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Abstract— Moving horizon estimation (MHE) has been ap-
plied to an industrial gas phase polymerization reactor to
improve estimates of current states and parameters. MHE is
compared to Implicit Dynamic Feedback (IDFTM )1. With MHE,
there is improved estimation of unmodeled disturbances in
the UNIPOLTM polyethylene plant. The UNIPOLTM technology is
licensed by Univation, a joint venture between ExxonMobil and
Dow. The polymerization reactor and plant model is a large-
scale set of differential and algebraic equations (DAEs) posed in
open equation form. The DAE model is converted to algebraic
equations by orthogonal collocation and solved with the MHE
objective function in a simultaneous optimization. NOVATM , an
active-set sparse NLP solver, is used to converge the problem
that has 46,870 variables, 18 complementarity conditions,and
a Jacobian sparsity of 0.01%. This large, sparse optimization
problem is initiated every 5 minutes to update the model as new
plant measurements become available and prior to the control
optimization. The same plant model is used for nonlinear model
predictive control (MPC) with 10 manipulated variables (MVs)
and 26 controlled variables (CVs). In this case, a significant
advantage is that with MHE a simpler rigorous model suffices
for the application of nonlinear MPC.

I. I NTRODUCTION

Model-based calculations and measurements of the pro-
cess they represent may differ because of model inaccu-
racies. The reconciliation of model and measurements is
an important precursor to be able to use the model for
predictive analysis. Predictive analysis is used for faultde-
tection, product quality assurance, model-based control,and
to remain within safety or environmental constraints. These
model-based techniques require an accurate estimate of the
current system states to take advantage of the predictive
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capabilities of the model. Without accurate state estimation,
the predictive advantages of model-based calculations cannot
be fully utilized. Many approaches have been suggested to
accomplish the reconciliation of model and measurements,
with a range of trade-offs [1]. Generally, the trade-offs are
centered on model form and size, computational expense,
ease of implementation, robustness, and off-set free estima-
tion [2] [3].

Unmodeled features of a physical process pose a limita-
tion, in particular, for model-based control. Before optimized
manipulated variable (MV) moves can be computed, the cur-
rent model states must reasonably match the measurements
from the actual process. Qin and Badgwell [4] surveyed the
current state of nonlinear model predictive control (MPC)
applications. According to the survey, the most popular
feedback techniques at the time were constant and integrating
output bias disturbances. However, Froisy concluded that
state estimation is a key enabler that allows linear MPC to
reject disturbances more effectively than a well tuned PID
controller [5]. Two alternatives of state estimation are the
Kalman filter and moving horizon estimation (MHE).

A number of evaluations have compared the Kalman filter
to MHE [6] [7] to show that MHE consistently outperforms
the extended Kalman filter in the presence of constraints.
State estimation of real systems may include changing mea-
surement frequencies and missing measurements, multiple
measurements at different sampling frequencies, measure-
ment delay, large-scale nonlinear models, and constraints.
MHE, as a part of nonlinear dynamic data reconcilia-
tion [8] [9], is flexible to deal with these complications [10].
MHE is a computationally tractable approximation to the
optimal infinite horizon estimation [11]. All of the challenges
of real system state estimation are naturally handled in
the MHE framework. An estimate of the current states is
typically obtained by solving a least squares optimization



problem subject to the model constraints and inequality
constraints that represent bounds on variables or equations.
Liebman et al. was the first to propose a simultaneous
solution approach for MHE where the differential equations
are transformed into algebraic equations through orthogonal
collocation on finite elements [8]. Later, Albuquerque and
Biegler improved the solution approach by exploiting the
MHE SQP structure to achieve linear computational scaling
with horizon length [12]. Further computation improvement
was proposed by Hedengren et al. in an explicit solution to
a simplified nonlinear MHE problem [13].

Researchers from ExxonMobil Chemical Company have
published MHE results using the NOVATMsolver for diluent
inventory tracking [9] and a liquid phase polymerization
reactor [14]. These studies have shown the success of MHE
as applied to models of industrial processes.

Many of the previously referenced papers on MHE discuss
novel theoretical aspects but do not address some practicalis-
sues for industrial applications. The contribution of thiswork
is to discuss another industrial application of MHE including
practical issues in implementation, introduce IDFTMfor the
first time, and discuss how IDFTMand MHE can be used to
improve nonlinear MPC.

II. FEEDBACK STRATEGIES

In this paper, MHE is compared with Implicit Dynamic
Feedback (IDFTM). Both of these feedback technologies are
available as options in the Polymer NLCTMmodel predictive
control package. IDFTMoriginated with DOT Products and
was subsequently used by PAS to incorporate model feed-
back of measured states.

A. Implicit Dynamic Feedback (IDFTM)

The IDFTMformulation is a feedback technology which
estimates disturbances that may be linearly or nonlinearly
related to the predictions of the measured state variables.
IDFTM is a pairing of these measured states with unmeasured
disturbance variables. The disturbance variable is adjusted to
eliminate plant/model mismatch. The IDFTMformulation is
compact enough as to be incorporated simultaneously with
the control problem within a single history interval.

IDFTM is a proportional integral (PI) controller that is inte-
grated with the process model. The PI controller input is the
error between the measured state (ys)and model state (ym).
The output is an unmeasured disturbance variable (d) of the
model. This disturbance variable is adjusted proportionalto
the current and integrated measurement error.

d = K (ys − ym) +
K

τI

T
∫

t=0

(ys − ym) dt (1)

The tuning parameters for IDFTMareK andτI , the same as
a PI controller. Using a large value ofτI and smallK has the
affect of heavily filtering the error term for feedback. In this
case the algorithm will take longer to match the plant. Using
these tuning parameters and knowing the quality and types of
measurements enables trading off of “speed of tracking the

plant” versus “stability concerns”. A unique feature of the
IDFTMapproach is the method of simultaneous disturbance
estimation and prediction, because the model calculated
value is computed simultaneously with the disturbance vari-
able calculation. The current model-predicted value of the
measured state variable is computed by integration from
the last time step from the previous value of the measured
state variable. This means the IDFTMcalculations are auto-
matically decoupled. If the speed at which state variable
disturbances are updated is not limited by the frequency
of the measurements, the decoupled IDFTMapproach may be
tuned more aggressively than traditional feedback methods
that use output disturbances.

IDFTMhas been successfully used for six years to provide
online estimation measurement biases, catalyst activities,
kinetic parameter adjustment factors and heat transfer co-
efficients. However, the IDF limitations are:

1) Past horizon length of one
2) Requirement of equal number of disturbance variables

and measurements
3) Inability to handle disturbance variable constraints

B. Moving Horizon Estimation

The MHE objective function is posed as a minimization of
L1 and L2-norm errors to reconcile the model with measured
values. Similar to IDFTM, the disturbance variables (d) are
the only degrees of freedom to adjust model predictions to
match measurements.

min
d
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s.t. 0 = f(ẋ, x, u, d)
ys = g(x, u, d)
a ≥ h(x, d) ≥ b

(2)

where subscripts refers to sample values, and subscriptm

refers to model values,Φ is the objective function value,
ys is a vector of measurements at all nodes in the orthogo-
nal collocation structure (ys,0,. . . ,ys,n)T , ym is a vector of
model values at the sampling times (ym,0,. . . ,ym,n)T , Qy is
optimally the inverse of the measurement error covariance,
ν is a vector of weights for the absolute errors,f is a vector
of model equation residuals,x represents the model states,
u is the vector of model inputs,d is the vector of model
parameters or unmeasured disturbances,d̂ is the vector of
previous unmeasured disturbances,Qd is a matrix for the
weight on changes of disturbance variables,g is an output
function,h is an inequality constraint function, anda andb

are lower and upper limits, respectively.
Note that the full MHE problem would allow violation of

the state constraints and estimation of the initial states.In
such a formulation, state continuity constraints are relaxed
and violations are penalized in the objective function. The
optimization problem found in Equation 2 does not allow
state transition error because the state equations are exactly
satisfied at a converged solution [15]. State estimation is ac-
complished by adjusting past values of disturbance variables.
This approach greatly reduces the number of optimization



degrees of freedom while converging to a solution that is
consistent with the measurements.

The L1 and L2-norm errors are listed in the objective
function only to display the configuration flexibility. An L1-
norm error model has an advantage of minimizing the effect
of outliers and the ability to create a zero penalty zone around
the model value. For the application shown in this paper, the
L2-norm was chosen to better distribute the movement of the
disturbances. Also, gross error detection reduced the needfor
improved outlier rejection of the L1-norm.

With a long extended prediction horizon of the controller,
it is important to have a reliable future prediction of the
disturbance. For this reason, the disturbance value is held
constant over the MHE horizon. This single disturbance
value is then projected into the future for the control op-
timization. Allowing the disturbance value to vary from
node to node did not produce a reliable future prediction.
Additionally, the penalization for changes in the disturbance
acts to improve the reliability of the predicted disturbance.

The approach taken in this work is simultaneous solution
approach where the objective function and model equations
are solved together. The nonlinear DAE model equations
are converted to algebraic equations through orthogonal
collocation on finite elements. The resulting set of algebraic
equations is solved with the NOVATMsolver.

A drawback to MHE implementation can be summarized
as “industrial inertia” due to concerns related to configuration
and compute time.

III. POLYMERIZATION MODELING

The context of the polymerization modeling discussed
here is for the purpose of using the model in a nonlinear
control application. Additional background is provided in
Young [16] and Wilmarth [17]. The gas phase polymerization
reactor and plant are modeled with the Polymer Dynamic
Modeling System (PDMSTM). The model consists of heat,
mass, and species balances with a kinetic mechanism for
the polymerization reactor. The kinetic model and method
of moments for the polymer properties is based on the work
by Ray [18]. In addition to the fluidized bed reactor model,
the flowsheet includes a compressor, heat exchanger, vent
stream, feed streams, polymer takeoff line for degassing, and
dynamic models of the base regulatory control system.

The steady state model,0 = f(ẋ = 0, x, u, d), has 1927
state variables, 764 fixed model inputs, and 1 complementar-
ity condition to account for the variable condensed phase of
the heat exchanger. For nonlinear MPC, the model is solved
over a time horizon withẋ 6= 0. There are a total of 10
MVs and 26 CVs, including some pass-through CVs (MVs
with CV tuning). The MVs are the feed flows to the reactor,
reactor temperature, and vent to the monomer recovery
unit. The CVs include polymer properties, reactor pressure,
reactor ethylene partial pressure, and process constraints.
The following discussion focuses on feedback formulation
in relation to improving the prediction of the effect of MV
changes on the dynamic and final values for the CVs. A
diagram of the flowsheet model is shown in Figure 1.

Fig. 1. Flowsheet of the polyethylene plant model.

A complete configuration for feedback via IDFTM is imple-
mented within the application as practically IDFTMrepresents
a fall-back layer. There are 27 IDFTMpairs that cou-
ple measured state errors to model disturbance variables.
IDFTMactively manages 19 disturbances, with backup con-
figuration for the 8 MHE disturbances. Note that the number
of IDFTMpairs is larger than the number of CVs. This arises
as some CVs are duplicated as measured states and matched
by adjusting input disturbances, which are tuned less ag-
gressively. Aggressive tuning on output biases is generally
incorporated for CVs explicitly exposed to the controller.
Also, note that the input disturbances are abstractly set within
the model to minimize the model dynamics with respect to
the model measured state. This is done to also allow for more
aggressive tuning of IDFTM.

Due to the choice of MVs, many of the unmeasured input
disturbances are abstract flows to and from the cycle gas
loop to enable matching of composition and pressure. This
includes input disturbance flows for both inert components
and reacting components. The inert compositions are nearly
integrating variables because they are not consumed in the
reaction. Practically, hydrogen composition has some char-
acteristics of these inerts components as it takes significant
time to react away given the concentration in the cycle
gas. The dynamics for inerts and hydrogen described here
are less well-suited for best performance of IDFTM. In
addition, there are some known process phenomena that are
not encapsulated within the originally implemented model.
These phenomena relate to adsorption and desorption within
the polymer bed of heavy hydrocarbon components. Taking
these issues into consideration, one could expect that the
IDFTMfeedback on the relevant input disturbances may lead
to oscillation. As such, 8 of these input disturbances were
defined to be updated by MHE. As such, this simplified
version of MHE is structured to allow a direct comparison
to IDFTM.

For the MHE optimization problem, the DAE model is
converted to an algebraic model through orthogonal col-
location. Figure 2 shows the collocation structure with 6
cubic splines of different time lengths. The derivatives,
ẋ, are approximated by differentiating the splines at the
collocation points. At convergence the equation residualsare



exactly satisfied only at the collocation nodes. The collocated
model has a total of 46,870 variables, 18 complementarity
conditions, and a Jacobian density for non-zero values of
0.01%.

Fig. 2. Orthogonal collocation on finite elements provides an estimate of
the state derivatives at the nodes along the time horizon. The state variables
are continuous whereas the discrete independent variablesare constant over
each cubic spline.

As configured, the MHE optimization problem contributes
an objective function and 8 degrees of freedom for the 8
disturbance variables referenced in Table I. These distur-
bances are configured to move only on the first collocation
point of the first interval in the horizon. Because MHE does
not require one to one pairing of disturbance variables and
measured states, additional measurements may be included in
the objective function without adding disturbance variables.
These measured states are comonomer (comonomer A and/or
comonomer B) to monomer (ethylene) mole ratios in the
reactor. For control of properties, it is more important to
match this ratio rather than the absolute mole fraction of
either. This is reflected in the higher weighting given to these
mole ratios.

TABLE I

IDFTM PAIRING AND TUNING

Measured State Disturbance Variable K τI

(min)
Ethylene mol% Ethylene Feed Bias 3 5

Comonomer A mol% Comonomer A Feed Bias 2 5
Comonomer B mol% Comonomer B Feed Bias 4 5

Condensing Condensing Agent 0.25 5
Agent mol% Feed Bias

Hydrogen mol% Hydrogen Feed Bias 1 5
Pressure Vent Flow Bias 50 5

Production Rate Catalyst Activity 0.0001 10
Cooler Temp Heat Bias 0.5 10

The L1-norm objective function is more tolerant of out-
liers, but for this application the measured states of inter-
est are filtered with gross error detection. In addition, the
problem can be configured such that if a bad measurement
is detected, the primary associated disturbance is no longer
a degree of freedom. For this MHE problem, there is
significant interaction between selected input disturbances
and measured states. As a consequence, the L2-norm for
the measurement error was chosen as the objective function
in order to smear the movement of the input disturbances.

The tuning parameters were set through the following
strategy. First, the relative importance of the measured states
was defined and weights set such that the reference weight
was 1. All tuning matrices are diagonal in this application.

Weights on the measured states were increased across the
board, for selected intervals of the horizon. This weighting
reflected the desire to have current states match the currently
measured values more closely. Then, typical steady state
gains from the model were used to determine initial values
for the regularization weights (input weights) on movement
of disturbances with the intention of restricting moves com-
pared to no weight. The predictions were monitored each day
and the regularization weights adjusted. A half/double rule
was used to change the regularization weights and influence
the relative movement of the disturbances. After 3 days of
online tuning, performance would be judged optimal for the
selected horizon. Horizons of 30, 50, and 70 minutes were
evaluated and a horizon of 50 minutes was selected. For
the 30 minute horizon, there was judged to be unnecessary
movement of the disturbances. The tuning parameters or
weights on the squared measurement errors and disturbance
regularization weights are shown in Table II.

TABLE II

MHE TUNING

Measured State Weight
Rx Ethylene mol% 1.0

Rx Comonomer A mol% 0.1
Rx Comonomer B mol% 0.1

Rx Condensing Agent mol% 1.0
Rx Hydrogen mol% 0.1

Rx Pressure 4.0
Production Rate 1.0

Cooler Temp 1.0
Rx ComA/C2 Mole Ratio 4.0
Rx ComB/C2 Mole Ratio 4.0

Input Disturbance Weight
Ethylene Feed Bias 1

200

Comonomer A Feed Bias 1

15

Condensing Agent Feed Bias 1

7

Comonomer B Feed Bias 1

15

Hydrogen Feed Bias 1

40

Catalyst Activity 1

3

Heat Loss Bias 1

50

Vent Bias 1

10000

The MHE problem typically solves in 2-3 iterations and
in under 30 seconds of CPU time on a 3.4 GHz PC
computer. Once converged, the estimate of the current states
and disturbance variables are transferred as initial condi-
tions for the control optimization. In the event that MHE
does not converge or converges with an infeasible solution,
IDFTMautomatically initiates.

IV. RESULTS

The results shown in this paper are from testing performed
on an industrial gas phase polymerization plant with on-
line process measurements, occasionally corrupt or missing
data, and polymer grade and production rate transitions. The
process model is run real-time in parallel to the plant, but
no optimal control results are transferred to the process
(open loop control during model validation prior to controller
commissioning). The comparison is between the two modes



of feedback noted in Section III with one mode exclusive
of MHE and the other mode with IDFTMand MHE. The
IDFTMand MHE results are shown for pressure (Figures 3
and 4) and reactor condensing agent mole fraction (Figures
5 and 6). All results are normalized to the average measured
values for the IDFTMperiod. Both IDFTMand MHE periods
are shown for 2 days of plant testing, with different time
periods for each. A better comparison would be against
the same plant data, but performance indicators can still be
compared with these results.
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Fig. 3. IDFTM for reactor pressure.
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Fig. 4. MHE for reactor pressure.

Two performance indicators for the feedback techniques
are:

1) Normalized variance of the model error
2) Variance of the disturbance variable

As a generalization, each indicator is a separate quantitative
measure of the feedback effectiveness. Indicator #1 displays
the estimator’s ability to track the process (see Table III).
Indicator #2 displays the ability to track the process without
aggressive movement of the disturbance variables (see Table
IV). The feedback can be tuned aggressively to improve
indicator #1. However, aggressive feedback will increase
indicator #2 and lead to poor future predictions in the subse-
quent control problem. Indicator #1 and #2 are performance
measures for state and disturbance tracking, respectively.

TABLE III

NORMALIZED STANDARD DEVIATION OF MODEL ERROR FOR THEDATA

SHOWN IN FIGURES3 TO 6

IDFTM MHE MHE Improvement
Production Rate 0.0275 0.0113 143%

Pressure 0.0083 0.0019 332%
Ethylene mol% 0.0059 0.0029 108%
Hydrogen mol% 0.1034 0.0026 3909%

Condensing Agent mol% 0.0489 0.0014 3288%

TABLE IV

DISTURBANCEVARIANCE FOR THEDATA PERIOD IN FIGURES3 TO 6

Disturbance Variable IDFTM MHE MHE Improvement
Catalyst Activity 0.08 0.14 -43%

Vent Bias 278.53 168.24 66%
Ethylene Feed Bias 5.28 4.47 18%
Hydrogen Feed Bias 2.36 0.52 354%

Condensing Agent Feed Bias 2.63 0.41 537%

The performance indicators for MHE are better than for
IDFTMwith the exception of indicator #2 for catalyst activity.
It is speculated that this is due to the production rate
increase that occurred during MHE testing, but not during
IDF testing. During this time, there was an unmodeled shift
in the production rate that was adjusted by catalyst activity.

The improvements evident for the condensing agent and
hydrogen are consistent with the discussion in Section III.
The condensing agent is an inert that allows increases in
production rate by removing the cooling capacity bottleneck.
The nearly integrating behavior of the condensing agent mole
fraction can be observed in Figure 6. The condensing agent is
added to increase the scaled mole fraction from 0.23 to 0.48.
Over the course of the next day, the mole fraction decreases
to 0.25 as the condensing agent gradually leaves the system.
Although not inert, the hydrogen mole fraction also behaves
like an integrating variable because the consumption reaction
and losses are low compared to the quantity in the cycle
gas. The improved estimation of these two states suggests
that MHE is particularly suited for disturbance variables that
have integrating effect on the measured state.

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

N
or

m
. C

on
de

ns
in

g 
A

ge
nt

 (
m

ol
%

)

Measured
Model (IDF)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

F
ee

d 
B

ia
s

Time (days)

Disturbance

Fig. 5. IDFTM for reactor condensing agent mole fraction.
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Fig. 6. MHE for reactor condensing agent mole fraction.

V. CONCLUSIONS

For the selected MVs for this control problem, MHE facili-
tates improved state estimation compared to IDFTMonly. This
assessment is based on reduced variability of model error and
generally reduced movement of disturbance variables. In fact,
the project team associated the use of MHE with enabling
the use of feed flows as MVs for this control problem.
This benefit was gained by improving the model predictions
without improving the modeling of the dynamic adsorption
and desorption phenomena.

MHE outperforms the current industrial practice of output
or integrated bias feedback. This conclusion is based on
a comparison with IDFTM, which is a more capable and
generalized form of input and output disturbance adjustment.
However, MHE is not always the best choice for feedback
just as MPC is not always better than PID control. For
situations where the underlying dynamic model is sufficiently
accurate, IDFTM is comparable to MHE for state estimation.
MHE may require additional configuration/setup time and/or
the controller scan time with MHE may need to be extended
to account for the additional computation time. Where these
issues are of relevance, IDFTMshould be considered.

Besides better tracking of the process with less variability
in prediction error, a major driving force for MHE applica-
tion is the use of less sophisticated models for predictive
analysis (in this case, nonlinear MPC). MHE enables a
simpler model to be used with an improved selection of
MVs and additional CVs for an improved control application.
Marquardt stated that the major bottleneck to successful
nonlinear MPC is the lack of reliable first-principles or
hybrid models [19]. With MHE this bottleneck is reduced
by allowing simpler models to be used in more advanced
applications.

This paper is one of the few publications focusing on state
estimation, particularly MHE, for application of nonlinear
MPC in an industrial setting. Future focus will center on
more efficient computation of the MHE step and wider use of
MHE to facilitate simpler but rigorous chemical engineering
models within nonlinear control applications.
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