

Optimized Infrastructure Monitoring **3D Modeling in Complex Environments** 8 February 2017

John Hedengren and Kevin Franke Trent Okeson, Benjamin Barrett, Landen Blackburn Brigham Young University

Project Overview

Optimized Infrastructure Monitoring

Since 2013...

- Maximize model resolution
- Evaluate workflow impacts
- Optimize flight path
- Collect field data
- Simulate anomaly detection
- Model long linear infrastructure

Present...

Model complex environments

Italy Earthquake Modeling

Link to Italy Model: http://prismweb.groups.et.byu.net/PL/App/#%2F/

Intelligent Multiscale Targeted Monitoring

debris blocking road *medium* interest area

C-UAS

failed retaining wall *high interest* area

BYU PRISM

OPTIMIZE CONTROL

intermediate foliage *low interest* area damaged houses with unknown structural integrity *high interest area*

Optimized Flight Planning Validation

Simulated Flights - 2015

Grid Flight

Accuracy: 10 cm

Physical Flights - 2016

Grid Flight

Accuracy: 14 cm

C-UA

Optimized Flight

Accuracy: 3.8 cm

+62%

Optimized Flight

Accuracy: 8.4 cm

+40%

Close Up Flights

- Initially created holes
 - Bad input elevation data effects multiplied by close flights
 - Minor problems with algorithm view angles
- Solutions
 - Add a dome to the initial elevation data
 - View angles fixed

North Salt Lake Landslide

- Largest optimized flight yet!
 - 600x400 ft
- Fixed hole problem
- Initial elevation model pre-dated landslide
 - Mitigated with an added mound on the initial model to add dimension
- Future Work:

C-UAS

- Change detection
- Iterative model refinement study

BYU PRISM

St. Louis Levee

- Large and small UAVs
- Heavy lift platform and DSLR camera (piloted)
- Optimized path (fully automated)

Future Work: Change Detection Study

- Intelligent multiscale targeted monitoring
- Repeated flights over 4-6 months
- Field validate with precise ground surveys
- Evaluate use of longer term static ground control
 - <u>Simplifies</u> repeated inspections

1.3 mile landslide in Sanpete, UT

Indoor Flights

•Millions of miles of pipeline and other enclosed long linear infrastructure

C-UA

 No current method for navigating a UAV autonomously through an enclosed linear environment

Proof of Concept

Arducopter Software-in-the-loop Simulator:

Combined Photogrammetry & LiDAR

- Optimization done in Summer 2016
- •Lab scale equipment
 - Flow controller
 - Pumps and meters
 - Pipes and tanks
- Varied surfaces
 - Shiny metallic surfaces
 - PVC Piping

C-UAS

Complex Structure from Motion

Online 3D Model Gallery

Home 2016 Central Italy Earthquakes

BYU PRISM 3D Model Gallery

2016 Central Italy Earthquakes

St Louis Levee

2016 Japan Earthquake

https://goo.gl/DrMsK9

Going Forward

- •Complete thorough change detection field study
- •Intelligent multiscale targeted monitoring
- •Continue indoor long linear inspection work moving to 2D
 - Physical 1D test flight
- •Simulated iterative model refinement study

QUESTIONS?!

Measurable 3D Models on Your Smartphone

•Task: Calculate the volume of the boulder

/ 2016 Central Italy Earthquake

Pescara de

2016 Central Italy Earthquakes

Surveyed following August and October 2016 Earthquakes

8.5m x 6m x 3.5m = *180m*³

Hole Detection

11 m

90 m

3 inch diameter holes

C-UAS

Advantages of Flying Closer

- Small objects visible at closer range
- Increased model knowledge ensures no spot will be missed
- Maximize coverage for 2D change detection
- Smaller (safer and cheaper) UAV's
 - Example: Japan Earthquake model
- Can see beneath objects

Test Case

- Lab scale equipment
 - Flow controller
 - Pumps and meters
 - Pipes and tanks
- Varied surfaces
 - Shiny metallic surfaces
 - PVC Piping

C-UAS

Initial Results

Complex Structure from Motion

General vs Modeled

- Two methods of optimization
- Unknown system/anomaly
 - Bubble method

•Known system/anomaly

 New method with blocked cameras

Application Study 1

- Steinaker Dam Vernal, UT
- Already have a good model

-Want to match with a smaller system and camera

- Change detection application
 - Flown 2 years ago
- Verification of optimized flight paths

Application Study 2

- Highline Canal Payson, UT
- Long linear application
- Some obstructions
 - Pipes
 - Bridges
 - Trees
- Modeling of detected anomalies

Application Study 3

- Most Complicated System

 Significant amounts of blocking
 - Significant amounts of blocking
- Pictures within the key targets
- Added difficulty from reflections
- Depth of view problems
- Explore alternate methods
 - 2D change detection
 - Object recognition

Workflow

Workflow (part 2)

Initial Conclusions

- Feasible picture locations successfully determined and optimized
- Optimized waypoints reduced pictures by 50% while improving coverage
- Model knowledge increased coverage by _____
- Lidar significantly more accurate for model creation
- Focus issues magnified when in close proximity

