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Parameter Estimation for Towed Cable Systems

Using Moving Horizon Estimation
Abstract

This paper presents a strategy for optimal estimation of parameters for towed cable systems using moving horizon

estimation (MHE). The main contributions of the work include a novel formulation of MHE using a dead-band that

explicitly rejects measurement noise, real-time implementation results, and the investigation of time varying stochastic

disturbances as well as unknown yet constant disturbances. Further analysis is conducted on the observability and

sensitivity of key parameters to determine which parameters can be estimated by the proposed approach using real-

time streaming data from experiments. In addition to the real-time results, an offline multi-objective optimization is

conducted to reveal the tradeoff between the computational burden and estimation variation. A Pareto frontier is used

to demonstrate a series of optimal experimental configurations obtained by adjusting the model complexity (number

of cable links and horizon steps). Finally, a multivariate parameter estimation is performed to explore the applicability

of the proposed approach in simultaneously estimating multiple parameters.

Index Terms

Unmanned Aerial Vehicle (UAV), Parameter estimation, towed cable system, moving horizon estimation, aerial

recovery, multi-objective optimization.

I. INTRODUCTION

The ability of a cable to transmit forces and electrical signals over great distances allows users to extend their

influence to the remote region inaccessible to humans. In the past decades, towed cable systems have been studied

in various applications. Such applications include payload delivery and pickup [1–3], kites [4], aerostats [5], towing

bodies [6, 7], terrain following [8] and aerial refueling systems [9]. A typical towed cable system, as depicted

in Figure 1, includes three components: a towing vehicle, a cable (string or tether) and a towed body (drogue).

Depending on the working environment, the towing vehicle is typically an aircraft or a vessel, and the cable is

typically a long, thin, and relatively light-weight material connecting the towing vehicle and the towed body, which

is a device with large drag relative to the cable and a small dimension and weight relative to the towing vehicle.

Previous studies of towed cable systems can be classified into topics like stability and equilibrium analysis [1, 5,

10–12], mathematical modeling [5, 11, 13], model validation [14–16], and control strategy development [2, 7, 8, 17].

The work related to the aerial recovery project in which a towed cable system was used to retrieve Miniature Air

Vehicles (MAVs) can be found in [16, 18–23]. The basic concept of the aerial recovery mission is described in

Figure 1, where the towing vehicle (mothership) is commanded to follow a circular path that results in an orbit of

the towed body (drogue) with smaller radius and lower speed relative to the mothership. The MAV is regulated to

follow the drogue orbit and to approach the drogue with a relatively low airspeed. After the MAV is captured by

the drogue, the mothership retrieves the towed cable and drogue/MAV to complete the aerial recovery. Previous

June 6, 2014 DRAFT



2

Fig. 1. The baseline concept of aerial recovery using a towed cable system.

studies for the aerial recovery system include mathematical modeling approaches using discrete models [18, 21],

motion planning and control strategies [19, 20, 22, 23], and the experimental validation of both the mathematical

model [16] and control strategies [22, 23] using flight tests.

In our previous work, the sensitivity of several parameters like the applied cable length, the aerodynamic drag

coefficient of the drogue, and the drogue mass were studied [16]. In simulation after the flight test, the towing

vehicle was forced to follow the actual mothership trajectory of the flight test. Several key parameters such as

the number of cable links used in the model and the aerodynamic drag and lift coefficients of the towed body

were manually tuned to match the simulation to the flight test results. Tuning parameters in this complex model is

computationally demanding and requires specialized techniques to fully use the dynamic data. In the literature, the

parameters used to simulate towed cable systems are typically determined by trial and error to find an acceptable

match to experimental data [14–16, 24, 25]. Research focused on optimal parameter estimation for towed cable

systems cannot be found, particularly for real-time applications. This paper aims to fill this gap.

The central problem in modeling towed cable systems is how the cable is treated. Methods of cable modeling can

be classified into two categories: continuous methods [1, 10, 11, 25, 26] and discrete methods [12, 14, 18, 27–29].

The choice between the two categories depends on different aspects including solution accuracy, computation time,

method of formulation, and personal preference [15]. This paper uses the finite element approach to represent the

dynamics of the cable, which is considered as a series of N <∞ elastic straight-line segments with lumped masses

at the joints. Moreover, the applied forces exerted on the cable and drogue are also calculated to estimate system

dynamics.

In the literature, Lagrange’s method [4, 30], Kane’s equations [15, 31], Gauss’s Principle [18, 21], and Newton’s

second law [19, 20] have been applied to establish the equations of motion for towed cable systems. Lagrange’s

and Kane’s approaches require explicit description of internal and external forces and do not express the system

dynamics in a concise way for a large number of cable links. Methods based on Gauss’s Principle are suitable

for inelastic cables, which may be inappropriate for the cable (e.g. a fishing line) used in the current experiment.

Newton’s second law, as a fundamental tool to formulate equations of motion for dynamical systems, is applied in
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this paper to derive equations of motion for the towed cable system with a flexible and elastic cable.

Given a mathematical model and associated experimental data, an approach is needed to align the two by

adjusting certain parameters in the mathematical model. In this paper, moving horizon estimation (MHE) is used

to obtain optimal estimates for parameters of interest. MHE uses a receding window of prior measurements to

adjust parameters and model predictions over a past time horizon. In addition, MHE allows nonlinear models and

variable constraints and differs from the Kalman filter (linear models, unconstrained), the Extended Kalman filter

(nonlinear models, unconstrained), the Unscented Kalman filter (nonlinear models, particle based method), or other

types of estimation methods. Moreover, MHE outperforms the Extended Kalman Filter (EKF) when there are active

constraints [32]. Recent advances in algorithms and computational hardware also improve the application of MHE

to large-scale industrial systems [33]. Thus, MHE gives a more accurate description of the current state of the

process and unmeasured disturbances [34]. An unbiased estimate (offset free) is guaranteed by adding as many

input or output disturbance variables as the number of measurements [35–37].

Although MHE allows the use of nonlinear models, some simplifications such as linearized models allow faster

convergence, especially where cycle time is a concern for real-time estimation of parameters [38]. MHE has been

applied to improve the position and wind disturbance estimation for real-time flight navigation [39]. Simulation

studies have shown the application of other nonlinear estimation methods such as particle filtering [40, 41], UKF [42]

and EKF [43], but only in simulation. The development in this paper allows MHE to be communicated to flight

control systems that are on-board a UAV. There is persistent communication from the UAV to a ground station where

MHE is performed and the subsequent control algorithm can transmit new directives to the UAV. This ground based

computing allows for more sophisticated algorithms that utilize significant computational resources for real-time

flight control but would be a limitation if UAV communication is unavailable. The real-time results in this study

required 0.1 s of clock time for each cycle of the controller. However, the cycle time was set to 1 s to allow for data

communication requirements to the ground station and update rates on the mothership and drogue GPS devices.

Embedding the algorithms in an on-board computing platform would eliminate the communication overhead but

require heavier computing infrastructure on the aircraft. The optimization of this trade-off has not been adequately

addressed and will be the subject of future studies.

The complex nonlinear dynamics and physical constraints of towed cable systems make it impractical to use

traditional methods such as the Kalman Filter. By virtue of efficient numerical solvers, MHE is able to estimate

the relevant parameters in real-time, despite using an iterative computational approach. In the literature, work has

not been found that uses rigorous, nonlinear models to update a physics-based description of coordinated aircraft in

real-time. This paper presents several innovations such as parameter estimates of towed cable systems given real-

time measurements. These measurements are reconciled to the system constraints and nonlinear models by adjusting

certain parameters. The objective of this paper is to perform real-time parameter estimation, while limited flight

trials only provide results for the estimation of the applied cable length. However, the feasibility of applying the

proposed approach in real-time applications is well tested. To further investigate the effectiveness of the proposed

approach, subsequent comprehensive off-line estimation is conducted in simulation and the results are presented in
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this paper.

For most estimation methods, optimal estimates are obtained by using objective functions based on squared-error

or `2-norm formulations (e.g. Kalman filtering). To improve the accuracy and the computational efficiency of the

estimation algorithm, this paper uses nonlinear dynamic equations of the system and a novel form of the objective

function to formulate the MHE problem. This form takes advantage of a dead-band around current measurements

in order to reject measurement noises with an `1-norm function for model values that are outside of the dead-band.

The additional linear set of error models can be solved by efficient numerical strategies. Continuously differentiable

equations of motion are also compatible with many Nonlinear Programming (NLP) solvers.

This work is a counterpart to another paper [22] that describes an optimal trajectory generation strategy for towed

cable systems, where a nonlinear model predictive control (MPC) technique is used, based on updated parameters,

to obtain optimal trajectories for the towing vehicle to place the towed body onto a desired orbit in the presence

of operational constraints and constant disturbances such as cross-wind. This paper details a real-time method of

obtaining parameter estimates that are fed into the model for the subsequent trajectory generation using MPC.

The remainder of this paper is structured as follows. In Section II, a mathematical model for a cable-drogue

system is established using Newton’s second law. Section III introduces the formulation of MHE used to achieve

optimal solutions for specified parameters of the system. Section IV shows the hardware platform of the flight test

and real-time estimation results. Section V presents single-parameter and multivariate estimation results in off-line

simulations for key parameters like the aerodynamic drag coefficient of the drogue, the Young’s modulus, and the

unmeasured wind component in the vertical direction.

II. MATHEMATICAL MODEL

The cable used in experiments is a Nylon fishing line, which stretches and contracts during the flight. In this

paper, the elastic cable is modeled as a finite number of N−link springs where the mass of each link is lumped

at the associated joint. Figure 2 depicts the towed cable system in the simulation, where the mothership (pm) is

modeled as a point mass, the cable is modeled as a finite number of point mass nodes (p1 to pN ) connected by

springs, and the drogue (pN ) is modeled as the last joint of the cable. Even though the equations of motion of

the cable-drogue system given in this section are similar to those in [20] and the equations of applied forces are

similar to those in [12], they are repeated here for completeness.

A. Equations of motion of the cable-drogue system

In this paper, cable-drogue dynamics are expressed in the inertial North-East-Down (NED) coordinate frame. The

cable is discretized into N rigid springs with masses lumped at each joint. According to Newton’s second law, the

acceleration of the jth, j = 1, 2, · · · , N, joint aj ∈ R3 is given by

aj =
Fj

mj
, (1)

where Fj ∈ R3 represents applied forces exerted on the jth joint, and mj is the mass of the jth link.
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Fig. 2. The mothership-cable-drogue system in the simulation.

In this paper, the last cable joint and the drogue are combined together as a single mass point and the mass of

the last cable link is lumped with the drogue. Assuming that the mass of the cable mc is uniformly distributed,

lumped masses of cable joints become

mj =
mc

N
, j = 1, 2, · · · , N − 1, (2a)

mN =
mc

N
+mdr, (2b)

where mdr is the mass of the drogue.

Letting pj ∈ R3, j = 1, 2, · · · , N, be the position of the jth joint in the NED frame (drogue as the last joint),

wc ∈ R3 be the estimated wind speed, vj be the velocity vector of the jth cable joint relative to the wind frame,

the equations of motion of the cable-drogue system can be written as

ṗj = vj + wc, (3)

p̈j = v̇j = aj . (4)

It should be noted that in this paper, the wind is modeled as a combination of two components: an estimated portion

(wc) treated as a time-varying parameter and an unmeasured gust. The wind estimation algorithm is assumed to be

sufficiently accurate to measure the dominant component of the instantaneous wind speed. The wind gust is treated

as an unmeasured disturbance which is much smaller than wc.

B. Applied forces

Assuming that applied forces on the jth joint Fj include the gravity Gj ∈ R3, aerodynamic forces Faero
j ∈ R3,

and the cable tension Ft
j ∈ R3, then

Fj = Gj + Faero
j + Ft

j . (5)
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Letting e3 , (0, 0, 1)T be the unit vector in the down direction in NED coordinates, and gc be the gravitational

force exerted on a unit mass at Earth sea level, the gravity force exerted on the jth joint is given by

Gj = mjgce3, j = 1, 2, · · · , N − 1, (6a)

GN = (mN +mdr) gce3. (6b)

Assuming that aerodynamic forces on each joint are negligible and that each rigid link is a cylinder, the cross-flow

principle [12, 14, 21] can be used to calculate aerodynamic forces acting on cable links.

The position of the towing vehicle (mothership), pm ∈ R3, is considered as the position of the 0th joint of the

cable, p0 ∈ R3. Letting qj , pj−1 − pj be the vector between the (j − 1)
th and the jth joints, the velocity vector

of the jth cable link relative to the wind frame, vs
j , can be approximated from the motion of adjacent joints as

vs
j =

(ṗj−1 −wc) + (ṗj −wc)

2
. (7)

Then, the angle of attack of the jth link, αj , can be computed as

αj = cos−1

(
qT
j v

s
j

‖qj‖‖vs
j‖

)
. (8)

Letting Mpj and Mnj be Mach numbers parallel and normal to the jth link, respectively, the drag and lift coefficients

of the jth link are given by [12, 14, 21]

CDj
= Cfj + Cnj

sin3 αj , (9a)

CLj
= Cnj

sin2 αj cosαj , (9b)

where the skin-friction and cross-flow drag coefficients are given by [12, 14, 21]

Cfj = 0.038− 0.0425Mpj
, (10a)

Cnj
= 1.17 +Mnj

/40−M2
nj
/4 + 5M3

nj
/8. (10b)

Directions of the aerodynamic lift and drag forces of each link can be determined using the following unit

vectors [12, 21]

eDj = −
vs
j

‖vs
j‖
, (11a)

eLj
= −

(vs
j × qj)× vs

j

‖(vs
j × qj)× vs

j‖
, (11b)

where × denotes the cross product of two vectors. Letting ρ be the atmospheric density and d be the cable diameter,

the drag and lift forces acting on the jth link are given by

Dj =
1

2
ρCDj ‖qj‖ d‖vs

j‖2eDj , (12a)

Lj =
1

2
ρCLj

‖qj‖ d‖vs
j‖2eLj

. (12b)
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Assuming that these lift and drag vectors are constant over each cable link, and that the aerodynamic forces are

lumped and centered at the midpoint of each link, aerodynamic forces exerted on the jth joint are given by

Faero
j =

1

2
[(Dj + Dj+1) + (Lj + Lj+1)] , j = 1, 2, · · · , N − 1. (13)

Aerodynamic forces on the last joint (drogue) are associated with both the last cable link and the drogue. Similarly,

the aerodynamic lift and drag forces on the drogue can be calculated as

Ddr = −1

2
ρCDdr

Sdr‖vs
dr‖vs

dr, (14a)

Ldr =
1

2
ρCLdr

Sdr‖vs
dr‖2eLdr

, (14b)

eLdr
= − (vs

dr × e3)× vs
dr

‖(vs
dr × e3)× vs

dr‖
, (15)

where CDdr
and CLdr

are the aerodynamic drag and lift coefficients of the drogue, respectively, Sdr is the planform

wing area of the drogue, vs
dr is the velocity vector of the drogue relative to the wind frame, eLdr

is the unit vector

representing the direction of the aerodynamic lift force on the drogue. Then, the aerodynamic force exerted on the

last joint of the cable is given by

Faero
N =

1

2
(DN + LN ) + Ddr + Ldr. (16)

Tension forces on each link exist only when the link is stretched, and are always along the cable segment. Letting

µ0 , L0/N be the original length of each link, where L0 is the original length of the entire cable, then according

to Hooke’s law, the tension force exerted on the jth joint by the (j − 1)
th joint, Tj ∈ R3, is given by

Tj =
EA

2`0
(‖‖qj‖ − µ0‖+ ‖qj‖ − µ0)

pj−1 − pj

‖pj−1 − pj‖
, (17)

where E is the Young’s modulus and A is the cross-sectional area of the cable. Thus total tension forces for each

joint are given by

Ft
j = Tj −Tj+1, j = 1, 2, · · · , N − 1, (18a)

Ft
N = TN . (18b)

III. FRAMEWORK FOR PARAMETER ESTIMATION

Although the equations of motion for the aircraft, towed cable, and drogue were developed from fundamentals,

there remained inaccuracies in the model. These inaccuracies result from uncertain estimates of particular parameters,

simplifications from model assumptions to make the solution computationally tractable, asynchronous measurements

due to hardware limitations, and unmeasured disturbances, among others. When the model was employed to optimize

the path trajectory of the drogue with cross-wind, discrepancies of altitude between the measured and model values

of the drogue were observed to be up to 30 m. This large discrepancy motivated the current work to correct and

adapt the model.
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A. Parameter estimation using Kalman filters

Traditional estimation techniques for nonlinear systems such as the extended Kalman filter (EKF) and unscented

Kalman filter (UKF) were first employed to estimate parameters, e.g., the cable length and the aerodynamic drag

coefficient of the drogue, in towed cable systems. For the EKF, due to the complexity of the equations of motion

presented in the previous section, it is nontrivial to obtain the closed form of the Jacobian matrix. Thus, a numerical

method is utilized to calculate the Jacobian matrix at each cycle. To simplify the computation complexity, a 2-link

cable is used to establish dynamic equations of the system. Although using simulation data with 0.02 s sampling rate

generates reasonable estimates, the estimation results obtained from using both the EKF and UKF based on flight

test data with 1 s sampling rate diverged. Other than the reasons stated in the subsequent analysis in Section IV-B,

the diverged estimates also result from flight test data of a relatively large sampling time (1 s) and asynchronous

mothership and drogue measurements. This causes the acceleration of the joint (with a relatively small weight) to

quickly reach an infinite value. Therefore, an alternative technique is pursued to overcome the deficiencies of the

EKF and UKF. The next section describes an optimization based moving horizon estimation.

B. Parameter estimation using moving horizon estimation

While state and parameter estimation for nonlinear systems is not new research, certain aspects of the approach

are novel. One new contribution is the formulation of the estimation objective function that optimally rejects

measurement noise without the requirement for state error and noise covariance information. The inverse of the

state error and noise covariance matrices are typically used to define the weighting factors on the balance between

how much of the new state estimate is derived from the measurements versus the prior state estimate. Estimating

these covariance matrices can be challenging for large-scale systems or when there is no structure to the covariance

information thereby resulting in dense matrices. The methods proposed in this section require only an estimate of

accuracy of each sensor. One drawback of this method is that additional equations and variables must be added to

formulate the objective function, leading to additional computational expense.

An area of concern was whether these estimation algorithms can be used to optimally estimate states and

parameters in real-time. Offline studies suggested that the computational expense and communication lag would be

too great to match the frequency of the data stream (up to 10 Hz) but that it could be run at a time-scale faster than

the dominant time constant of the towed cable system (0.5-1.0 Hz). The method in this research is to compensate for

the effect of additional problem size and computational expense by using efficient nonlinear programming (NLP)

solvers and sparse matrix operations. The objective is to achieve real-time state and parameter estimation using a

nonlinear dynamic model, asynchronous data sources, and noisy data for this towed cable system.

To apply efficient NLP solvers, the equations of motion were posed in a standard form of differential and algebraic

equations (DAE) in open-equation format and a nonlinear objective function as

min
u,z

Φ (x,y, z,u) , (19a)
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s.t. 0 = f

(
∂x

∂t
,x,y, z,u

)
, (19b)

0 = ge(x,y, z,u), (19c)

0 ≤ h(x,y, z,u), (19d)

where Φ is a multi-tiered objective function of any continuously differentiable form that is minimized subject to

differential f , algebraic ge, and inequality h constraints, y represents measured values, u represents exogenous

inputs at the sampling points, ge represents equation residuals that relate the states to measured outputs, and h

represents inequality constraints. The solution of (19) is determined by the initial state x0 (e.g. initial position

and velocity of mothership and drogue) and a sequence of exogenous inputs. The exogenous inputs may include

parameters (e.g. drag coefficient of the drogue, the Young’s modulus of the cable), measured disturbances (e.g.

wind speed), past control inputs (e.g. mothership control efforts), or other independently specified values. Some or

all of the state values x may also be measured values y that may be used to update both parameters u and initial

conditions x0. Integer variables z are also included to represent states or inputs that can only take integer values.

The equations for x and y are solved at specific points over the time horizon to make the problem tractable for

numerical solution. This solution technique is used in the APMonitor Modeling Language [44] as a toolbox for

MATLAB® or Python.

For this specific problem, the equations of motion that relate position, velocity (e.g. Equation (7)), and acceleration

(e.g. Equation (1)) are converted to first-order differential equations that are fit into the form of (19) by including

them as the (19b) set of equations. Furthermore, Equations (2)-(6) and (8)-(18) are algebraic equations that are

lumped into the set with (19c) as equality constraints. The inequality constraints as denoted by (19d) are upper

constraints on certain variables such as cable tension and the slack variables used to define the error model as seen

later in (20e)-(20i).

Internal to APMonitor, the DAE model is converted to a mixed-integer nonlinear programming (MINLP) form

by approximating the derivative values ∂x
∂t through a direct transcription approach called orthogonal collocation

on finite elements [45]. The MINLP problems are solved by large-scale MINLP solvers such as APOPT [46] or

Bonmin/IPOPT [47]. Additional details on the transformation from DAE to MINLP are given in [33, 48].

A strategy is then developed to produce optimal estimates of the specified parameters of the towed cable system

given a real-time stream of measurements and subject to the system constraints and equations of motion. In the

literature, when formulating the optimal estimates for system update, the nonlinear kinematic or dynamic models

of the system are typically used, and the objective functions are usually based on squared error or `2-norm form

(e.g. Kalman filtering). To improve the accuracy of the estimation, the nonlinear dynamic equations of the system

are given and a novel form of the objective function is used to formulate the MHE problem. This novel form

has a dead-band around the current measurements in order to reject noise and an `1-norm penalty outside of

the noise dead-band. The implementation of the objective function in (19) is a formulation that can be solved

by numerical techniques for large-scale models. Slack variables are used to implement inequality constraints that

emulate an absolute value operation. The resulting combination of slack variables and inequalities is continuously
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differentiable as required by NLP solvers.

The `1-norm form serves a number of purposes including rejection of data outliers that would otherwise shift

the state and parameter estimates from true values. The outliers are not identified and eliminated by heuristic or

bounding methods but are naturally discounted during the solution of the optimization problem. This discounting

occurs because the optimizer is minimizing a collection of measurements over a time horizon. If the outliers are

infrequent compared with the total number of measurements, the optimal solution will be obtained by minimizing

a majority of the measurement deviations from the predicted model values. Objective functions with an `2-norm

are disproportionately affected by outliers because the error is squared, leading to a greater contribution by large

terms. The specific equations incorporating dead-bands are given by

min
u,z

Φ = wT
m (eU − eL) + wT

p (cU + cL) , (20a)

s.t. 0 = f

(
∂x

∂t
,x,y, z,u

)
, (20b)

0 = ge(x,y, z,u), (20c)

0 ≤ h(x,y, z,u), (20d)

eU ≥ y − yU (20e)

eL ≥ yL − y (20f)

cU ≥ y − ŷ (20g)

cL ≥ ŷ − y (20h)

0 ≤ eU , eL, cU , cL (20i)

where ŷ is the prior model values at sampling times (ŷ0,. . . ,ŷn)T , wm is the weight on the model values outside

a measurement dead-band, wp is the weight to penalize deviation from the prior solution, eU and eL is the slack

variables to penalize model values above and below the measurement dead-band, and cU and cL are the slack

variables to penalize model value changes above and below the prior model estimates.

Equations (20e)-(20i) deserve additional explanation because they constitute a unique contribution from this work.

These inequality constraints define a dead-band around the measured values to allow the model value to be deemed

acceptable if it falls within that range. Another way of explaining this form is that if the model value is between

the upper (yU ) and lower (yL) limits, there is no penalty in the objective function at that time point. If the model

value is outside of this range (yL to yU ) to then there is a linear contribution that is weighted by wm. The variables

eU and eL are always positive and are the upper and lower errors, respectively.

Similarly, cU and cL are defined to penalize deviation from the prior state estimates. This penalty is a “forgetting

factor” that approximates the infinite horizon solution with a finite time horizon. Any deviation from the prior state

estimate ym is multiplied by the weighting factor wp and added to the objective function in (20a). The values

of cU and cL are always positive and represent the positive deviation and negative deviation from the prior state

estimate, respectively.
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The objective form in (20) accomplishes a number of desirable characteristics. First the parameters are only

adjusted if the measured value is more than half of the dead-band away from the model value. Otherwise, the

parameters that affect the model predictions are not adjusted because the measurement lies within the region of

dead-band. Second, multiple objectives are solved with a single optimization. For example, in the case of redundant

measurements, explicit prioritization can be enforced by increasing the objective function gradient with weighting

factors to selectively track measurements. Secondary measurements are only utilized when the primary measurements

become unavailable or are infrequently updated. Third, weightings in the objective function on prior states are an

approximation to the infinite horizon solution that retains some of the prior information without an excessive

horizon length or computational expense. These qualities are particularly desirable for estimation of unmanned

aircraft systems that must be robust to measurement drift, failure, outliers, infrequent data, delayed data, and utilize

redundant measurement devices seamlessly.

In this paper, the model consists of the dynamic equations that describe the motion of the mothership, cable, and

drogue. The available measurements that are updated at frequent intervals include GPS coordinates for both the

mothership and drogue, wind velocity estimates in the two horizontal directions at the altitude of the mothership,

and the airspeed of the mothership. The difference between the model and measured values is minimized subject

to the model equations with adjustable parameters like the cable length due to tension, the number of cable links

(integer parameter), drag coefficient of the drogue, wind velocity in the vertical direction, and the Young’s modulus

of the cable.

IV. EXPERIMENTAL RESULTS

In this section, the MHE based estimation algorithm proposed in the previous section is applied to an aerially

towed cable system as described in Section II. Experiments are designed to test the effectiveness of the algorithm

as well as to investigate its real-time practicability. The applied cable length, a significant parameter that strongly

dictates system dynamics in simulation, was selected as a nominal parameter to be estimated. Although the cable

length is a parameter that can be readily measured before an experiment, the fishing-line cable used in the current

experiment has been observed to stretch and contract in previous flight tests. Also, an approximated mathematical

model with roughly-measured parameters like the Young’s modulus may not be accurate enough to fully capture

system dynamics like a cable stretching. Therefore, the applied value of the original cable length in a mathematical

model should be further validated in order for the approximated mathematical representation to better reconcile the

simulated system dynamics with the actual one. This enables a more simplified model to potentially capture more

realistic flight dynamics. The hardware platform and experimental results are described in the rest of the section.

A. Hardware platform

The hardware system used in the flight test, as shown in Figure 3, consists of three key components: a towing

UAV (mothership), a passive drogue without controllable surfaces and connected to the mothership by a nylon

cable, and a ground station with associated communication devices. Some key parameters of the system are given
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Fig. 3. Aerially towed-cable system hardware.

in Table I and were obtained from cruise flight conditions in a wind tunnel, weight scales, and length measurement

devices.

TABLE I

SYSTEM PARAMETERS IN FLIGHT TEST.

Mothership Drogue Cable

Mass (kg) 1.76 mdr (kg) 0.32 mc (kg) 0.02

CL 0.28 CL 0.01 `0 (m) 85

CD 0.06 CD 0.42 E (GPa) 1.9

Wing area (m2) 0.307 Diameter (m) 0.3 d (mm) 0.46

Wing span (m) 1.4

Fig. 4. Mothership and drogue (hemisphere resting on right wing).

1) Mothership and drogue: As shown in Figure 4, the mothership is a Multiplex Twin Star airframe model

equipped with a Kestrel 2 autopilot and a modem used to communicate with the ground station. The mothership is
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powered using two 5000 mAh lithium polymer batteries connected to twin 910 W Turnigy motors typically using

about 500 W each. The mothership has a maximum flight time of 30 min with the cable and drogue attached. The

applied hemisphere drogue is made of reinforced plastic, and is also equipped with a Kestrel 2 autopilot and a

modem used to report its position and velocity to the ground station.

2) Ground station: The ground station consists of a desktop computer with Intel i5 processor running at 3.1 GHz

with 8 GB RAM, a modem receiver and a remote controller. The flight control and monitoring software Virtual

Cockpit is installed on the computer and connected to the modem receiver for communicating with the autopilots on

both mothership and drogue with a bandwidth at 115.2 KB/s. Estimation and control strategies are implemented in

MATLAB® which is installed in the computer and communicates with Virtual Cockpit using a MATLAB® Executable

(MEX) function with a communication rate at 5 Hz.

B. Real-time parameter estimation

In flight tests, the mothership was commanded to follow a loiter of 250 m radius and a constant altitude of

150 m with the airspeed commanded at 14 m/s. The system trajectory and estimated wind speed on the mothership

level are shown in Figure 5. The top-down view of the system trajectory is presented in Figure 5 (a), where the

drogue orbit was essentially overlaid on the mothership orbit because a mothership orbit with relatively large radius

(150-250 m) and a relatively short cable (70-85 m) were used. This experimental system allowed validation of the

model even though the velocity and dimensions of an actual MAV capture system would likely be much larger. The

east-altitude view of the system trajectory is shown in Figure 5 (b). It can be seen that the mothership trajectory was

essentially on a horizontal orbit, while the resulting drogue orbit had an oscillation of approximately 20 m in the

altitude due to the wind. Figure 5 (c) shows the wind speed estimation in the north and east directions, respectively.

The magnitude of the wind was approximately 2 m/s.

The mothership position, airspeed, and estimated wind speed at the mothership altitude level in the flight test

are selected as the inputs of the simulation. Parameters like the applied cable length in the mathematical model are

automatically manipulated by the solver to minimize the difference between the drogue position calculated using

the mathematical model and the measured position in the flight test. In the experiment, the estimated wind speed

at the drogue altitude level was assumed to be the same as that at the mothership altitude level. The number of

cable links were selected as two to decrease the model complexity [22]. The communication rate between Virtual

Cockpit and MATLAB® is 5 Hz, i.e., the sample step size between each measurement is 0.2 s. The optimization

solver was selected as APOPT [46]. Before the flight test, off-line simulations were conducted to test whether the

computation time of each cycle is smaller than the communication rate (5 Hz) by using the ground station computer

introduced in IV-A2. The maximal computation time in each cycle for 100 runs is less than 0.08 s, which meets

the requirement for real-time estimation.
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Fig. 5. System trajectories and wind estimation.
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Fig. 6. Real-time estimation results.
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Figure 6 shows real-time experimental results of the applied cable length. The upper subfigure of Figure 6 shows

the evolution of the estimation throughout 600 s of flight time. The average of the estimates is 76.8 m and the

estimation oscillated between 50 m and 100 m with the standard deviation as 10.4 m. Measured values (dash line)

and model values (dot-dash line) of the drogue altitude are overlaid in the middle subfigure of Figure 6. The dead-

band (solid line) was selected as ±2 m of the measured value. The model value is essentially in the dead-band

except for several large deviations. The difference between the measured value and model value is shown in the

bottom subfigure of Figure 6. The standard deviation of the error is 3.69 m and the average error is 0.235 m.

Relatively large oscillations of the estimates result from several sources of uncertainty. First, the autopilot uses

measurements of ground speed (obtained from GPS), course angle (obtained from GPS), and airspeed (obtained

from the pitot tube) to estimate the instantaneous direction and magnitude of the wind speed. However, due to

gusts and the sensitivity of sensors, an instantaneous estimate of the wind speed is noisy. It is also assumed that

the estimated wind speeds on the mothership and drogue levels are identical, and the wind speed in the vertical

direction is zero. Second, the hardware platform is a multi-agent system where the mothership and drogue are

equipped with separate autopilots. The system complexity increases the communication delay between vehicles and

the ground station. Therefore, measurements collected from the mothership and drogue are not well synchronized.

Also, the GPS sensors on both vehicles have a drifting variance of approximate 3 m in the altitude measurement.

Third, the configuration of MHE uses 1 s time horizon, which may not be sufficient to produce smooth estimates.

Last but not least, as mentioned before, the cable stretching can also result in large oscillations of the estimates.

Due to limited experimental time, the applied cable length was the only parameter estimated during real-time

flight conditions. The following section addresses common challenges to other nonlinear dynamic systems where

parameters range from fully-observable to unobservable. Although fully observable, some unknown parameters are

constant or vary stochastically. The following analysis does not consider all possible combinations of parameters

but does give some insight on which parameters to estimate during future real-time flight tests.

V. OFF-LINE ESTIMATION RESULTS

In this section, comprehensive off-line estimations in simulation are conducted to further investigate the effective-

ness of the proposed approach in estimating parameters of interest. Estimation of single parameters, such as the drag

coefficient of the drogue, the Young’s modulus and the vertical component of the wind speed, is performed. Different

horizon window size (1, 5, and 10 seconds) and different number of cable links (2 to 9) are applied to analyze

the influence of mathematical model complexity on solution accuracy. Furthermore, the ability to simultaneously

estimate multiple parameters using the proposed approach is tested. In this section, the raw flight test data are

trimmed and selected as 600 data sets with a 1 s interval, which represents a 10 min flight period that comprises

multiple orbits of the system.
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A. Estimation of the drag coefficient of the drogue
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Fig. 7. The estimation of CDdr
using a horizon time of 10 seconds.

First, a 2-link cable model and horizon times of 1 and 5 seconds are used to perform the estimation of the drag

coefficient of the drogue (CDdr
). However, the resulting estimates oscillate with large amplitude and frequency and

do not provide consistent results. The corresponding coefficients of variation (the ratio of the standard deviation

over the mean) are 0.72 and 0.57, respectively. Figure 7 shows the estimation of CDdr
using a 2-link cable model

and a horizon time of 10 seconds with a coefficient of variation of 0.48. Using a larger horizon time, a solver is

able to capture a broader history of system states and is able to better smooth out unwanted variation. However, as

a trade-off, computational (CPU) times corresponding to horizon times of 1, 5, and 10 seconds are 0.04, 0.1, and

0.18 seconds, respectively. Figure 7 also shows that the average of the estimates is approximately 0.5, which is a

reasonable value for a nominal CDdr
.

Fig. 8. Results of CDdr
estimation using different numbers of cable links and horizon times.

Figure 8 shows an analysis of the tradeoff between the coefficient of variation and the CPU time using different

number of cable links and different horizon time. Each object represents a specific horizon time and the number of
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cable links. Different markers, square, triangle and circle, represent horizon times 1, 5, and 10 seconds, respectively.

The number of cable links is also labeled next to each marker. The center of each marker is the intersection of

the resulting coefficient of variation and the CPU time. The marker size represents the amount of failed solutions,

primarily caused by the inability of the solver to find a solution within a specified maximum number (200) of

iterations. Another possible cause for failure is that the hard constraints may lead to an infeasible set that makes

the solver terminate with an error message saying no solution. It can be seen from Figure 8 that solutions using a

1-second time horizon (squares) require smaller (less than 0.1 s) CPU times but have a relatively large coefficient

of variation (approximately 0.7). However, an increase in the number of cable links does not result in an obvious

increase of both the CPU time and the number of failed solutions. When the horizon time of 5second is used

in simulation, estimates (triangles) have a smaller coefficient of variation (between 0.5 to 0.6). As the number of

cable links increases from 2 to 5, the CPU time slightly increases from approximately 0.1 to 0.2 second, while

the number of failed solutions does not have an obvious variation. When the horizon time increases to 10second,

the coefficient of variation stays between 0.4 to 0.5. However, as the number of cable links increases from 2 to 5,

the CPU time increases from approximately 0.2 to 0.5, respectively, while the number of failed solutions decreases

when using 2-link and 3-link cable models and increases again when using 4-link and 5-link cable models. A

simulation is also conducted using a 9-link cable model and a 5-second horizon time. The purpose is to see whether

an increase in the number of cable links would result in a decrease in the coefficient of variation and the number

of failures. Unfortunately, the resulting CPU time increases to approximately 0.45 s and the number of failures

increases abruptly, as shown in Figure 8.

B. Determination of an optimal configuration

Fig. 9. Pareto plot for the CPU time and the coefficient of variation.

Based on the result obtained from the previous section, an optimal configuration of the horizon time and the

number of cable links can be achieved by minimizing the CPU time, the coefficient of variation, and the number of
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failed solutions. To simplify this multi-objective problem, the number of failed solutions is neglected in the current

study. Figure 9 shows a Pareto plot, in which a solid curve represents an optimum edge, i.e., a Pareto frontier, and

the “U” represents a Utopia point, depicting the lowest coefficient of variation and CPU time that can be expected.

In this study, an optimal configuration can be selected as a 5-second horizon time and a 3-link cable model by

equally weighting the CPU time and the coefficient of variation.

C. Further analysis of the result
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An analysis is conducted in this section to investigate the influence of the accuracy of the flight test data to

the estimation result. Figure 10 shows horizon segments in the recursive estimation at 10, 20, 30, 40, 50, 60,

70 and 80 seconds, respectively. The cumulative set of 100 successive steps, each of 5 seconds, is displayed in

Figure 11. Some visible discrepancy can be seen in the plots. For example, at coordinates (-150 North, -200 East)

in Figure 11, the mothership appears to suddenly proceed further than the other location, but does not move for a

while. This measurement inaccuracy causes the drogue to swing up from the measured flight path. To compensate

for these types of measurement inaccuracies, a 2-meter deadband is given to the GPS measurement as previously

described in (20). The deadband prevents state and parameter adjustments as long as the model predictions are

within this region. Figure 12 shows errors of measured and model values of the drogue coordinates in the north,

east and altitude directions, respectively. As shown previously in Figure 5, the horizontal wind velocity is in the

north-east direction, therefore the largest error occurs when the system transitions from a cross-wind to a tail-wind.

The measured values indicate that the drogue swings further out than the predicted trajectory.

D. Estimation of the vertical wind velocity and the Young’s modulus

This section further investigates whether parameters like the Young’s modulus and variables like the wind velocity

in the vertical direction can be estimated by the proposed approach. Using a 3-link model and a 5-second horizon

time, estimates of the Young’s modulus oscillate between 200 and 400 MPa, and estimates of the vertical component

of the wind velocity oscillate ±3 m/s. Increasing the horizon time does not attenuate the oscillation but only increases

the CPU time. The results produce less applicable solutions than those of CDdr
.

To investigate the qualification of parameters that can be estimated using the proposed approach, Table II lists

the sensitivity of the aerodynamic drag coefficient of the drogue, the Young’s modulus of the cable, the applied

cable length, and the vertical wind velocity, relative to the drogue Down coordinate. It can be seen that sensitivities

of the Young’s modulus and the vertical wind velocity relative to measured variables (drogue Down coordinate) of

the model is much smaller than the other two parameters, so a solver has to make larger changes in the Young’s

modulus and vertical wind velocity to reconcile the model with the actual data.

TABLE II

SENSITIVITIES WITH 1% CHANGE IN PARAMETERS.

Parameters\Measured variables pdN (m)

Drag coefficient -1.761

Young’s modulus -0.008

Applied cable length 0.264

Vertical wind velocity -0.016(
pnN , peN , pdN

)T is drogue 3-D coordinates in NED frame.
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E. Multivariate parameter estimation

Studies of the single parameter estimation in Sections IV-B, V-A, and V-D reveal that certain parameters like the

applied cable length and the drag coefficient of the drogue can be estimated one at a time by matching the locations

of the drogue in flight test and simulation. In this section, multiple parameters are simultaneously estimated to

further investigate the applicability of the proposed approach. Based on the result in Figure 9, a 3-link cable and a

5-second horizon time are selected in simulation.

Parameters and variables selected for estimation include the applied cable length, the Young’s modulus, the drag

coefficient of the drogue, and the wind velocity in the vertical direction. Based on the knowledge of the physical

system, any variation after an initial adjustment in parameters, such as the Young’s modulus and the drag coefficient,

of which are expected to remain somewhat constant throughout the simulation, indicates that there may be either a

structural error of the model or that the parameters are being adjusted for measurement inaccuracy. Other parameters

such as the cable length and the wind velocity are expected to vary about a median value.

Figure 13 shows the results of parameter estimates as well as the CPU time and objective function values over a

600 s window. Upper and lower bounds for the cable length estimates are set to 80 and 70 meters, respectively, to

prevent unrealistic values from influencing other parameter estimates. It can be seen that the applied cable length
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fluctuates with each circulation of the system whereas parameters such as the drag coefficient of the drogue and the

Young’s modulus are independent of angular position. Estimates of the vertical wind velocity fluctuates typically

between 5 m/s and −2 m/s indicating a possible slight thermal uplift. In addition, the objective function trend shows

that the error is larger on the north-west side of the trajectory.

VI. CONCLUSION

In this paper, a real-time optimal estimation for parameters in a towed cable system is presented using moving

horizon estimation (MHE). Preliminary experimental results reveal the capability of the algorithm to obtain an

estimation for the applied cable length in real-time. Given the success of the preliminary flight test, a further off-

line study demonstrates that multiple parameters can be updated during flight with a rigorous nonlinear model. The

framework is a reliable method to obtain parameter values that accurately predict the future motion of a system.

Consistent parameter values with predictive certainty are important for optimal control where a trajectory is planned

and optimized based on a predictive model.

A detailed offline simulation analysis used experimental data to further investigate the configuration of the

optimization for the best combination of computation burden, model complexity, and frequency of failed solutions.

The solutions for this multi-objective optimization problem is illustrated by a Pareto plot, which shows that given

the current hardware and software platform, a 5-second time horizon and a 3-link cable model is an optimal

configuration. In addition, a sensitivity analysis reveals that the objective function cannot be significantly minimized,

except with large and unrealistic changes in certain parameter values. The sensitivity analysis suggests which

parameters can align the model to measured values and which parameters have little influence on model predictions

and should not be adjusted. The multivariate parameter estimation result presented the ability of the proposed

estimation strategy to simultaneously adjust multiple parameters.
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