A Model Predictive Control Approach for Long Term Planning of Capacity Investments in a District Heating System



Jose L. Mojica Michelle Chen Damon Petersen Dr. John D. Hedengren Department of Chemical Engineering Brigham Young University

> Dr. Kody Powell University of Texas at Austin

# **BYU Advanced Control and Optimization**

- » BYU PRISM Group Overview
- > Dynamic Optimization for:
  - > Advance Control for Oil Drilling Operations
  - > Unmanned Aerial Vehicles
  - Systems Biology
  - Solid Oxide Fuel Cells
  - Energy Storage and the Smart Grid
  - Energy Systems Planning Under Uncertainty
- Needs and resources for dynamic optimization

## **District Energy System**





apm.byu.edu/prism

### Planning for a CHP system



### CHP Capacity Planning Challenges

- Institutions and businesses invest in CHP systems to reduce energy costs.
- > When to invest and capacity of CHP?

#### Utah State University (2004)

- Designed to cover electrical and thermal base load
- When natural gas prices are high, plant does not economically operate as designed and must operated as a peak shaver

#### University of Utah (2008)

- Strong financial analysis should consider that electricity and natural gas prices are variable
- Consider sizing of system to meet all electrical or thermal load
- Consider room for growth

Source: DOE Clean Energy Application Center

# **Uncertain Energy Prices**



Source: EIA.gov

apm.byu.edu/prism

### **Energy Load Profiles for Campus**



apm.byu.edu/prism

## **Traditional Approach**

- Create Model:
- > Electric and Heating Demand Model (winter and summer)



#### **Traditional Model Formulation**

#### Minimize :

$$\sum_{p} cc_p(e_p + x_p) + \sum_{k} \sum_{s} ic_{k,s} \cdot z_{k,s} + \sum_{k} \sum_{s} \sum_{i} du_{k,s,i}(\sum_{p} oc_p \cdot y_{p,k,s})$$

Subject to :

$$\begin{split} e_p + x_p &\geq \sum_k \sum_s y_{p,k,s} \quad for \ all \ p \\ r_{k,s,electric} &= z_{k,s} + du_{k,s,electric} (\sum_p y_{chp,k,s}) \quad for \ all \ k, s \\ r_{k,s,thermal} &\leq du_{k,s,electric} (\sum_p y_{boiler,k,s} + y_{chp,k,s} \cdot f_{hrg}) \quad for \ all \ k, s \\ x_p &\geq 0 \\ y_{p,k,s} &\geq 0 \\ z_{k,s} &\geq 0 \end{split}$$

### **Traditional Results**

|        | CapacityAllocationPlan<br>[MW] |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
|--------|--------------------------------|---------|----------|-------------------|--------|---------|----------|---------|----------|---------|----------|----------|--------|---------|----------|------------|--------|---------|----------|------------|----------|---------|----------|------------|--------|---------|------------|---------|--|
|        |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          | sum        | mer    |         |          |            |          |         |          |            |        |         |            |         |  |
|        | c1                             |         |          |                   | c2     |         |          |         | c3       |         |          |          | c4     |         |          |            |        | c5      |          |            |          | c6      |          |            |        | c7      |            |         |  |
| L      | Plan I                         | Plan II | Plan III | Plan IV           | Plan I | Plan II | Plan III | Plan IV | Plan I   | Plan II | Plan III | Plan IV  | Plan I | Plan II | Plan III | Plan IV    | Plan I | Plan II | Plan III | Plan IV    | Plan I   | Plan II | Plan III | Plan IV    | Plan I | Plan II | Plan III F | lan IV  |  |
| boiler |                                |         |          | 1.1.1.1.1.1.1.1.1 |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| base   |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| peak   |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| chp    |                                |         |          |                   | -      |         |          | -       |          |         |          |          |        |         |          | 122        |        |         |          |            |          |         |          |            |        |         |            |         |  |
| base   | 15.0                           | 15.0    | 15.0     | 18.0              | 15.0   | 15.1    | 15.8     | 18.0    | 15.0     | 15.3    | 16.5     | 18.0     | 15.0   | 15.5    | 17.4     | 18.0       | 15.0   | 15.6    | 18.2     | 18.0       | 15.0     | 15.8    | 19.1     | 18.0       | 15.0   | 15.9    | 20.0       | 18.0    |  |
| peak   | 2.0                            | 2.6     | 2.6      | 2.0               | 2.0    | 2.7     | 2.8      | 2.0     | 2.0      | 2.7     | 2.9      | 2.0      | 2.0    | 2.5     | 2.6      | 2.0        | 2.0    | 2.4     | 1.8      | 2.0        | 2.0      | 2.3     | 0.9      | 2.0        | 2.0    | 2.1     |            | 2.0     |  |
|        |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
|        |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
|        | CapimportedPlanMW              |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| I MWI  |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
|        | c1                             |         |          |                   | c2     |         |          | 1       | c3       |         |          |          | c4     |         |          |            | c5     |         |          | c6         |          |         |          | c7         |        |         |            |         |  |
|        | Plan                           | I Plan  | I Plan I | III Plan f        | V Plan | I Plan  | I Plan I | Plan N  | / Plan I | Plan    | I Plan I | I Plan N | Plan   | I Plan  | II Plan  | III Plan M | V Plan | I Plan  | II Plan  | III Plan M | V Plan I | Plan    | II Plan  | III Plan M | V Plan | Plan II | Plan III   | Plan IV |  |
| base   |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| summe  | r                              |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         | 0.10       |         |  |
| winter |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| peak   |                                |         |          |                   |        |         |          |         |          |         |          |          |        |         |          |            |        |         |          |            |          |         |          |            |        |         |            |         |  |
| summe  | r 3.0                          | 0 2.3   | 5 2.3    | 5 4.0             | 0 3.0  | 2.3     | 8 2.47   | 4.00    | 3.00     | 2.4     | 0 2.5    | 9 4.00   | 3.0    | 0 2.6   | 0 3.1    | 5 4.0      | 0 3.0  | 0 2.8   | 0 4.3    | 4.0        | 0 3.00   | 3.0     | 0 5.5    | 4.0        | 0 3.00 | 3.20    | 6.70       | 4.00    |  |
| winter | 1.5                            | 3 1.5   | 3 1.5    | 3 1.5             | 3 1.5  | 53 1.5  | 4 1.61   | 1.53    | 3 1.53   | 1.5     | 6 1.65   | 9 1.53   | 1.5    | 3 1.5   | 8 1.7    | 7 1.5      | 3 1.5  | 3 1.6   | 0 1.8    | 38 1.5     | 3 1.53   | 1.6     | 2 2.9    | 7 1.5      | 3 1.5  | 3 1.62  | 4.12       | 1.53    |  |



LP or NLP formulation, optimizing through discrete scenarios. Lacks system dynamics.



Oct 9, 2013

apm.byu.edu/prism

### **Energy Load Profiles for Campus**



apm.byu.edu/prism

#### Model Predictive Control (MPC)



apm.byu.edu/prism

# **Problem Formulation Overview**

Standard Problem Formulation

 $\max f(x)$ subject to  $g\left(\frac{\partial x}{\partial t}, x, u, p\right) = 0$ h  $(x, u, p) \le 0$ 

- > Objective Function (f(x))
- Dynamic model equations that relate trajectory constraints, sensor dynamics, and discrete decisions
- Uncertain model inputs as unmodeled or stochastic elements
- Solve large-scale NLP or MINLP problems (100,000+ variables)

#### Dynamic Nonlinear DAE Problem

Nonlinear Objective function

$$\min J(x, y, u) = (Cost_{capital} + Cost_{operating} + Cost_{environmental})$$
  
s.t.  $0 = f\left(\frac{\partial x}{\partial t}, x, y, u\right)$   
 $0 = g(x, y, u)$   
 $0 < h(x, y, u)$   
 $x, y \in \Re^{n} \ u \in \Re^{m}$   
Turbine and boiler dynamics  
Nonlinear demand and operating constraints

#### **MPC Framework**

#### Control $\ell_1$ -norm Objective

$$\min_{d} \Phi = w_{hi}^{T} (e_{hi}) + w_{lo}^{T} (e_{lo}) \dots$$
$$\dots + (y_{m})^{T} c_{y} + (u)^{T} c_{u} + (\Delta u)^{T} c_{\Delta u}$$
s.t. 
$$0 = f(\dot{x}, x, u, p, d)$$
$$0 = g(y_{x}, x, u, d)$$
$$a \ge h(x, u, d) \ge b$$
$$\tau_{c} \frac{\partial y_{t,hi}}{\partial t} + y_{t,hi} = sp_{hi}$$
$$\tau_{c} \frac{\partial y_{t,lo}}{\partial t} + y_{t,lo} = sp_{lo}$$
$$e_{hi} \ge (y_{m} - y_{t,hi})$$
$$e_{lo} \ge (y_{t,lo} - y_{m})$$

Hedengren, J.D. and Asgharzadeh, R .Implementation Details for Nonlinear Modeling, Data Reconciliation, and Dynamic Optimization

### **Dynamic Optimization Results**



# **Dynamic Optimization Results**



### Utilization of Capacity



#### **Optimize to a Target Range**



### **Optimize to a Limit**



Oct 9, 2013

apm.byu.edu/prism

### MPC



### Effects on CHP Capacity Planning



### **APMonitor.com**

#### **APMonitor Optimization Suite**

The APMonitor Modeling Language is optimization software for mixed-integer and differential algebraic equations. It is coupled with large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, MINLP). Modes of operation include data reconciliation, real-time optimization, dynamic simulation, and nonlinear predictive control. It is available through MATLAB, Python, or from a web browser interface.

#### Future Development

- Simultaneous Optimization of cases to account for uncertainty in natural gas and electricity prices.
- > Effects of selling power to the grid.
- MINLP formulation for more realistic capacity optimization.
- Simulate a true control problem with disturbance variables (variable costs) to simulate uncertainty.