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BYU Advanced Control and Optimization

 BYU PRISM Group Overview
 Dynamic Optimization for:

 Advance Control for Oil Drilling Operations
 Unmanned Aerial Vehicles
 Systems Biology
 Solid Oxide Fuel Cells
 Energy Storage and the Smart Grid
 Energy Systems Planning Under Uncertainty

 Needs and resources for dynamic 
optimization
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District Energy System
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Planning for a CHP system
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CHP Capacity Planning Challenges

 Institutions and businesses invest in CHP 
systems to reduce energy costs.

 When to invest and capacity of CHP?

Utah State University (2004)
• Designed to cover 

electrical and thermal base 
load

• When natural gas prices 
are high, plant does not 
economically operate as 
designed and must 
operated as a peak shaver

University of  Utah (2008)
• Strong financial analysis 

should consider that 
electricity and natural gas 
prices are variable

• Consider sizing of system 
to meet all electrical or 
thermal load

• Consider room for growth

Source: DOE Clean Energy Application Center



apm.byu.edu/prism Brigham Young UniversityOct 9, 2013

Uncertain Energy Prices

Source: EIA.gov
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Energy Load Profiles for Campus
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Traditional Approach

 Create Model: 
 Electric and Heating Demand Model (winter and summer)
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Traditional Model Formulation
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Traditional Results

LP or NLP formulation, optimizing through 
discrete scenarios. Lacks system dynamics.   
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Energy Load Profiles for Campus
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Model Predictive Control (MPC)
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Problem Formulation Overview

 Standard Problem Formulation

 Objective Function (f(x))
 Dynamic model equations that relate trajectory 

constraints, sensor dynamics, and discrete decisions
 Uncertain model inputs as unmodeled or stochastic 

elements
 Solve large-scale NLP or MINLP problems (100,000+ 

variables)

max 		݂ሺݔሻ

subject	to ݃
ݔ߲
ݐ߲ , ,ݔ ,ݑ ݌ ൌ 0

h	 ,ݔ ,ݑ ݌ ൑ 0



apm.byu.edu/prism Brigham Young UniversityOct 9, 2013

Dynamic Nonlinear DAE Problem
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Nonlinear Objective function

Turbine and boiler dynamics

Nonlinear demand and operating constraints
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MPC Framework

Hedengren, J.D. and Asgharzadeh, R .Implementation Details for Nonlinear Modeling, Data Reconciliation, and Dynamic Optimization
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Dynamic Optimization Results
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Dynamic Optimization Results
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Utilization of Capacity
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Optimize to a Target Range
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Optimal sequence of moves given 
uncertainty in the parameters

Distribution of 
Controlled Variables



apm.byu.edu/prism Brigham Young UniversityOct 9, 2013

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

M
an

ip
ul

at
ed

 

 
uopt

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

C
on

tro
lle

d

 

 
xopt

Optimize to a Limit

Conservative movement based on 
worst case CV

Upper Limit
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MPC 
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Effects on CHP Capacity Planning
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APMonitor.com

APMonitor Optimization Suite
The APMonitor Modeling Language is optimization software for 
mixed-integer and differential algebraic equations. It is coupled 
with large-scale solvers for linear, quadratic, nonlinear, and 
mixed integer programming (LP, QP, NLP, MILP, MINLP). 
Modes of operation include data reconciliation, real-time 
optimization, dynamic simulation, and nonlinear predictive 
control. It is available through MATLAB, Python, or from a web 
browser interface.
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Future Development
 Simultaneous Optimization of cases to account for

uncertainty in natural gas and electricity prices.
 Effects of selling power to the grid.
 MINLP formulation for more realistic capacity

optimization.
 Simulate a true control problem with disturbance

variables (variable costs) to simulate uncertainty. 


