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Abstract— Aerial recovery of micro air vehicles (MAVs)
presents a challenging problem in multi-vehicle dynamics and
control. This paper presents a method for recovering MAVs
in flight using a mothership and towed drogue, in which
the mothership executes an orbit that places the drogue in
a stable, slower orbit that can be tracked by a MAV. The
differential flatness property of the system is exploited to
calculate mothership trajectories from desired drogue orbits,
and a backstepping controller is proposed that enables accu-
rate mothership trajectory tracking. Simulation results based
on multi-link cable-drogue systems verify the feasibility and
robustness of the approach.

I. INTRODUCTION

In recent years, the use of unmanned air systems (UASs)
has increased dramatically in both military and civilian fields,
with applications ranging from intelligence, surveillance, and
reconnaissance (ISR) to wilderness search and rescue. Micro
air vehicles (MAVs), with wingspans typically less than 15
inches, have been increasingly used and have the potential
to open new application areas and broaden the availability
of UAS technology.

The ability to deploy MAVs locally and in large numbers
opens many opportunities, but recovery of MAVs is problem-
atic in certain scenarios [1]. For instance, if a soldier deploys
a backpackable MAV on the battlefield to gather time-critical
ISR information, it is undesirable for the MAV to return to
the soldier because this could disclose his/her location to the
enemy. Additionally, if a large mothership deploys multiple
MAVs in a remote location for ISR, wildfire monitoring, or
other surveillance, the MAVs may not have sufficient range
to return home. Similarly, in disaster areas that are too remote
or dangerous, MAV search or monitoring platforms may not
be recovered by ground personnel.

One solution to this problem is to use a mothership as an
aerial recovery platform for MAVs. The primary challenge
with this approach is the high speed of the mothership
relative to the MAV, which makes direct MAV/mothership
rendezvous and capture impractical. Furthermore, aerial re-
covery must be highly accurate, as the rendezvous and
capture must be coordinated in both time and space. The
approach taken in the present work is to employ a capture
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device (drogue) that is towed by a larger mothership, as
shown in Figure 1. In this method, the mothership enters
an orbit designed to cause the towed drogue to execute
an orbit of smaller radius and lower speed (less than the
nominal speed of the MAV). The MAV then enters the drogue
orbit at its nominal airspeed and overtakes the drogue with
a relatively slow closing speed. In the terminal stages of
rendezvous and capture, a vision-based homing algorithm,
such as proportional navigation (PRONAV), is used to close
the gap between MAV and drogue.

Fig. 1. Basic aerial recovery concept. The mothership recovers a MAV by
towing a drogue that is actuated and can maneuver and communicate with
the MAV to facilitate successful capture.

For the case of passive drogues, which can only be
controlled indirectly via the mothership, it is necessary to
have a method to calculate the orbit that the mothership must
execute to place the drogue in an orbit suitable for aerial
recovery of a MAV. We assume that the drogue is passive,
i.e., it is only controllable indirectly via the mothership and
cable, and that it is instrumented with a small autopilot and
therefore has access to its own acceleration, angular rates,
airspeed, and GPS location. Under these assumptions, the
basic idea is to control the motion of the mothership so that
the drogue enters a specified stable orbit whose radius r is
greater than the minimum turning radius of the MAV, at an
airspeed that is slightly below the nominal airspeed of the
MAV.

In recent decades, motion control strategies to address
related problems have appeared in the literature. The concept
of differential flatness of the system is exploited in [2] to plan
towplane paths that minimize the motion of the drogue. This
work shows that the trajectory of the towplane is uniquely
prescribed by the motion of the drogue. Unfortunately,
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the algorithm as presented in [2] has numerical stability
issues. In [3], sequential quadratic programming is used to
plan open-loop trajectories for the towplane. Reference [4]
addresses the problem of entering and exiting the orbit with
the cable deployed, and open-loop strategies are derived
that minimize the tension on the cable and the drogue.
Reference [4] also addresses the problem of deploying the
cable from the towplane using a winch after the towplane is
in its orbit. The majority of prior work in this area is related
to the dynamics and stability of the drogue; few studies
have explored specific strategies for accurate control of the
mothership-cable-drogue system.

Once the desired trajectory of the mothership is calculated
using methods from the previous section, a Lyapunov-based
backstepping approach [5] can be used to find the control
inputs that cause the mothership to track the trajectory.
This is inspired, in part, by the work of [6] and [7].
Reference [6] proposes an output maneuvering controller
for a class of strict feedback nonlinear processes and ap-
plies it to path-following for fully actuated ships. Reference
[7] combine adaptive switching supervisory control with a
nonlinear Lyapunov-based (backstepping) tracking control
law for underactuated autonomous vehicles. However, the
foci of [6] and [7] are primarily on low speed ground and
water vehicles instead of high speed aerial vehicles which
are characterized by more complex dynamics and demand
faster realtime feedback control.

In this paper, we focus on the motion planning and control
of the mothership, while we will briefly describe the dynamic
model of the cable-drogue system, and our emphasis will be
on developing methods for the inverse problem: calculate the
required mothership trajectory to achieve a desired drogue
trajectory. A Lyapunov-based backstepping algorithm is used
to track the mothership trajectory, with the goal of achieving
accurate drogue orbits.

II. MATHEMATICAL MODEL OF CABLE-DROGUE
SYSTEM

Mathematical models of cable-drogue or towed-cable sys-
tems are described in the literature for both air and under-
water environments. Most of the methods reported in the
literature [2], [3], [8], [9], [10] use techniques that model the
cable as a series of N < ∞ rigid links with lumped masses
at the joints (Figure 2). As recommended in [11], we also
followed this approach. However, most researchers develop
models based on Euler-Lagrange equations, which do not
scale well to a large number of links. As an alternative, we
develop the mathematical model of cable-drogue systems us-
ing Gauss’s Principle, as derived in [12]. A similar approach
was used in the context of path planning for UAVs in [13].
Reference [1] gives detailed development of the dynamics
of cable-drogue system applying Gauss’s principle and the
simulation results prove the feasibility of this new approach.

Drogue

Mothership m
p

N
p

Joint
2
p

1
p

1N −

p

Fig. 2. N -link lumped mass representation of cable-drogue system

III. MOTHERSHIP PATH PLANNING AND
CONTROL

A. Mothership orbit calculation using differential flatness

The concept of differential flatness has proved useful in
the design of advanced control and supervision schemes for
nonlinear systems. Reference [14] introduces flat systems
and apply the differential flatness theory to vertical take-off
aircraft and articulated ground vehicles. We make use of this
property to calculate the inverse dynamics relating a desired
drogue orbit to the required orbit of the mothership.

Definition The system ẋ = f(x, u, t) where the states x ∈
R

n and the inputs u ∈ R
m, is differentially flat if we can

find a set of variables y ∈ R
m called flat outputs and integers

r and q such that

y = h(x, u, u̇, ü, · · · , u(r))

x = h1(y, ẏ, ÿ, · · · , y(q))

u = h2(y, ẏ, ÿ, · · · , y(q+1))

that satisfy the system state equations.
Assuming that the only forces on the drogue are aerody-

namic forces, gravity, and tension forces from the cable, the
cable-drogue system is differentially flat using the trajectory
of the drogue as a flat output. Therefore, specifying the
desired trajectory of the drogue will dictate the required
trajectory for each cable link, and, consequently, for the
mothership.

Suppose that the trajectory of the drogue is C∞. We can
then compute the tension components in the N th link of the
cable (at the end attached to the drogue) from

T x
N = mN ẍN − F x

N

T y
N = mN ÿN − F y

N

T z
N = mN z̈N − F z

N + mNg,

where F x
N , F y

N , F z
N are the aerodynamic forces acting on the

drogue, expressed in the inertial frame. Assuming the length
of each link is a constant l = L/N , the location of the
(j−1)th point mass (located at the (j−1)th joint) is related
to the jth point mass using

xj−1 = xj + l
T x

j

‖Tj‖

yj−1 = yj + l
T y

j

‖Tj‖
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zj−1 = zj + l
T z

j

‖Tj‖

j = 2, 3, · · · , N,

where ‖ · ‖ denotes the Euclidean norm. Consequently, the
forces on the (j − 1)th point mass can be calculated by

T x
j−1 = mj−1ẍj−1 − F x

j−1 + T x
j

T y
j−1 = mj−1ÿj−1 − F y

j−1 + T y
j

T z
j−1 = mj−1z̈j−1 − F z

j−1 + T z
j + mj−1g

j = 2, 3, · · · , N.

At each time step, these equations are applied recursively to
each link of the cable until the trajectory of the mothership
is calculated.

B. Mothership trajectory tracking using Lyapunov-based

control law

The dynamic equations of the mothership can be written
as

ṗn = V cos χ cos γ

ṗe = V sinχ cos γ

ṗd = −V sin γ

V̇ = −g sin γ −
D

m
+

1

m
uT +

FV

m
(1)

γ̇ = −
g

V
cos γ cos φ +

g

V
(cos φ)un +

Fχ

mV cos γ

χ̇ =
L

mV cos γ
sinφ +

Fγ

mV

φ̇ = uφ

where p , (pn, pe, pd)
T is the current position of the

mothership in the inertial frame, V is the airspeed, χ is the
heading angle, γ is the flight path angle, φ is the roll angle,
g is the gravitational constant at Earth sea level, m is the
mass of the mothership, D and L are the aerodynamic drag
and lift forces respectively, un , L/mg is the (controlled)
load factor, uT is the thrust and (FV , Fχ, Fγ) is the tension
force vector in the velocity coordinates. The control inputs
are the thrust uT , load factor un, and roll angle command uφ.
The tension forces in the inertial coordinate system can be
expressed in the velocity coordinates via the transformation





FV

Fχ

Fγ



 = Γ





T x
1

T y
1

T z
1



 ,

where

Γ ,





cos γ cos χ cos γ sinχ sin γ
− sinχ cos χ 0

− sin γ cos χ − sin γ sinχ cos γ



 ,

and (T x
1 , T y

1 , T z
1 ) are the components of tension in the

inertial frame for the first cable element connected to the
mothership.

Assuming that the desired trajectory pd(t) ∈ R3

is smooth, and defining the candidate inputs as uc ,

(uT , un, sinφ)T , then rearranging the dynamic equations of
the mothership yields





V̇
γ̇
χ̇



 =







−g sin γ − D
m

+ Fv

m

− g
V

cos γ cos φ +
Fχ

mV cos γ
Fγ

mV







+





1
m

0 0
0 g

V
cos φ 0

0 0 L
mV cos γ









uT

un

sinφ





= F + Guc,

where

F ,







−g sin γ − D
m

+ Fv

m

− g
V

cos γ cos φ +
Fχ

mV cos γ
Fγ

mV






,

G ,





1
m

0 0
0 g

V
cos φ 0

0 0 L
mV cos γ



 .

Theorem 1.1 Consider the system with the dynamic equa-

tions (1) under the stated definitions and assumptions, let

ξ , (MG)
−1

·

[

d

dt

(

ṗd − k1

(

p − pd
))

− MF

−
(

p − pd
)

− k2

(

ṗ − ṗd + k1

(

p − pd
))

]

,

where

M ,





cos γ cos χ −V sin γ cos χ −V cos γ sinχ
cos γ sinχ −V sin γ sinχ −V cos γ cos χ
− sin γ −V cos γ 0



 ,

and select the control inputs as

(

uT

un

)

=

(

1 0 0
0 1 0

)

ξ, (2)

uφ =
1

cos φ

(

(

0 0 1
)

ξ̇

−
(

ṗ − ṗd + k1

(

p − pd
))T

MG





0
0
1





−k3

(

sinφ −
(

0 0 1
)

ξ
)

)

. (3)

Suppose that p(t) = (pn, pe, pd)
T

is continuously

differentiable. Then, by appropriately selecting the

positive constants k1, k2 and k3, there exist control

inputs (uT , un, uφ) as given by (2) and (3), such that

p(t) → pd(t) with tracking error e , p − pd that is

uniformly stable and will exponentially converge to the

origin.

Proof:
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Step 1. Error dynamics: Let e = p − pd be the tracking
error in the inertial frame. The dynamic equation for the
inertial tracking error is then given by

ė = ṗ − ṗd.

Step 2. Error convergence: Define the Lyapunov candidate
function V1 , 1

2e
T e, which has the time derivative

V̇1 = eT ė

= eT (ṗ − ṗd). (4)

At this stage of the development, we consider ṗ as a virtual
control, where V̇1 can be made negative definite by setting
ṗ equal to ṗd − k1e, where k1 is a positive constant.
Introducing the error variable

zd , ṗd − k1e,

and adding and subtracting −k1e
T e in Equation (4) gives

V̇1 = −k1e
T e + eT (ṗ − zd).

Step 3. Backstepping for zd: Consider the augmented
Lyapunov candidate function

V2 , V1 +
1

2
(ṗ − zd)T (ṗ − zd),

with Lie derivative

V̇2 = −k1e
T e + (ṗ − zd)T (e + p̈ − żd).

From the mothership dynamic equations, we have

p̈ = M (F + Guc).

Therefore

V̇2 = −k1e
T e + (ṗ − zd)T (e + MF + MGuc − żd).

It is straightforward to show that MG is invertible1, therefore
we can pick

ξ = (MG)−1
(

żd − MF − e − k2(ṗ − zd)
)

,

where k2 is a positive constant, and define

η , sinφ.

If we select
(

uT

un

)

=

(

1 0 0
0 1 0

)

ξ, (5)

and define

zd
2 , η −

(

0 0 1
)

ξ,

the time derivative of the zd
2 can be written as

żd
2 = η̇ −

(

0 0 1
)

ξ̇

= uφ cos φ −
(

0 0 1
)

ξ̇,

and

uc =





uT

un

η



 = ξ + zd
2





0
0
1



 .

1By constraining V , γ, and χ to reasonable values, the matrices M and
G will be full rank. The product of two full-rank matrices is also full rank.

Thus

V̇2 = −k1e
T e − k2(ṗ − zd)T (ṗ − zd)

+(ṗ − zd)T



MG





0
0
1



 zd
2



 .

Step 4. Backstepping for zd
2 : Consider the augmented

Lyapunov candidate function

V3 , V2 +
1

2
(zd

2)2,

with the time derivative

V̇3 = −k1e
T e − k2(ṗ − zd)T (ṗ − zd)

+zd
2



żd
2 + (ṗ − zd)T MG





0
0
1









= −k1e
T e − k2(ṗ − zd)T (ṗ − zd)

+zd
2

(

uφ cos φ −
(

0 0 1
)

ξ̇

+(ṗ − zd)T MG





0
0
1





)

.

If we choose

uφ =
1

cos φ

(

(

0 0 1
)

ξ̇

−(ṗ − zd)T MG





0
0
1



− k3z
d
2

)

, (6)

where k3 is a positive constant, then the time derivative of
V3 becomes

V̇3 = −k1e
T e−k2(ṗ−zd)T (ṗ−zd)−k3(z

d
2)2 ≤ λV3, (7)

where the positive constant λ satisfies

0 < λ ≤ 2 · min {k1, k2, k3} .

Therefore, it is straightforward to conclude from the Com-
parison Lemma [5] that

V3(t) ≤ e−λtV3(0), t ≥ 0.

Thus by the appropriate selection of positive constants k1, k2,
and k3, the state (eT , (ṗ − zd)T , zd

2)T is uniformly stable
and will exponentially converge to the origin. The control
inputs (uT , un, uφ) are given by Equation (5) and (6).

�

C. Mothership path planning and control simulation results

In this section, the methods developed in Sections III-
A and III-B are used to simulate trajectory calculation and
control of the mothership, given a desired drogue orbit. This
section aims to validate the proposed trajectory tracking
control law, so the simulation will not include wind as
a factor, which is a crucial element for aerial vehicles
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control problem. Future work will include a more exhaustive
exploration of the effects of wind.

Based on the configuration of the mothership (a twin
prop, 55-inch wingspan, battery-powered, autonomous air-
craft with Kestrel autopilot) which is applied in the prelim-
inary flight test, we illustrate several key parameters using
in the simulation in Table I. The desired circular trajectory
(pdr

n , pdr
e , pdr

d ) of the drogue can be written in parametric
form as

pdr
n (t) = Rdr sin

(

V dr

Rdr
t

)

pdr
e (t) = Rdr cos

(

V dr

Rdr
t

)

pdr
d (t) = −900 m,

t = [0,+∞).

where Rdr and V dr are defined in Table I. The desired initial
position (pm

n (0), pm
e (0), pm

d (0)), velocity V m, and radius
Rm of mothership to achieve the specified drogue orbit may
be calculated using the differential flatness property as

(pm
n (0), pm

e (0), pm
d (0)) = (99.57, 96.86, −908.71) m

V m = 20.84 m/s

Rm = 138.91 m.

Thus the initial position error of the mothership is
(−99.57, 33.14, 91.29) m.

Figure 3 shows simulation results of the desired (solid)
and actual (dashed) trajectories of the mothership, as well as
the tracking error in the absence of wind. We see that the
mothership tracks the desired trajectory after a 50 second
transient. Figure 4 shows simulation results of the desired and
actual trajectories of the drogue, as well as the tracking error
in the absence of wind. We see that the drogue converges to
its desired trajectory after a 70 second transient. Figure 5
shows the time evolution of the characteristic parameters of
the mothership. Since the initial position error of the moth-
ership is large compared to the airspeed of the mothership,
the control inputs all reach their limits in the first 50 second
transient, and after that the mothership enters a steady state.
The tension force in the cable acts on the mothership in the
centripetal direction. The result is that, even though the roll
angle φ goes to zero in the steady state, the mothership is
still able to fly in a circular orbit.

TABLE I

SIMULATION PARAMETERS

Mothership Initial Position Airspeed Mass
(0, 130, -1000) m 18-27 m/s 1.76 kg

Drogue Airspeed Altitude Orbit Radius
(Desired) V dr

= 15 m/s 900 m Rdr
= 100 m

Cable Mass Length Diameter
0.01 kg 100 m 0.01 m

MAV Airspeed
16.67 m/s

IV. CONCLUSIONS

In this paper we presented a novel approach to the aerial
recovery problem for micro air vehicles. In this approach, a
mothership tows a drogue that establishes a stable orbit at
a speed that is slow enough to allow the MAV to overtake
the drogue as it moves along its orbit trajectory. An inverse
dynamics method for calculating the required mothership
orbit to achieve a desired drogue orbit was also presented.
Using a Lyapunov-based backstepping approach, a control
law was designed to enable stable tracking of the required
orbit by the mothership.
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Fig. 3. Mothership trajectory and error driven by Lyapunov-based backstepping control law in the absence of wind.
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Fig. 4. Drogue trajectory and error driven by Lyapunov-based backstepping control law in the absence of wind
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Fig. 5. Time evolution of the thrust T , load factor n, roll angle φ, path angle γ of the mothership.
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