the discrete model is readily available. The vectors y,, and y, are successively

stacked to form Y,, and Y, where the horizon length is n.

Yoo=1| + |, Yi=| : (6.2)

An infinite horizon approximation is added by incorporating a penalty on the
deviation from previous model estimates. This penalty is added by augmenting
the objective function with the least squares contribution of previous model
estimates X,,, weighted with a forgetting factor a. Disturbance variables
(shown here as input disturbances), d, are included as state variables to achieve
offset free estimation and control. The nonlinear inequality constraints are

simplified by defining new states zx = h(xy, ug, pr) and imposing inequality
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constraints on zj.

minJ = (X, = X,)" Qu(X, = X)) +a (Xm _ Xm)T (Xm . Xm)

Tl Ay By P T By,
st | de | =1 0 T o ||d|+] 0 |u
Dk+1 0o 0 I Dk 0 (6.3)
Ty
Ysk — [ C]g 0 0 } dk + Dkuk
Pk

2 = M@k, Uk, Pi) a>zp>b

The vectors Xm and X,, are composed of model vectors z,, and z,,. Also,

X is constructed from the measurements (see Equation 6.4b) and Q. =

(CI;FQy,ka)'

Tm,0 '?,‘0
X = X = : (6.4a)
Lm,n ’f‘n
(COTCO)_ COT (Ys,0 — Douo)
Xy = : (6.4b)

(Cgcn)7 C;{ (ys,n * Dnun)
Solution of this optimization problem is typically accomplished with an im-

plicit solution technique. The next section develops an explicit solution to this

problem.

6.3 The Explicit MHE Solution

For simplicity of the derivation, the augmented state matrix is reduced
to a generic linear time-varying form of xy,1 = Agxy + Bruy and y, = Cray +

Dyuy. All variables are in deviation form although not explicitly indicated
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here. The model evolution is a unique function of the initial states.

k—1 k !
wp=[14; vx=> [H Aik.?} By juy.
Z:U

j=1 Li=1
1 1

0= 40 _ 0{1
i An,1 AO Wn—1 (6 5)
[ 0 0

0 — B(].H,O _ 1/?1
| Apo-- - AiBoug+ -+ Byoqug (-

Xm = Q.CL‘O + v

The equations of X,, and Y,, are substituted into the objective function, mak-
ing it a unique function of x,. The explicit solution to the minimization
problem is obtained by differentiating the objective function with respect to
xg, setting the differentiated function equal to zero, and algebraically manip-

ulating the equation to solve for the estimated xy (Zo) explicitly.
Fo= (7 (Qu+a) Q) (2T (QuXs + Xy — (Qn + al) W) (6.6)

The explicit solution can be calculated when the inverse of Q7 (Q, + ol) Q
exists. The inverse exists when previous estimates are used to approximate
the infinite horizon solution (o > 0). An explicit solution does not exist when
the system is unobservable and o = 0. This property is consistent with the
fact that an unobservable system possesses extra degrees of freedom leading
to states that cannot be estimated from the available measurements. A more
detailed definition of necessary and sufficient conditions for convergence is

provided below.
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Conditions for a unique solution are given separately for observable
and unobservable systems. Also, the conditions apply equally for linear and
nonlinear systems. Observability of nonlinear systems is established by ana-
lyzing the local observability along a reference trajectory [84]. As long as local

observability is maintained, the nonlinear system is also completely observable.

6.3.1 Fully observable systems

To obtain a unique solution for fully observable systems, the following

necessary conditions must be met:

1. @, has non-zero eigenvalues

2. The number of measurements is greater than or equal to the number of

states, n

Without an infinite horizon approximation (o = 0), the explicit solution re-
duces to the form derived in Ramamurthi et al. [69]. When the number of
measurements is less than n, w becomes rank deficient. With w rank deficient,
the product w’ Q w is also rank deficient. Also, the product w” Q,w becomes
rank deficient when (), has at least one zero eigenvalue. (), can have a zero
eigenvalue when zero weighting is given to a measurement. This situation may
arise when particular measurements are eliminated from the optimization due

to temporary faults in the sampling equipment or transmission delay.

Sufficient conditions guarantee a unique solution and consist of:
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1. @, is positive definite

2. The estimation horizon is greater than or equal to the number of states,

n

For observable systems, the observability matrix is full rank. When the horizon
is equal to n, w is exactly the observability matrix and therefore, full rank.
When @, is positive definite, the product w”Q,w is also positive definite. A
positive definite matrix is invertible, so a unique solution exists to the eMHE

problem.

6.3.2 Partially observable systems
For systems with unobservable states, convergence is guaranteed when

the following conditions are met:

1. @, is positive definite

2. The objective function is augmented with an infinite horizon approxima-

tion (o > 0)

3. w is full rank

When @, is positive definite, ), is positive semi-definite. Adding an infinite
horizon approximation increases by « the singular values (equivalent to the
eigenvalues for symmetric positive semi-definite matrices) of @, + af. With
w full rank, the product w”(Q, + al)w is positive definite and convergence is

guaranteed.
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6.3.3 Example 1: Explicit versus Implicit MHE Solution

This first example is used to illustrate that explicit and implicit solu-
tions of the MHE problem give the same results. A single input, single output

(SISO) second order model with stable roots is specified as the system.

1

G(s) = ———
(5) s24+2s54+1

(6.7)

A conversion to discrete time is performed with a sampling frequency of 0.1
seconds. Normally distributed measurement noise with mean of zero and stan-

dard deviation of 0.1 is added to the output.

o _ [ 8144 —0.0905 0.0905 |
1701 0.0905 09953 k 0.0047 | ¥
yk:[O 1]mk—|—7)k

(6.8)

The first state z; is unmeasured, but observable. The second state, x5, is mea-
sured but corrupted by measurement noise. The states are both initially at
zero while the initial guesses of the states are both set to one. A forgetting fac-
tor of 0.5 is added to the initial state in the time horizon. Figure 6.1 shows the
results of 49 separate optimizations for both explicit MHE and optimization
based MHE (labeled as MHE). Starting at time zero, every sampling instant
MHE recalculates a new estimate of the current states. The explicit solutions
agree closely with the implicit solutions. State x; converges quickly to the
actual system values. State z5 also gradually converges to the correct solution
because of the forgetting factor that places weight on the erroneous initial
guess. The computational effort required to compute a solution is drastically

different. The explicit solution required 2506 floating point operations. On a
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Figure 6.1: The explicit and implicit MHE solutions produce the same results.
Substantial computational reduction is obtained with the explicit solution ap-

proach.
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modern day computer operating at 10? million floating point operations per
second (MFLOPS), the solution would require 0.0003 seconds. The implicit so-
lution required 785,716 floating point operations for the last optimization with
a horizon of 50 measurements, or roughly 0.08 seconds on modern computers.
For this example, the explicit solution reduces computational requirements of

MHE by 314 times.

6.4 Inequality Constraints in Explicit MHE

Ramamurthi et al. [69] did not include inequality constraints in deriv-
ing an explicit MHE solution. Inequality constraints represent physical limits
on state variables or combinations of state variables. For example, mole frac-
tions are always between 0 and 1. If the state estimation predicted a mole
fraction outside of this range, that mole fraction would have little physical
meaning and would decrease the credibility of the other results. Inequality
constraints add valuable information to the state estimation. For systems
that are partially unobservable, the inequality constraints bound the unob-
servable states, thereby increasing the level of system observability. However,
an unobservable system cannot be made completely observable with inequal-
ity constraints. Additional actual measurements are the only way to make an

unobservable system completely observable.

As previously mentioned, the inequality constraints a > h(zg, pr) > b
are simplified by creating new variables z;, and adding z; = h(zy, px) to the set

of state equations. Equivalent constraint information is retained by imposing
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inequality constraints on z; (@ > 2, > b). Imposing constraint information
leads to a possible infeasible solution. To overcome this possibility, the inequal-
ity constraints are ranked according to the order of importance. This ranking
is accomplished by softening the constraints and imposing successively higher
weighting on more important constraints. Softening the constraints guarantees
a feasible solution because the inequality constraints may be violated to meet
the state equality constraints. Softening of the constraints is performed in
practice by adding a penalty to the objective function for constraint violation.

r)r}in J + sTQusa + 51 QuSp
s.t., 0= f(z,z,u,p)

ys = g(z,u,p) (6.9)
Sq=0a— X,
Sp — Xm — b

The matrices @, and @), have diagonal elements that turn on (weighting > 0)
or off (weighting = 0) to control the set of active constraints. A MHE problem
with inequality constraints is iterative because the final set of active con-
straints is not known a priori. However, the prediction of states, disturbances,
and parameters is still an explicit solution for a known set of active inequality
constraints. The computational time required to solve a problem with inequal-
ity constraints is variable, equal to the time required for one explicit solution
multiplied by the number of iterations. The explicit solution subject to the

set of active inequality constraints is given in Equation 6.10.

To=T"1 (QT (QzXs + Xy, + Qea + Qub — R\If))

with R = (Qx + al + Qa —+ Qb) and 7 = (QTRQ) (610)
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Convergence is guaranteed by rejecting iterations that do not produce a suf-
ficient decrease in the objective function. FEach iteration yields a new set
of active constraints that are predicted to give a decrease in the objective
function. The initial set of active constraints is determined by computing an
unconstrained MHE solution. Weighting is added to ), and @, for states
that violate the inequality constraints. In successive iterations, weighting is
removed for constraints with negative Lagrange multipliers (\, = —2Q,s, and
A = 2Qps,. If the new set of active constraints does not give a sufficient
decrease in the objective function, the algorithm adjusts the weights on the
active constraints. The parameter § in Equation 6.11 is reduced until a de-
crease in the objective function is obtained. An objective function decrease
is always possible until convergence. However, a full step ( = 1) may not
give a decrease in the objective function because of the nonlinear nature of
constrained systems. The Lagrange multipliers are locally accurate, linear
predictions of active constraint effects on the objective function. In the limit
as beta approaches zero, the linear approximation becomes exact and there-
fore, a decrease in the objective function is guaranteed. Convergence of MHE
with constraints is guaranteed by successively decreasing [ until a sufficient

decrease in the objective function is obtained at every iteration.

Qa - BQa,k + (1 - B)Qa,kfl
Qv = LQur + (1 — B)Qbr—1

Once a decrease in the objective function is obtained, the optimizer accepts

(6.11)

the iteration and moves on to find a new search direction (new active set of

constraints that is predicted to produce a decrease of the objective function).

138



This iterative sequence is terminated when the active set does not change from

one iteration to the next.

6.4.1 Example 2: Constrained Version of Example 1

Constraints are added to the Example 1 problem to demonstrate the
active set strategy. State x; is arbitrarily constrained between 0 and 0.2. State
To is not constrained. An input disturbance variable z3 is added to achieve
offset free estimation. Figure 6.2 shows the results of MHE with and with-

out inequality constraints. The unconstrained solution is the first iteration
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Figure 6.2: Variable 7 is constrained between 0 and 0.2. The unconstrained

solution violates the upper bound constraint on z;.

constraints the solution is improved.

By incorporating the

for explicit MHE calculation. After 5 iterations (for each of the 49 separate
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optimizations), constrained explicit MHE (CE MHE) agrees closely with the

b

implicit solution (MHE) as seen in Figure 6.3. Using the active set strategy

Actual

¢ Measured
05 --- CEMHE 7
‘\ — MHE
T —— -
0 — T
0 1 2 3 4 5
2 w !

0 T T
xm.05,\\/\¥/¥7///#ffi»f7<{4i 1
4 .
0 1 2 3 4 5
time

Figure 6.3: Results for constrained explicit MHE (CE MHE) compared to opti-
mization based MHE (labeled as MHE). Note that x; now meets the constraint
condition.

proposed in this section, explicit MHE converges to the constrained solution.
The details of the convergence are not obvious because the only values reported
in Figure 6.3 are the final predicted values. An iteration by iteration sequence
is informative to show the convergence properties. The last optimization is
taken as a example using all 50 data points with a horizon of 49. Figure 6.4
shows the first iteration. The third state (x3) is the input disturbance variable.
At the first iteration, the upper bound of x; is violated by the unconstrained

explicit MHE solution. Once the unconstrained solution is computed, a search
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Figure 6.4: First iteration of the explicit MHE solution. State

upper bound constraint of 0.2.
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is performed to identify all of the constraint violations. For the next iteration,
penalties are added to the objective function for each of the violations. Figure
6.5 shows the results of the explicit solution with weighting placed at the former

constraint violations. Negative Lagrange multipliers are identified for the next

Actual
04 ' ' ' ' e Measured |]
--- CE MHE
P e — MHE

0 0.5 1 1.5 2 25 3 35 4 4.5 5
time

Figure 6.5: Second iteration for explicit MHE. Weighting is added to matrix
@Qp where the z; trajectory formerly violated the upper bound constraint of
0.2. The constraint information is indicated as fictitious measurements even
though z, is not actually measured.

iteration to determine the equality constraints that should be removed from the
active set. Negative Lagrange multipliers are found between 0.0 > time > 0.2
and 1.3 > time > 1.9. For the next iteration these constraints are removed

from the active set. No additional constraint violations are identified so no
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constraints are added to the active set. A decrease in the augmented objective
function indicates that the iteration should be accepted. Figure 6.6 shows the

third iteration. After the third iteration, negative Lagrange multipliers are

Actual

0.4 T T T T T . Measured M

--- CE MHE
0.2 oo —— MHE

0 0.5 1 1.5 2 25 3 35 4 4.5 5
time

Figure 6.6: Third iteration of explicit MHE. The explicit MHE solution is ap-
proaching the implicit MHE solution as the active set of constraints is refined.

found between 0.3 > time > 0.4 and 1.1 > time > 1.2. For the next itera-
tion these constraints are removed from the active set and the explicit MHE
is recalculated, resulting in a sufficient decrease in the augmented objective
function. Figure 6.7 displays the fourth iteration. After the fourth iteration,
negative Lagrange multipliers are found between 0.5 > time > 0.6. These
constraints are removed from the active set for the final iteration. Again, the

augmented objective function decreases. Figure 6.8 displays the final iteration.
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Figure 6.7: Fourth iteration of explicit MHE. The explicit MHE solution al-
most agrees exactly with the implicit MHE solution. The final solution requires
one more iteration for convergence.
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The final iteration of explicit MHE shows excellent agreement between both

Actual
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Figure 6.8: Final iteration of explicit MHE. In all, the explicit solution se-
quence required 5 iterations for convergence.

solutions. The input disturbance variable x5 is defined as constant over the
entire time horizon. This example shows the development of MHE for a con-
strained linear system, making the problem nonlinear. The MHE framework
naturally incorporates constraints into the problem formulation. The explicit
solution required approximately 2500 floating point operations per iteration
for a total of 12,500. The implicit solution required approximately 122 million
floating point operations before the optimizer reached the default maximum
number of iterations. The inability of the implicit solution to converge quickly

is most likely due to the deficiencies of direct single shooting with softened
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constraints. A more robust approach obtained by direct multiple shooting or
collocation of the state equations would undoubtedly improve the implicit so-

lution computational effort, but not to the level of the explicit MHE approach.

6.5 Example 3: Flash Column Composition Estimation

This section shows an example of MHE, but for a physically realis-
tic process, a 17 state model of a flash column (see Figure 6.9. The unknown
compositions are estimated from the temperature and flow rate measurements.
When the liquid stream enters the column at a pressure below the liquid’s va-
por pressure, a fraction of the stream instantaneously flashes into the vapor
phase. A rigorous nonlinear model of mass, energy, and thermodynamic equi-
librium relationships predicts the dynamic behavior of the column. A diagram

of the model is presented in Figure 6.9. The feed tank contains an equimolar

Flash
column

Feed Tank

Figure 6.9: Flow sheet diagram of the flash column model. The flash column
consists of a feed tank with unknown species compositions, a flash column,
and vapor and liquid outlet streams.

hydrocarbon mixture of CyHq, C5H19, CsH14, C7H1g, and CgHyg. The feed

and flash temperatures are measured as are the vapor and liquid flow rates.
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Noise is added to the measurements with mean zero and standard deviation 0.5
for the temperatures and 0.02 for the flow rates. The objective is to estimate
the feed tank compositions from the temperature and flow rate measurements.
Figure 6.10 shows the measurements taken over the time horizon of interest.

The 17 state model has 5 differential states and 12 algebraic states. For full

Temperature (K) Flow Rate (mol/sec)
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< 3055 |
8§ 342 E'
o » 0.5
o
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340 0.4
0 50 100 0 50 100
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Figure 6.10: The estimated states converge quickly to the real system even
though the initial guess is poor.

observability, the observability matrix must have rank > 5. For this exam-
ple, the observability matrix is rank deficient at 3. This analysis reveals that
temperature and flow measurements of a flash column can only be used to ex-
actly estimate compositions of mixtures with < 3 components. Alternatively,

2 additional compositions could be measured to make the system observable.
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However, even if the system is not fully observable, some information can be
reconstructed that can be better than the initial composition estimates. For
this example, the compositions are initially estimated as 0.3 whereas the ac-
tual compositions are all located at 0.2. Figure 6.11 shows the estimation of

the compositions over a 100 second time horizon. A forgetting factor of 0.5 on
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Figure 6.11: Estimated compositions of CyHyy, C5H12, and CgHy4 approach
the actual values of 0.2. The other two compositions of C;H;s and CgHig
deviate significantly because the system is not fully observable.

the initial state was used to incorporate previous estimates. The estimation is
able to reconstruct the compositions of CyHq, C5H12, and CgHy4. However,
the other two compositions, C7 His and CgH,g, deviate significantly from the

correct solution. This deviation is a result of an unobservable system.
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Inequality constraints can bound unobservable states to increase the
accuracy of the estimation. For this example, suppose it is known that the
composition of C'; Hig should not be above a composition of 0.22. This con-
straint information can be incorporated into the explicit MHE formulation to
provide a better estimate of compositions. Figure 6.12 shows the results of

bounding the C7;H¢ composition. At the final solution the active constraint
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Figure 6.12: The composition estimation is greatly improved by adding an
inequality constraint to C; His. Even though the system is not fully observable,
the composition estimates closely approximate the actual values.

on C7;Hyg composition has a Lagrange multiplier of +0.02, confirming that the
constraint should be active. The estimation of the composition is greatly im-
proved by incorporating additional information about the process in the form

of an inequality constraint.
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6.5.1 Explicit MHE Scaling with Model Size

An important property of explicit MHE is computational scaling to
large-scale problems. To test the scalability to large-scale problems, a series of
17 state flash columns are combined to form larger models. These successively
larger models are solved for the linear and nonlinear case as seen in Figure

6.13. A horizon of 50 samples is used for all of the simulations. Both linear
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Figure 6.13: Explicit MHE scaling to large-scale model size. Both the nonlin-
ear and linear approaches scale O(z?) in the number of floating point opera-
tions, where x is the number of variables in the model.

and nonlinear explicit MHE scale O(2?) in the number of floating point oper-
ations, although the linear approach scales approximately 6 times better than
the nonlinear method. With computers that operate in the Gigahertz range,

the computational feasibility of explicit MHE is excellent even for large-scale
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problems (10,000+ variables).

6.5.2 Explicit MHE Scaling to Long Time Horizons

Some estimation problems require long time horizons (> 100 sampling
intervals). Long time horizons may be necessary when the measurements have
low signal to noise ratios, process measurements occur much faster than the
process dynamics, or there is a large difference among the sampling frequen-
cies of multiple measurements. Another reason for a long time horizon is for
parameter estimation where a few parameters are estimated from a long time
period of historical data. Figure 6.14 displays the effect of time horizon length
on the number of floating point operations for the 17 state flash column model.
For nonlinear models, the scaling is quadratic for increasing horizon length.
For linear models the scaling is linear for increasing horizon length. The linear
model scaling is particularly amenable for problems that may require a very

long time horizon.

6.6 Example 4: Two State CSTR

State estimation of a CSTR is a popular benchmark test problem as
found in Albuquerque and Biegler [3] and Haseltine and Rawlings [38], inter
alii. A description of the model, variables, and equations is given in Appendix
B. The purpose of this example is to estimate the computational load for

different estimation strategies.

A realistic estimation problem was devised to test eMHE for a sequence
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Figure 6.14: Explicit MHE scaling to horizon length. For nonlinear models,
scaling is O(2?) in the number of floating point operations. For linear models,
scaling is O(z) where z is the horizon length.

of step responses. The estimator horizon is set to 60 minutes and divided into
1 minute segments. The temperature is sampled every minute and corrupted
by normally distributed noise with a standard deviation of 5 K. Concentration
is sampled every 10 minutes with a standard deviation of 0.01 %—‘éf Plant-
model mismatch is introduced by using an activation energy of the first order
(A — B) reaction of 8750 —Z; for the model and 8740 - for the plant. The
plant-model mismatch is introduced to cause deviation of the estimated re-
sponse from the actual process. The steady state deviation can be eliminated
by including parameter estimation or a disturbance variable. At the first sam-

pling time the plant is assumed to be at steady state with a jacket cooling

temperature of 300 K. At 20 minutes the cooling temperature is set to 290 K,
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followed by a step to 310 K at 60 minutes. At 70 minutes the cooling tem-

perature returns to 290 K. Figure 6.15 shows the results of the MHE study.

The eMHE solution averaged approximately 22,000 floating point operations
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Figure 6.15: Estimation performance of the explicit solution MHE (eMHE)
versus MHE. The state variable (SV) estimation is difficult to distinguish
on the graph because the predictions are virtually identical for the two ap-
proaches. The only difference is the substantially lower computational effort

required to reach a solution.

to compute a solution. The direct single shooting optimization MHE solution

averaged approximately 40 million floating point operations. The CPU time

results from Liebman et al. were performed on a computer that delivers ap-

proximately 1 MFLOPS with LINPACK benchmark tests [47]. He reported

in 1992 solution times in the range of 1-100 seconds giving approximate com-

153



putational effort in the range of 1-100 million floating point operations for
sparse solvers and orthogonal collocation on finite elements. The explicit so-
lution approach offers improved computational performance that is insensitive
to convergence tolerance, poor initial conditions, strong nonlinearities, and

other factors that influence the implicit solution approach.

6.7 Conclusions

Moving horizon estimation has been demonstrated to be a superior
state estimation technique compared with the extended Kalman filter. The
only disadvantage is the additional computational expense needed to solve
the MHE optimization problem. This chapter outlines an explicit solution
technique that removes the computational disadvantage for large scale non-
linear DAE systems that is guaranteed to converge when the system is fully
observable or when previous estimates are incorporated into the optimiza-
tion. Inequality constraints add variable bounds that can improve the state
estimation, especially for systems that are not fully observable. An iterative
approach is necessary to determine an active set of equality constraints from
the full set of inequality constraints. The iterative solution has guaranteed
convergence by selecting new active sets that generate a sufficient decrease in
the augmented objective function. The computational expense of the most
challenging problem in this chapter required 22,000 floating point operations,
only a few micro-seconds with modern computational power. The compu-

tational expense of implicit optimization MHE is significantly more, with a
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possibility of convergence failure depending on the initial conditions selected,

problem nonlinearity, choice of optimizer, etc.
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Chapter 7

Conclusions and Recommendations

7.1 Summary of Contributions

The main focus of this dissertation is to reduce the computational re-
quirements for large-scale DAE model-based estimation and control. This
objective is accomplished by a variety of strategies that are combined in an
effective way to meet real-time constraints with limited computing resources.
The principal strategies are storage and retrieval off-line to enable efficient
on-line control, nonlinear DAE model reduction, and development of explicit
optimization solutions. Both moving horizon estimation and receeding horizon

control are developed to meet real-time constraints.

7.1.1 Development of a Superior Alternative to Neural Networks
for Nonlinear Function Approximation

ISAT, as formerly applied in combustion applications, was infeasible
as a general nonlinear function approximator because it required sensitivity
information. A statistical approximation to the sensitivity allows ISAT to

store and retrieve any linear or nonlinear function with error control.
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7.1.2 Automatic, Iterative DAE Model Reduction

Automatic order reduction of the differential equations is made possible
by introducing a variable error predictor that iteratively determines the order
of the reduced model. This variable error predictor can also be used to further
reduce the model order by increasing the reduced order model accuracy. For
the algebraic equations, a partitioning and precedence ordering is performed
to divide the equations and variables into successively independent sets. Once
partitioned, ISAT stores and retrieves solutions to the subsets of equations.
By building a database of solutions, the equations are automatically explicitly
transformed. The automatic transformation avoids the susceptability to error
that would come from a manual explicit transformation on an equation by

equation basis.

7.1.3 Reduced Computational Effort for Nonlinear MPC

The two most computationally expensive parts of nonlinear MPC are
state estimation and regulation. Reduction by up to 100 times is possible by

storing and retrieving the continuous nonlinear DAE integrations.

The state estimation is a dynamic data reconciliation of the model pre-
diction and plant measurements. State estimation is a necessary step when
full state feedback is impossible, plant-model mismatch is present, or mea-
surements are corrupted with noise. By storing and retrieving DAE model
integrations and sensitivities, the estimator calculation speed is greatly im-

proved.
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The regulator uses the results of the estimator to determine a set of
optimal inputs that will minimize an objective function. By using ISAT to
compute the model state evolution constraints, the computational time of

ISAT is reduced by up to 100 times.

7.1.4 Development of Explicit Nonlinear MPC

By storing and retrieving optimal control solutions, an approximate
explicit NMPC controller is developed. The error control embedded in ISAT
ensures that variable error tolerances are not exceeded. For constrained QP
problems, the initial estimate of the ROA is restricted to the state space with
the same active set of constraints. In the limit as ¢, goes to zero, the algo-
rithm yields the exact explicit MPC solution. The dimensionality problems of
previous approaches is overcome by only storing and retrieving solutions that

are accessed in practice.

7.1.5 Development of Explicit Moving Horizon Estimation

Moving horizon estimation requires a solution to a NLP problem com-
parable in computational complexity to the control formulation. In order for
model-based control to function, a current estimate of the states is necessary
before every control optimization. An explicit solution to the MHE problem
is developed for nonlinear ODE or DAE models. Inequality constraints can
be enforced by iteratively defining the active set of variables at the constraint

bounds. An explicit solution is guaranteed by weighting previous estimates
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in the objective function. Disturbances and parameters are simultaneously

estimated with the states in one explicit solution.

7.2 Future Work

Several extensions of this work are possible. The proposed future work
involves model reduction for the non-expert user, new applications for model
reduction, a few suggested developments for ISAT, and explicit MHE for pa-

rameter estimation.

7.2.1 Model Reduction for the Non-Expert User

Automated model reduction for non-expert users can be incorporated
into popular DAE solvers with the new techniques presented in Chapter 3. A
user would specify an error tolerance for the original model variables and the
solver could iteratively determine the reduced model size. Model reduction
was not found to significantly reduce the computational expense of simulating
a dynamic system. However, large computational advantages may exist for

reduced model sensitivity analysis as explained in Section 7.2.2.

7.2.2 Model Reduction for Sensitivity Analysis

For initial states sensitivities, an additional n? variables are solved si-
multaneously with the original n variables. By reducing the model order to
r states, the number of sensitivity variables is reduced to r2. For parameter

sensitivities, an additional nxp variables are solved simultaneously with the
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original variables. A model order of r states reduces the number of sensitivity
variables to rxp. Efficient sensitivity calculations are important for the sin-
gle and multiple shooting solution techniques for nonlinear MPC, MHE, and

model parameter estimation.

7.2.3 Model Reduction with the Open Equation Format

Chapter 3 shows techniques for reduction of models in the open equa-
tion format (0 = f(&, x,u)). The simultaneous optimization approach requires
a discretization scheme such as orthogonal collocation on finite elements to
convert the differential equations into the NLP form. A numerical example
of model reduction using the simultaneous approach was never developed.
Instead, the sequential solution approach was used because of programming
simplicity. However, in order to use the sequential approach, the model must
be converted to the semi-explicit form (¢ = f(z,u)). This conversion was
possible for all models that are shown in this dissertation, however, it may
be necessary to work with the open equation form directly. An interesting
study would be to compare the computational and theoretical properties of
the simultaneous and sequential solution approaches for reduced models in

simulation and control.

7.2.4 Higher Order Piecewise Approximations in ISAT

ISAT approximates nonlinear functions by building multi-dimensional

piecewise linear local approximations. The storage and retrieval performance
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could be increased by developing higher order local approximations. For some
applications, it is desirable for the function approximation to be continuous
or continuously differentiable. A higher order approximator may increase the
regions that meet these constraints. Another method to approximate continu-
ously differentiable functions may be to retrieve multiple nearby linear records

to generate higher order approximations.

7.2.5 Parameter Estimation

Chapter 6 demonstrates a very efficient implementation of MHE to es-
timate the states, parameters, and disturbance variables from an advancing
horizon of measurements. Periodically, it may be desirable to estimate new
model parameters from a long history of normal operating data. In practice,
this is usually accomplished by selecting a few points at steady state opera-
tion, setting the derivatives in the model to zero, and solving an optimization
problem to minimize the difference between the model and data. The draw-
backs to this approach stem from limiting the parameter estimation to steady
state data. Optimal parameter estimation would include all historical data
that are deemed valid. These data sets may include product grade transitions
or be segmented by periods of shut-down or corrupted measurements. Explicit
MHE was shown to scale quadratically with respect to model size and horizon
length and may offer a superior alternative to optimization-based parameter

updates.
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Appendix A

Binary Distillation Column Model

Condenser

Distillate

Figure A.1: Diagram of a dynamic binary distillation column model with
equilibrium stages
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Table A.1: Variables

Manipulated variables

Symbol Description Units
mp Feed rate =
Mg Reflux rate %
Q Reboiler heating rate =
Variables at each of the 26 stages
Differential variables
Symbol Description Units
A Liquid mole fraction none
h Specific enthalpy ﬁ
Algebraic variables
Symbol Description Units
YA Vapor mole fraction none
T Liquid mole fraction none
T Temperature K
ny Vapor molar flow rate TT?
ny, Liquid molar flow rate %‘f
hy Specific vapor enthalpy p
hr, Specific liquid enthalpy p
ppet Saturation pressure of compound j Pa
Other variables

Symbol Description Units
ny, Liquid molar holdup mol
MWpg(z4) Molecular weight of feed stream s
MWpg(z4) Molecular weight of reflux stream g
P Stage pressure Pa
Z;L/((g)) gpec?gc Yapo; enthalpy of compound ] é

J pecific liquid enthalpy of compound j —~
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Table A.2: Equations

Differential Equations

Component A mole balance at each stage

.1 . . _ . _ . Mfeed
Ta = nr (yAMrn‘/rn + mA1nnL1n yAn'u,f,nVn'u,f '/EAn'u,tnLnuf, + (mAfeed Mered(mA))>

Energy balance at each stage

;1 . . . . mfeed .
h 7 E (h‘/rnn‘/in + hLlT?nLﬂ’? o hVo-u,thout o hVoutnLout + (theed MWfEEd(:EA)) + Q)

Algebraic Equations

Raoult’s law for VLE

_ maPyet
yA - P
Liquid mole fraction equation
_ _h—hy
TL = hr—hy

Bubble point temperature equation
P =z,P5" + (1 — z4) P
Vapor molar flow rate equation
W = (M, + 101,,) (1 = 21)
Liquid molar flow rate equation
hLout = (n‘/zn + ann) xL
Vapor enthalpy equation
hy = yahva(T) + (1 = ya)hvs(T)
Liquid enthalpy equation
hi, = xahpa(T) + (1 — 24)hp(T)
Pure component j saturated vapor pressure equation (DIPPR database)
P = exp (A+ 2 + CIn(T) + DT")
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Appendix B

Dual CSTR Model

Feed <]

Reaction
A—B

Product

Figure B.1: This model is a dual CSTR with an exothermic first-order reaction.
It is the same model as the one used by Hahn [34], but with some minor
modifications.
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Table B.1: Variables

Manipulated variables

Symbol Description Units

U Valve position at the outlet of reactor #2 dimensionless

Q Cooling heat flow from reactor #1 é

State variables

Symbol Description Units

Vi Volume of reactor #1 m?

C Concentration of A in reactor #1 TSL—%I

11 Temperature of reactor #1 K

Vi Volume of reactor #2 m3

C a9 Concentration of A in reactor #2 "T;‘;l

15 Temperature of reactor #2 K
Other parameters

Symbol Description Units

Car Concentration of A in the feed ’Z—‘;f

Ty Feed temperature K

qr Feed flow rate Z‘f

Q Flow rate out of reactor #1 Te"f

Q2 Flow rate out of reactor #2 Te"cl

kq Pre-exponential factor m;"_oiw

E Activation energy p

R Universal gas constant (8.31451) —I

p Density of the liquid %

Cp Heat capacity of the liquid T

AH Energy of reaction p

c Constant relating valve position to flow rate secTZi?’/?
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Table B.2: Equations

Equation(s)

Flow rates
G =cvVi=Vs
¢ = c/Viu
Volume balances
dVl =qrFr — 1
{M =q1 — Q2
Component balances

d(vl% = qrCar — q1Ca1 — koCa1 Vi exp (

E
)
d(VQdeZ = q1CA1 - QQCAQ — koC 49 V5 exp (7 Rgz)
Energy balances
d(‘f}le) = qFTF - qlTl + — (kOCAl‘/l exp ( RT1)> — %
d(Vsz)

=q'l — ¢T5 + — (kOCAQVQ exp (
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Appendix C

Flowsheet Model

Feed 1 Feed 2
Product 1 R

Product 2

o0 o0 — T

—l: Product 3

Figure C.1: Diagram of the flowsheet model involving equal molar feed streams
of butane, pentane, hexane, heptane, and octane at 300 K and 1 ATM. The
model has 229 variables with 12 ODEs and 217 AEs.

Tables C-1 - C-5 are a listing of all of the variables in the flowsheet
model. The tables are divided by the model units. Table C-6 shows the irre-
duceable portion from the partitioning and precedence ordering of the variables
and equations. This is the only set involving more than one variable and one

equation and it consists of 16 variables and 16 equations from the flash column.
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Table C.1: Feed Variables

Name Name Units
feed1.c(C4H10) feed2.c(C4H10) Azl
feedl.c(C5H12) feed2.c(C5H12) Am!
feed1.c(C6H14) feed2.c(C6H14) Amel
feed1.c(CTH16) feed2.c(CTH16) Am
feed1.c(C8H18) feed2.c(C8H18) Al
feed1.dens feed2.dens k:zg’]
feed1.h feed2.h k”wa
feed1.ndot feed2.ndot %
feedl.vdot feed2.vdot T—;
feed1.x(C8H18) feed2.x(C8H18) none
feed1.y(C4H10) feed2.y(C4H10) none
feedl.y(C5H12) feed2.y(C5H12) none
feed1.y(C6H14) feed2.y(C6H14) none
feed1.y(C7TH16) feed2.y(C7TH16) none
feed1.y(C8H18) feed2.y(C8H18) none
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Table C.2: Flash Column Variables

Name Units
flash.outlet liq.c(C4H10)  flash.outlet_vap.c(C4H10) 22
flash.outlet_liq.c(C5H12)  flash.outlet_vap.c(C5H12) A2
flash.outlet liq.c(C6H14)  flash.outlet_vap.c(C6H14) 2l
flash.outlet liq.c(C7H16) flash.outlet_vap.c(CTH16) A2t
flash.outlet_liq.c(C8H18)  flash.outlet_vap.c(C8H18)  Amo!
flash.outlet_lig.dens flash.outlet_vap.dens kmol
flash.outlet_liq.h flash.outlet_vap.h ];Zo,
flash.outlet_lig.mdot flash.outlet_vap.mdot %
flash.outlet_lig.ndot flash.outlet_vap.ndot k;’zgl
flash.outlet_liq.p flash.outlet_vap.p Pa
flash.outlet_liq.t flash.outlet_vap.t K
flash.outlet_lig.vdot flash.outlet_vap.vdot TT;
flash.outlet liq.x(C4H10) flash.outlet_vap.x(C4H10) none
flash.outlet_liq.x(C5H12) flash.outlet_vap.x(C5H12) none
flash.outlet_liq.x(C6H14) flash.outlet_vap.x(C6H14) none
flash.outlet liq.x(C7H16) flash.outlet_vap.x(C7TH16) none
flash.outlet_liq.x(C8H18) flash.outlet_vap.x(C8H18) mnone
flash.outlet liq.y(C4H10) flash.outlet_vap.y(C4H10) none
flash.outlet liq.y(C5H12) flash.outlet_vap.y(C5H12) none
flash.outlet liq.y(C6H14) flash.outlet_vap.y(C6H14) none
flash.outlet_liq.y(C7H16) flash.outlet_vap.y(C7TH16) none
flash.outlet liq.y(C8H18) flash.outlet_vap.y(C8H18) none
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Table C.3: Heat Exchanger Variables

Heat Exchanger Outlet Units [Name Units
hxc.outlet.c(C4H10) Emal— Thxc.reserve.c(C4H10) A2
hxc.outlet.c(C5H12) kmol — Thxe.reserve.c(C5H12) At
hxc.outlet.c(C6H14) kol Thxc.reserve.c(C6H14) At
hxc.outlet.c(C7TH16) kmol - Thxe.reserve.c(CTH16) 2!
hxc.outlet.c(C8H18) k:f;’l hxc.reserve.c(C8H18)  Amel
hxc.outlet.dens kmol hxc.reserve.dens kmol
hxc.outlet.h kzol hxc.reserve.h kr?nol
hxc.outlet.mdot % hxc.reserve.m kg
hxc.outlet.ndot kz:’ hxc.reserve.n kmol
hxc.outlet.p Pa hxc.reserve.p Pa
hxc.outlet.t K hxc.reserve.t K
hxc.outlet.vdot T_ei hxc.reserve.v m3
hxc.outlet.x(C4H10) none  |hxc.reserve.x(C4H10) none
hxc.outlet.x(C5H12) none  |hxc.reserve.x(C5H12) none
hxc.outlet.x(C6H14) none  |hxc.reserve.x(C6H14) none
hxc.outlet.x(C7H16) none  |hxc.reserve.x(CTH16) none
hxc.outlet.x(C8H18) none  |hxc.reserve.x(C8H18) none
hxc.outlet.y(C4H10) none  |hxc.reserve.y(C4H10) none
hxc.outlet.y(C5H12) none  |hxc.reserve.y(C5H12) none
hxc.outlet.y(C6H14) none  |hxc.reserve.y(C6H14) none
hxc.outlet.y(C7H16) none  |hxc.reserve.y(CTH16) none
hxc.outlet.y(C8H18) none  hxc.reserve.y(C8H18) none
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Table C.4:

Splitter Variables

Split Outlet 1 Split Outlet 2 Units
split.frac2 none
split.outlet1.c(C4H10) split.outlet2.c(C4H10) A
split.outlet1.c(C5H12) split.outlet2.c(C5H12) A2
split.outlet1.c(C6H14) split.outlet2.c(C6H14) Aot
split.outletl.c(C7TH16) split.outlet2.c(CTH16) A2
split.outlet1.c(C8H18)  split.outlet2.c(C8H18) Aol
split.outletl.dens split.outlet2.dens kmol
split.outlet1.h split.outlet2.h 201
split.outlet1.mdot split.outlet2.mdot s
split.outletl.ndot split.outlet2.ndot ;’;gl
split.outletl.p split.outlet2.p Pa
split.outlet1.t split.outlet2.t K
split.outletl.vdot split.outlet2.vdot TTZ
split.outlet1.x(C4H10) split.outlet2.x(C4H10) none
split.outlet1.x(C5H12) split.outlet2.x(C5H12) none
split.outlet1.x(C6H14) split.outlet2.x(C6H14) none
split.outlet1.x(C7H16) split.outlet2.x(C7TH16) none
split.outlet1.x(C8H18) split.outlet2.x(C8H18) none
split.outlet1.y(C4H10) split.outlet2.y(C4H10) none
split.outlet1l.y(C5H12) split.outlet2.y(C5H12) mnone
split.outlet1.y(C6H14) split.outlet2.y(C6H14) none
split.outlet1.y(C7H16) split.outlet2.y(C7H16) mnone
split.outlet1.y(C8H18) split.outlet2.y(C8H18) mnone
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Table C.5: Mixer and Tank Variables

Mixer Tank Outlet Tank Holdup Units
mixerl.outlet.c(C4H10) tank.outlet.c(C4H10) tank.reserve.c(C4H10) X2
mixerl.outlet.c(C5H12) tank.outlet.c(C5H12) tank.reserve.c(C5H12) —Am!
mixerl.outlet.c(C6H14) tank.outlet.c(C6H14) tank.reserve.c(C6H14) £zl
mixerl.outlet.c(C7H16) tank.outlet.c(C7TH16) tank.reserve.c(CTH16) A
mixerl.outlet.c(C8H18) tank.outlet.c(C8H18) tank.reserve.c(C8H18) Am!
mixerl.outlet.dens tank.outlet.dens tank.reserve.dens kr’::;’]
mixerl.outlet.h tank.outlet.h tank.reserve.h mJol
mixerl.outlet.mdot tank.outlet.mdot tank.reserve.m (kg) =
mixerl.outlet.ndot tank.outlet.ndot tank.reserve.n (kmol) — *2%
mixerl.outlet.p tank.outlet.p tank.reserve.p Pa
mixerl.outlet.t tank.outlet.t tank.reserve.t K
mixerl.outlet.vdot tank.outlet.vdot tank.reserve.v (m?) T—ez
mixerl.outlet.x(C4H10) tank.outlet.x(C4H10) tank.reserve.x(C4H10) none
mixerl.outlet.x(C5H12) tank.outlet.x(C5H12) tank.reserve.x(C5H12) none
mixerl.outlet.x(C6H14) tank.outlet.x(C6H14) tank.reserve.x(C6H14) none
mixerl.outlet.x(C7TH16) tank.outlet.x(C7TH16) tank.reserve.x(C7H16) none
mixerl.outlet.x(C8H18) tank.outlet.x(C8H18) tank.reserve.x(C8H18) none
mixerl.outlet.y(C4H10) tank.outlet.y(C4H10) tank.reserve.y(C4H10) none
mixerl.outlet.y(C5H12) tank.outlet.y(C5H12) tank.reserve.y(C5H12) none
mixerl.outlet.y(C6H14) tank.outlet.y(C6H14) tank.reserve.y(C6H14) none
mixerl.outlet.y(C7H16) tank.outlet.y(C7TH16) tank.reserve.y(C7TH16) none
mixerl.outlet.y(C8H18) tank.outlet.y(C8H18) tank.reserve.y(C8H18) none
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Table C.6: Partitioning and Precedence Ordering Implicit Block

Variable Eqn #
flash.outlet_vap.x(C8H18) 203
flash.outlet_vap.h 214
flash.outlet liq.h 195

flash.outlet liq.x(C8H18) 192
flash.outlet_vap.x(C7TH16) 191
flash.outlet liq.x(C7TH16) 199
flash.outlet_vap.x(C6H14) 190
flash.outlet liq.x(C6H14) 198

flash.outlet _lig.ndot 194
flash.outlet _vap.x(C4H10) 188
flash.outlet_vap.ndot 196

flash.outlet_vap.x(C5H12) 197
flash.outlet liq.x(C5H12) 189
flash.outlet liq.x(C4H10) 218
flash.outlet liq.t 229
flash.outlet __vap.t 193
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