
Moving Horizon Estimation - The Expliit SolutionJohn D. Hedengren and Thomas F. Edgar�Department of Chemial EngineeringUniversity of Texas at AustinAustin, TX 78712April 11, 2005AbstratMoving horizon estimation onsistently outperforms the Kalman �lter with greater robustnessto both poor initial state guesses and sub-optimal estimator tuning parameters. The only prieof improvement is the greater omputational expense required to solve the MHE optimization.The ontribution in this work is that the tradeo� of greater omputational expense is elimi-nated by developing an expliit solution to the MHE optimization problem. Unlike the impliitoptimization approah, the expliit solution result is guaranteed in a highly preditable ompu-tational time that is minimal even for large-sale nonlinear models with long time horizons. Forstate estimation problems with inequality onstraints, an iterative layer is added to determinethe set of ative onstraints. An augmented objetive funtion monitors the solution progressionto guarantee onvergene.KeywordsMoving Horizon Estimation, Kalman Filter, State and Parameter EstimationIntrodutionEstimation of a model states and parameters from pro-ess measurements bridges the gap between the theo-retial realm of mathematial models and the realistiproesses they represent. Many approahes have beensuggested to aomplish the reoniliation of model andproess, with a range of tradeo�s (Soroush, 1998). Gen-erally, the tradeo�s are entered on model form and size,omputational expense, ease of implementation, robust-ness to proess/model mismath, and ultural fatorssuh as understanding and aeptane.The reoniliation proess is an important preursorto many other ativities suh as fault detetion, prod-ut quality assurane, manual ontrol, and model-basedontrol. These model-based tehniques need an aurateestimate of the urrent system variables to perform well.Without aurate state estimation, many of these toolswould perform poorly or fail.Previous WorkFor dynami nonlinear model-based ontrol of hemialproesses, the most popular feedbak strategies in pra-tie are the extended Kalman �lter and a onstant orintegrating output disturbane variable (Qin and Badg-�edgar�he.utexas.edu

well, 2000). The Kalman �lter is optimal for unon-strained, linear systems subjet to known normally dis-tributed state and measurement noise (Haseltine andRawlings, 2004). The Kalman �lter sequentially updatesstate estimates based on the magnitude of the error be-tween the measurements and the model variables. TheKalman �lter is simply an optimal proportional-only �l-ter that proportionally orrets state values from the de-viation of model values from measurements. The ex-tended Kalman �lter is an extension of the Kalman �l-ter, developed for unonstrained, nonlinear DAE systems(Beerra et al., 2001). By linearizing the model aboutupdated state estimates, the extended Kalman �lter isable to predit the nonlinear state evolution, althoughsub-optimally (Haseltine and Rawlings, 2004). Vahhaniet al. (2005) proposed EKF with onstraints, althoughthe augmentation strategy for parameter estimation isstill a limitation.A number of ritial evaluations have shown that mov-ing horizon estimation (MHE) onsistently outperformsthe extended Kalman �lter (Haseltine and Rawlings,2004) (Jang et al., 1986) (Robertson and Lee, 1995).State estimation of real systems may inlude hang-ing measurement frequenies, multiple measurementsat di�erent sampling frequenies, measurement delay,large-sale nonlinear models, and onstraints. MHE is



Moving Horizon Estimation - The Expliit Solution 2an optimization-based approah that is exible to dealwith these ompliations (Mihalska and Mayne, 1995)(Moraal and Grizzle, 1995). MHE is also known as non-linear dynami data reoniliation (NLDDR) (Liebmanet al., 1992) (Soderstrom et al., 2000). MHE is a om-putationally tratable approximation to the optimal in-�nite horizon estimation (Rao et al., 2001). All of thehallenges of real system state estimation are naturallyhandled in the MHE framework. An estimate of theurrent states is typially obtained by solving a leastsquares optimization problem subjet to the model on-straints and inequality onstraints that represent boundson variables or equations. Most of the published workenters around di�erent tehniques that solve the sameminimization problem. Jang et al. (1986) iteratively lin-earized the nonlinear ODE model about a referene tra-jetory by omputing sensitivities. Liebman et al. (1992)�rst proposed a simultaneous NLP solution approahwhere the di�erential equations are transformed into al-gebrai equations through orthogonal olloation on �-nite elements. Ramamurthi et al. (1993) proposed a twostep proess to impliitly estimate the input disturbaneswhile expliitly alulating state estimates. Albuquerqueand Biegler (1995) exploited the MHE SQP struture toahieve linear omputational saling with horizon lengthfor ODE models. They later extended the tehnique toDAE systems (Albuquerque and Biegler, 1997).A number of enhanements have extended the theo-retial basis and funtionality of MHE. (MBrayer andEdgar, 1995) proposed a bias detetion and estimationstrategy to improve state estimation. O�set free estima-tion and ontrol is ahieved by augmenting the modelwith a number of disturbane variables equal to the num-ber of measurements (Muske and Badgwell, 2002) (Pan-nohia, 2003). Rao et al. (2001) derived suÆient ondi-tions for MHE with linear systems subjet to onstraints.They also suggested an in�nite horizon approximation byweighting previous state estimates in the least squaresproblem.Moving Horizon Estimation Problem For-mulationThe MHE optimization is typially a minimization of aleast squares objetive funtion to allign the model withmeasured values.min J = kYs � Ymk2Qys:t: 0 = f( _x; x; u; p)ys = g(x; u; p)a � h(x; p) � b (1)where J is the objetive funtion value, Ys is a vetorof measurements at all nodes, Ym is a vetor of modelvalues at the sampling times, Qy is the inverse of themeasurement ovariane, f is a vetor of model equation

residuals, x represents the model states, u is the modelinputs, p is the model parameters, ys is a vetor of mea-surements, g is an output funtion, h is an inequalityonstraint funtion, and a and b are lower and upperlimits, respetively. Sensitivities of the initial onditionsare omputed to disretize the nonlinear model. In pra-tie, this disretization step is the most omputationallyexpensive part of the MHE alulation. For this study,it is assumed that the disrete model is freely available.The vetors ym and ys are suessively staked to formYm and Ys where the horizon length is n.Ym = 264 ym;0...ym;n 375 ; Ys = 264 ys;0...ys;n 375 (2)An in�nite horizon approximation is added by inorpo-rating a penalty on the deviation from previous modelestimates. This penalty is added by augmenting the ob-jetive funtion with the least squares ontribution ofprevious model estimates X̂m, weighted with a forget-ting fator �. Disturbane variables (shown here as in-put disturbanes), d, are inluded as state variables toahieve o�set free estimation and ontrol. The nonlin-ear inequality onstraints are simpli�ed by de�ning newstates zk = h(xk; pk) and imposing inequality onstraintson zk.min J = kXs �Xmk2Qx + � X̂m �Xm2s:t: 24 xdp 35k+1 = 24 A B P0 I 00 0 I 35k 24 xdp 35k + 24 B00 35k ukys;k = � C 0 0 �k 24 xdp 35ka � zk � b (3)The vetors X̂m and Xm are staked model vetors x̂mand xm. Also, Xs is onstruted from the measurementsand Qx;k = �CTk Qy;kCk�.Xm = 264 xm;0...xm;n 375 ; X̂m = 264 x̂0...̂xn 375 (4)
Xs = 264 �CT0 C0�� CT0 (ys;0 �D0u0)...�CTn Cn�� CTn (ys;n �Dnun) 375 (5)Solution of this optimization problem is typially aom-plished with an impliit solution tehnique. The nextsetion develops an expliit solution to this problem.



Moving Horizon Estimation - The Expliit Solution 3The Expliit MHE SolutionFor simpliity of the derivation, the augmented state ma-trix is redued to a generi linear time-varying form ofxk+1 = Akxk + Bkuk and yk = Ckxk +Dkuk. All vari-ables are in deviation form although not expliitly indi-ated. The model evolution is a unique funtion of theinitial states.!k = k�1Qj=0Aj  k = kPj=1 �j�1Qi=1 Ai�k�j�Bk�juk�j
 = 26664 I!1...!n�1 37775 	 = 26664 0 1... n�1 37775Xm = 
x0 +	 (6)The equations of Xm and Ym are substituted into theobjetive funtion making it a unique funtion of x0. Theexpliit solution to the minimization problem is obtainedby di�erentiating the objetive funtion with respet tox0, setting the di�erentiated funtion equal to zero, andalgebraially manipulating the equation to solve for theestimated x0 (x̂0) expliitly.x̂0 = T�1 �
T (QxXs + �Xm � (Qx + �I)	)�with T = 
T (Qx + �I) 
 (7)The expliit solution an be alulated when the inverseof T exists. T�1 exists when previous estimates are usedto approximate the in�nite horizon solution (� > 0). Tis not invertible when the system is unobservable and� = 0. This property is onsistent with the fat thatan unobservable system possesses extra degrees of free-dom leading to states that annot be estimated from theavailable measurements.Inequality Constraints in Expliit MHEInequality onstraints represent physial limits on statevariables or ombinations of state variables. For ex-ample, mole frations are always between 0 and 1. Ifthe state estimation predited a mole fration outsideof this range, that mole fration would have little phys-ial meaning and would derease the redibility of theother results. Inequality onstraints add valuable infor-mation to the state estimation. For systems that arepartially unobservable, the inequality onstraints boundthe unobservable states, thereby inreasing the level ofsystem observability. However, an unobservable systemannot be made ompletely observable with inequalityonstraints. Additional atual measurements are theonly way to make an unobservable system ompletelyobservable.As previously mentioned, the inequality onstraintsa � h(xk; pk) � b are simpli�ed by reating new vari-ables zk and adding zk = h(xk ; pk) to the set of state

equations. Equivalent onstraint information is retainedby imposing inequality onstraints on zk (a � zk � b).Imposing onstraint information leads to a possible in-feasible solution. To overome this possibility, the in-equality onstraints are ranked aording to the orderof importane. This ranking is aomplished by soft-ening the onstraints and imposing suessively higherweighting on more important onstraints. Softening theonstraints guarantees a feasible solution beause the in-equality onstraints may be violated to meet the stateequality onstraints. Softening of the onstraints is per-formed in pratie by adding a penalty to the objetivefuntion for onstraint violation.min J + sTaQasa + sTb Qbsbs:t: the state equationssa = a�Xmsb = Xm � b (8)The matries Qa and Qb have diagonal elements thatturn on (weighting > 0) or o� (weighting = 0) to on-trol the set of ative onstraints. A MHE problem withinequality onstraints is iterative beause the �nal set ofative onstraints is not known a priori. However, thepredition of states, disturbanes, and parameters is stillan expliit solution for a known set of ative inequalityonstraints. The omputational time required to solve aproblem with inequality onstraints is variable, equal tothe time required for one expliit solution multiplied bythe number of iterations. The expliit solution given aset of ative inequality onstraints is given in Equation9. x̂0 = T�1 �
T (QxXs + �Xm +Qaa+Qbb�R	)�with R = (Qx + �I +Qa +Qb) and T = �
TR
� (9)Convergene is guaranteed by rejeting iterations thatgive do not produe a suÆient derease in the obje-tive funtion. There are many strategies to aomplishguaranteed onvergene, although some strategies provesuperior to others. Eah iteration is a new set of ativeonstraints that are predited to give a derease in theobjetive funtion. The initial set of ative onstraintsis determined by omputing an unonstrained MHE so-lution. Weighting is added to Qa and Qb for states thatviolate the inequality onstraints. In suessive itera-tions, weighting is removed for onstraints with negativeLagrange multipliers (�a = �2Qasa and �b = 2Qbsb. Ifthe new set of ative onstraints does not give a suÆientderease in the objetive funtion, the algorithm adjuststhe weights on the ative onstraints. The parameter �is dereased until a derease in the objetive funtion isdisovered. Qa = �Qa;k + (1� �)Qa;k�1Qb = �Qb;k + (1� �)Qb;k�1 (10)



Moving Horizon Estimation - The Expliit Solution 4One a derease in the objetive funtion is disovered,the optimizer aepts the iteration and moves on to �nda new searh diretion (new ative set of onstraints thatis predited to produe a derease of the objetive fun-tion). This iteration sequene is terminated when theative set does not hange from one iteration to the next.Example 1: Flash Column CompositionEstimationThis setion shows an example of MHE, but for a phys-ially realisti proess. The third example is a 17 statemodel of a ash olumn. The unknown ompositions areestimated from the temperature and ow rate measure-ments. A ash olumn is an elementary separation unitthat is fed with a pressurized liquid stream. When theliquid stream enters the olumn at a redued pressurethat is below the liquid's vapor pressure, a fration ofthe stream instantaneously ashes into the vapor phase.A rigorous nonlinear model of mass, energy, and thermo-dynami equilibrium relationships predits the dynamibehavior of the olumn. A diagram of the model is pre-sented in Figure 1. The feed tank ontains an equimolar
Figure 1: Flow sheet diagram of the ash olumn model.The ash olumn onsists of a feed tank with unknownspeies ompositions, a ash olumn, and vapor and liq-uid outlet streams.hydroarbon mixture of C4H10, C5H12, C6H14, C7H16,and C8H18. The feed and ash temperatures are mea-sured as are the vapor and liquid ow rates. Noise isadded to the measurements with mean zero and stan-dard deviation 0.5 for the temperatures and 0.02 for theow rates. The objetive is to estimate the feed tankompositions from the temperature and ow rate mea-surements. Figure 2 shows the measurements taken overthe time horizon of interest. The 17 state model has 5di�erential states and 12 algebrai states. For full ob-servability, the observability matrix must have rank � 5.For this example, the observability matrix is rank de�-ient at 3. This analysis reveals that temperature andow measurements of a ash olumn an only be used toexatly estimate ompositions of mixtures with � 3 om-

Figure 2: The estimated states onverge quikly to thereal system even though the initial guess is poor.ponents. Alternatively, 2 additional ompositions ouldbe measured to make the system observable. However,even if the system is not fully observable, some infor-mation an be reonstruted that an be better than theinitial omposition estimates. For this example, the om-positions are initially estimated as 0.3 whereas the atualompositions are all loated at 0.2. Figure 3 shows theestimation of the ompositions over a 100 seond timehorizon. A forgetting fator of 0.5 on the initial state

Figure 3: Estimated ompositions of C4H10, C5H12, andC6H14 approah the atual values of 0.2. The other twoompositions of C7H16 and C8H18 deviate signi�antlybeause the system is not fully observable.was used to inorporate previous estimates. The estima-tion is able to reonstrut the ompositions of C4H10,C5H12, and C6H14. However, the other two omposi-



Moving Horizon Estimation - The Expliit Solution 5tions, C7H16 and C8H18, deviate signi�antly from theorret solution. This deviation is a result of an unob-servable system.Inequality onstraints an bound unobservable statesto inrease the auray of the estimation. For thisexample, suppose it is known that the omposition ofC7H16 should not be above a omposition of 0.22. Thisonstraint information an be inorporated into the ex-pliit MHE formulation to provide a better estimate ofompositions. Figure 4 shows the results of boundingthe C7H16 omposition. At the �nal solution the ative

Figure 4: The omposition estimation is greatly im-proved by adding an inequality onstraint to C7H16.Even though the system is not fully observable, the om-positions losely approximate the atual values.onstraint on C7H16 omposition has a Lagrange mul-tiplier of +0.02, on�rming that the onstraint shouldbe ative. The estimation of the omposition is greatlyimproved by inorporating additional information aboutthe proess in the form of an inequality onstraint.Expliit MHE Saling with Model SizeAn important property of expliit MHE is omputationalsaling to large-sale problems. To test the salability tolarge-sale problems, a series of 17 state ash olumnsare ombined to form larger models. These suessivelylarger models are solved for the linear and nonlinear aseas seen in Figure 5. A horizon of 50 samples is used forall of the simulations. Both linear and nonlinear expliitMHE sale O(x2) in the number of oating point opera-tions, although the linear approah sales approximately6 times better than the nonlinear method. With om-puters that operate in the Gigahertz range, the ompu-tational feasibility of expliit MHE is exellent even forlarge-sale problems (10,000+ variables).

Figure 5: Expliit MHE saling to large-sale model size.Both the nonlinear and linear approahes sale O(x2) inthe number of oating point operations where x is thenumber of variables in the model.Expliit MHE Saling to Long Time HorizonsSome estimation problems require long time horizons(> 100 sampling intervals). Long time horizons maybe neessary when the measurements have low signal tonoise ratios, proess measurements our muh fasterthan the proess dynamis, or there is a large di�er-ene among the sampling frequenies of multiple mea-surements. Another reason for a long time horizon is forparameter estimation where a few parameters are esti-mated from a long time period of historial data. Figure6 displays the e�et of time horizon length on the numberof oating point operations for the 17 state ash olumnmodel. For nonlinear models, the saling is quadrati forinreasing horizon length. For linear models the salingis linear for inreasing horizon length. The linear modelsaling is partiularly amenable for problems that mayrequire a very long time horizon.Example 2: Two State CSTRState estimation of a CSTR is a popular benhmark testproblem as found in Albuquerque and Biegler (1995),Haseltine and Rawlings (2004), Jang et al. (1986), Lieb-man et al. (1992), MBrayer and Edgar (1995), Rama-murthi et al. (1993), and Rao and Rawlings (2002) . Thepurpose of this example is to estimate the omputationalload for di�erent estimation strategies.A realisti estimation problem was devised to testeMHE for a sequene of step responses. The estimatorhorizon is set to 60 minutes and divided into 1 minutesegments. The temperature is sampled every minute and
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Figure 6: Expliit MHE saling to horizon length. Fornonlinear models, saling is O(x2) in the number of oat-ing point operations. For linear models, saling is O(x)where x is the horizon length.
orrupted by normally distributed noise with a standarddeviation of 5 K. Conentration is sampled every 10 min-utes with a standard deviation of 0.01 molm3 . Plant-modelmismath is introdued by using an ativation energy ofthe �rst order (A ! B) reation of 8750 Jmol for themodel and 8740 Jmol for the plant. The plant-model mis-math is introdued to ause deviation of the estimatedresponse from the atual proess. The steady state de-viation an be eliminated by inluding parameter esti-mation or a disturbane variable. At the �rst samplingtime the plant is assumed to be at steady state witha jaket ooling temperature of 300 K. At 20 minutesthe ooling temperature is set to 290 K, followed by astep to 310 K at 60 minutes. At 70 minutes the ool-ing temperature returns to 290 K. Figure 7 shows theresults of the MHE study. The eMHE solution averagedapproximately 22,000 oating point operations to om-pute a solution. The diret single shooting optimizationMHE solution averaged approximately 40 million oat-ing point operations. The CPU time results from Lieb-man et al. were performed on a omputer that deliversapproximately 1 MFLOPS with LINPACK benhmarktests (Liebman et al., 1992). He reported in 1992 solutiontimes in the range of 1-100 seonds giving approximateomputational e�ort in the range of 1-100 million oat-ing point operations for sparse solvers and orthogonalolloation on �nite elements. The expliit solution ap-proah o�ers improved omputational performane thatis insensitive to onvergene tolerane, poor initial on-ditions, strong nonlinearities, and other fators that in-uene the impliit solution approah.

Figure 7: Estimation performane of the expliit solutionMHE (eMHE) versus MHE. The state variable (SV) es-timation is diÆult to distinguish on the graph beausethe preditions are virtually idential for the two ap-proahes. The only di�erene is the substantially loweromputational e�ort of eMHE.ConlusionsMoving horizon estimation has been established as asuperior state estimation tehnique ompared with theextended Kalman �lter. The only established tradeo�is the additional omputational expense need to solvethe MHE optimization problem. An expliit solutionremoves the omputational disadvantage for large salenonlinear DAE systems that is guaranteed when the sys-tem is fully observable or when previous estimates are in-orporated into the optimization. Inequality onstraintsadd variable bounds that an improve the state estima-tion, espeially for systems that are not fully observ-able. An iterative approah is neessary to determinean ative set of equality onstraints from the full set ofinequality onstraints. The iterative solution has guar-anteed onvergene by seleting new ative sets that gen-erate a suÆient derease in the objetive funtion. Theomputational expense of the most hallenging problemin this paper required 22,000 oating point operations,only a few miro-seonds with modern omputationalpower. The omputational expense of impliit optimiza-tion MHE is signi�antly more, with a possibility of on-vergene failure depending on the initial onditions se-leted, problem nonlinearity, hoie of optimizer, et.ReferenesAlbuquerque, J. and L. Biegler, \Deomposition Algo-rithms for On-Line Estimation with Nonlinear Mod-
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